
Efstratiou, Christos, Cheverst, Keith, Davies, Nigel and Friday, Adrian (2001)
An Architecture for the Effective Support of Adaptive Context-Aware Applications.
 In: MDM '01. Proceedings of Mobile Data Management (MDM'01). Lecture
Notes in Computer Science . pp. 15-26. Springer, Berlin, Germany ISBN
978-3-540-41454-4. E-ISBN 978-3-540-44498-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/38869/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-44498-X_2

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/38869/
https://doi.org/10.1007/3-540-44498-X_2
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An Architecture for the Effective Suppor t of Adaptive
Context-Aware Applications

Christos Efstratiou, Keith Cheverst, Nigel Davies and Adrian Friday

Distributed Multimedia Research Group, Department of Computing, Lancaster University,
Bailrigg, Lancaster, LA1 4YR U.K.

e- mai l : most @comp. l ancs. ac. uk

Abstract. Mobile applications are required to operate in environments
characterised by change. More specifically, the availability of resources and
services may change significantly during a typical period of system operation.
As a consequence, adaptive mobile applications need to be capable of adapting
to these changes to ensure they offer the best possible level of service to the
user. Our experiences of developing and evaluating adaptive context-aware
applications in mobile environments has led us to believe that existing
architectures fail to provide the necessary support for such applications. In this
paper, we discuss the shortcomings of existing approaches and present work on
our own architecture that has been designed to meet the key requirements of
context-aware adaptive applications.

1 Introduction

Mobile applications are required to operate in environments that change. Specifically,
the availability of resources and services may change significantly and frequently
during typical system operation [8,11]. As a consequence, mobile applications need to
be capable of adapting to these changes to ensure they offer the best possible level of
service to the user [11]. While early research focused on applications which adapted
to changes in network characteristics, there is now increasing interest in applications
that adapt to general environmental and contextual triggers such as changes in a
system’s physical location, e.g. the GUIDE system [2,3] which supplies users with
information tailored to their current location.

Current adaptive mobile applications are built using one of two approaches: either
the adaptation is performed by the system which underpins the application (in an
attempt to make transparent the effects of mobility) or, the application itself monitors
and adapts to change. In some cases, these approaches are combined as, for example,
in the MOST system [8] where the middleware platform adapts the operation of the
network protocol in the face of changes in QoS and, additionally, reports these
changes to the application to enable application level adaptation. However, in the
general case, it has been demonstrated that maintaining transparency in the face of
mobility is not practical and that it is difficult for a system to adapt without support
from the application.

Careful examination of current approaches to supporting adaptation reveals two
important facts. Firstly, support for adaptation is often fragmented with a range of
mechanisms being used to notify applications of changes in different environmental
and contextual attributes [4]. Secondly, there is a lack of mechanisms that support
coordination of adaptive behaviour across the whole system, according to user
requirements. In this paper, we explore the requirements for, and our research into
creating, a unified architecture. It can support multiple contextual attributes coupled
with a user driven adaptation control mechanism. The benefits of such an approach
are clearly illustrated using a set of real-world examples.

2 Drawbacks of Current Approaches

Mobile systems need to be capable of adapting to a wide range of attributes such as
network bandwidth, location, power etc. In general, current mobile systems provide
support for adaptive applications by notifying applications when certain ‘ interesting’
changes in attributes occur, e.g. bandwidth falls below some specified minimum
threshold. It is then the responsibility of the application to adapt in an appropriate
way, e.g. by reducing its bandwidth requirements. However, this approach can be
shown to lead to inefficient solutions because of the lack of support for enabling
coordination between the adaptation policies of multiple applications that may co-
exist on the same system. In the following scenarios, we illustrate the kind of
problems that could occur as a result of relying upon a simplistic notification based
approach and isolated, uncoordinated, application adaptation.

2.1 Scenar ios

The Need for Coordinated Application Adaptation for Power Management. This
scenario illustrates the need for coordination in order to achieve efficient power
management on a mobile system. One existing approach for handling power
management, i.e. the ACPI [1] model, is to enable the operating system to switch
hardware resources into low power mode when not in use, e.g. spinning down the
hard-disk. This approach requires that applications leave hardware resources in an
idle state for sufficient periods of time to make the transition between idle and active
states worthwhile. Although this approach is suitable when only one application is
running on a mobile device, the approach can prove ineffective when multiple
applications or system services are sharing hardware resources. In more detail, the
lack of coordinated access to hardware resources can result in poor utilisation of the
shared resource and therefore sub-optimum power management. For example,
consider the case of multiple applications that implement an auto-save feature. In the
absence of any coordination between applications each application may choose to
checkpoint its state to the disk at an arbitrary time, without considering the state of the
disk (i.e. spinning or sleeping). In contrast, if applications are able to coordinate their
access to the hard-disk then access to the disk can be clustered, allowing longer
periods of inactivity. This latter approach is clearly more power efficient than the
situation in which usage of the hard-disk is completely arbitrary and uncoordinated.

The Pr oblem of Conflicting Adaptation. In this scenario, we illustrate the potential
problems that can occur in a system that util ises separate adaptation mechanisms for
different attributes. We consider a hypothetical mobile system which utilises two
independent adaptation mechanisms, one for managing power and the other for
managing network bandwidth. The two mechanisms can conflict with one another as
the following example il lustrates. If the system needs to reduce power consumption,
the power management mechanism will request those applications that are util ising
network bandwidth to postpone their usage of the network device in order to place the
network device in to sleep mode. As a consequence of applications postponing their
use of the network, the available network bandwidth increases. However, the network
adaptation mechanism will detect this unused bandwidth and notify applications to
utilise the spare bandwidth. In this way, the request to utilise available bandwidth is in
direct conflict with the request to postpone network usage.

This example highlights the problem of relying on independent and uncoordinated
adaptation mechanisms. Clearly, coordination or harmonisation is required in order to
detect and avoid potentially conflicting adaptation mechanisms. In the example
presented, the instruction given to applications to utilise more bandwidth should have
been withheld if conserving power was the system’s primary goal.

Utilising Alternative Location Sensing Mechanisms. This scenario considers the
case of supporting multiple services for providing similar contextual information. In
this case, we consider a location aware system that is capable of sensing its current
location through two different mechanisms: a local GPS device and using beaconing
in a cell-based wireless network. Using the latter mechanism, the system can identify
the current cell in which it operates and thus specify its location. Both mechanisms
deal with the same problem but they both have different characteristics. The GPS
mechanism is typically the more accurate (accuracy in the region of 5m) but does
require extra power to operate. Alternatively, the network-based solution is generally
less accurate (depending on the size of a cell, e.g. approximately 200m for
WaveLAN). However, the fact that the network device is already in use by the system
for communications means that the addition power consumption required for
identifying the location of the base-station would be minimal.

It follows that the mobile system would select to use the GPS based solution if
accurate location information was required and concern over additional power usage
was not an important issue. Alternatively, if the lifetime of the system’ s batteries (and
therefore operation) was more important than achieving greater location accuracy
then the network location mechanism would be the more appropriate mechanism. The
adaptive strategy that would be most appropriate depends on both the user’s
requirements and the context of other attributes, such as power. In order for the
system to make such decisions there is a basic requirement for system-wide
adaptation policies. Without such policies, coordinated adaptation on the use of
alternative context retrieval mechanisms is difficult because each application relies on
a single mechanism without being able to identify the implications of its operation on
other system resources and, consequently, other applications.

3 Analysis

Multiple Attr ibutes. The previous scenarios illustrated a number of potential
problems with current approaches to developing adaptive context-aware mobile
systems. In this section, we generalise on these findings to present a critique of
existing mobile systems and their suitability for supporting adaptive applications.

Based on the ideas of ubiquitous computing [20] future mobile systems should be
able to discover changes in both the user and system environment and adapt to these
changes. Current context-aware applications handle context in an improvised fashion.
Application developers usually bundle the application with specific mechanisms for
accessing context. However, this approach does not allow coordinated adaptation on
context changes leading to the problems presented. Dey [5] has addressed this
problem and suggested a general platform to support context-aware application. Our
belief is that though a general platform for supporting context-aware application is
necessary, this platform should also be capable of addressing the problems of
coordinated adaptation.

The situation is complicated still further by the fact that the adaptive behaviour
triggered by one attribute can cause side-effects on other attributes. These side-effects
could, in-turn, trigger adaptation requests to other applications that result in
conflicting actions (as illustrated in the conflicting adaptation scenario in section
2.1.2). Moreover, current research [4,6,7,12,13] has identified the need to provide
adaptation solutions based on the combination of different attributes.

Existing architectures do not provide the necessary support to enable programmers
to construct applications, which can adapt to multiple attributes and identify and cope
with conflicts in adaptation strategies.

Adaptation Mechanism. Current mobile systems supporting adaptive applications
tend to rely heavily on integrating QoS feedback and adaptation with network
bindings. Examining the architecture of such systems allows us to identify a
framework for analysing the architectural model of existing adaptive systems. The
framework comprises two layers, the upper application layer and the lower
representing the adaptation support platform. Between these two layers we can
identify four distinct flows of control and information (see figure 1).
Flow A. Represents the requirements set by the application concerning the resources
or attributes supported by the underlying infrastructure. For example, in the case of
network adaptation this flow could represent the application’s network QoS
requirements.
Flow B. Represents the ability of the application to control the functionality of the
underlying infrastructure. In the case of accessing a GPS device this could represent,
for example, the control of the device by the application.
Flow C. Represents an information flow from the platform to the application. This
could be used, for example, as a notification mechanism to inform the application
when certain requirements cannot be met. Such notification could then trigger the
application to adapt.

Fig. 1. Directed flows between applications and platform

Flow D. Represents the ability of the underlying platform to actually control the
operation of the application. More specifically, this flow represents an explicit request
from the system for the application to perform a specific adaptive behaviour. For
example, the application might be requested to reduce its demand for network
bandwidth or disk usage.

Consideration of this framework enables a classification of current systems
according to the types of flows supported. For example, network based adaptive
systems such as BAYOU [18], Odyssey [16], MOST [8] and Rover [10] support
flows A and C.

Context aware applications like GUIDE [2,3], Stick-e Notes [17] and Cyberguide
[14] are based on flows B and C. In more detail, for these applications, flow B
represents the access to the various context-sensors while flow C represents the
information flowing from the sensors to the application.

According to our knowledge no platform supporting context-aware adaptation
provides a flow of control from the platform to the application. Indeed, although
examples of systems providing this type of flow can be found in the distributed
systems community, e.g. ISIS-META [15], it should be noted that these systems
consider only network triggered adaptation.

4 Architectural Requirements

The previous sections have described the limitations of current approaches for
supporting adaptive mobile applications. In particular, these approaches do not
provide appropriate support to enable applications to adapt to multiple attributes in an
efficient and coordinated way. This section considers a set of requirements that could
be used to develop an appropriate architecture for supporting adaptive mobile
applications.

4.1 Suppor ting a Common Space for an Extensible Set of Attr ibutes

The first key requirement of the architecture is to provide a common space for
handling the adaptation attributes used by the system. It is important that new
attributes can be introduced into the system as and when they become important, e.g.
the cost of specific services for mobile users or information about human physiology
for wearable computers. The fact that new contextual attributes for triggering
adaptation can arise implies that:

Application

Platform

A B C D

• the set of attributes that can trigger adaptation needs to be extensible,
• the characteristics of all these attributes may vary.

4.2 Application Control and Coordination

A second architectural requirement is the need to support the control of adaptative
behaviour across all components involved in the interaction. As described earlier, one
of the main limitations of current approaches is that applications themselves are
responsible for triggering an adaptive mechanism when the underling infrastructure
notifies them about any changes. In order to support flexible and coordinated
adaptation there is a requirement for the triggering of adaptation on a system-wide
level. Given this approach, the decision about when and how an application should
adapt is pushed into an external entity, with cross-application knowledge, while the
adaptive behaviour is still a part of the application’s characteristics.

4.3 Suppor t for System Wide Adaptation Policies
A further requirement is to support the notion of system-wide adaptation policies.
More specifically, such policies should enable a mobile system to operate differently
given the current context and the requirements of the user.

The specification of adaptation policies should be goal-oriented. Two kinds of
goals can be identified:
1. effects on resources. The policy specifies a specific aim for the use a specific

resource. Example policies include reducing the required network bandwidth and
maximising the duration of operation of the system.

2. effects on applications. The policy specifies the mode of operation for specific
applications. Example policies include defining priorities on applications which
determine the order in which they are allocated resources and maximising the
duration of operation of the system while having a specific application operating
with full functionality.

5. Architecture

5.1 Structure of the Platform

We propose that future mobile adaptive applications should adopt an architecture in
which mechanisms and policies are decoupled and, furthermore, mechanisms can be
exposed and externalised in order to enable control by independent entities. Our
architecture has been designed to address these requirements.

Figure 2 shows the relationship between the main components of the architecture
of our proposed platform. The basic functionality of the architecture is two-fold,
namely: the discovery and control of services offering contextual information and the
coordination of adaptive behaviour of the system based on changes in context. More
specifically, the platform discovers available context information in the system’s
environment and manipulates the contextual information in the context database.

Context aware applications expose their adaptive mechanism to the platform by
registering with the application database. The adaptation control driven by
adaptation policies (as specified by the user) coordinates the coexisting applications
according to changes in context.

Fig. 2. The overall architecture of the system

All communications between the main components of the architecture are
performed using HTTP as the transport protocol and XML to represent the format of
the messages. The reason for this decision was based on the fact that these
technologies support the lightweight integration of distributed components. Other
alternatives, such as CORBA and RMI, are too heavyweight, and would require
additional infrastructure, i.e. an ORB or RMI daemon respectively.

5.2 Context Discovery and Access

This part of our architecture is responsible for locating services that provide
contextual information. These services can either be sensors embedded within the
system (e.g. a body temperature sensor) or services in the surrounding environment
(e.g. active devices in the user’s environment). In a mobile environment the
availability of context information can change rapidly. Thus, it is important to be able
to discover context services when they are available and receive notification when
they are not. For this reason, a considerable part of the architecture is based on the
UPnP architecture [19]. In more detail, the mechanism for discovering available
context services is based on services advertising themselves (using multicasting) to
any interested context-aware applications.

Once a service is discovered the platform retrieves the XML description of the
device, an abbreviated example of which is shown figure 3. The XML description
provides the access points for sending control messages to the object and subscribing
for event notifications. In addition, it defines the types of messages that can be sent to
the service and the types of information that the service can offer. Given this
information, the platform is capable of using the service and receiving notification
events when the state of the service changes.

Adaptation
Policies

Context DB

Discovery Events Description & Control

Context Discovery Context Access & Control

Application DB

Adaptation Control
Context
Agents

Application

Context
discovery &

access

<ser vi ce>
 <cat egor y> Locat i on </ cat egor y>
 <t ype> GPS </ t ype>
 <act i on>
 <name> get XCoor d </ name>
 </ act i on>
</ ser v i ce>

Fig. 3. Sample of the XML definition of a service

5.3 Context Database

This component serves as a registry for all those context services currently available.
An important part of the context database is a classification of the context services
into context types. More specifically, each context service has to specify the type of
context that it supports, e.g both the GPS and the network based locator provide
location information. The specification of context type is achieved using an XML
template that defines the kind of information this type offers. Using this approach, an
application can retrieve the specific contextual data in a way that is decoupled from
the service used for acquiring the data.

This method of hiding the actual mechanism for retrieving contextual information,
allows the platform to coordinate the access to context for different application.
Moreover it offers our platform with the potential to switch between different services
of the same type depending upon the predefined adaptation policies that have been
specified.

5.4 Application Database

The application database serves as a repository for the adaptation mechanisms of all
applications running on the system. The application developer is responsible for
actually implementing the adaptive behaviour of his/her application. In addition, the
application developer is also responsible for exposing this behaviour to the platform
by ensuring that the application registers all of its adaptation mechanisms with the
application database.
The description of the adaptation mechanisms should specify the type of context that
can trigger this mechanism. This information is used by the adaptation control in
order to coordinate the triggering of the applications based on changes in context. In
figure 4, we illustrate an example of the information that may be provided by an
application in XML, concerning its adaptive functionality.

5.5 Context Agents

A context agent is a piece of code that can be plugged into the platform in order to
perform the application specific manipulation of contextual information.

<appl i cat i on>
 <name> WebBr owser </ name>
 <adapt at i onMode>
 <name> l owBand </ name>
 <t r i gger >
 <cont ext > avai l abl eBand </ cont ext >
 <condi t i on> l essThan- 9600 </ condi t i on>
 </ t r i gger >
 </ adapt at i onMode>
</ appl i cat i on>

Fig. 4. Sample of the XML definition of application’s operation modes. The XML based
description provides the different operational modes of the application, coupled with the
contextual trigger that would make the application switch into that mode.

A common case of context manipulation is the combination of primitive context
information for constructing a complex type of contextual data. For example, a
context agent plugged into the platform can combine location data and current time in
order to provide location-and-time tracking information similar to the data used by the
Stick-e Note system [17].

To present even more clearly the operation of a context agent we will present an
example based on the GUIDE system [2, 3]. The GUIDE system is a mobile
electronic context-aware tourist guide. As part of its functionality it provides
information about tourist attractions in HTML format, triggered by the location of the
user. In order to introduce the GUIDE system into our platform we need to split the
application into two parts: an ordinary web-browser and a location-triggered HTTP
proxy. The HTTP proxy operates as a context agent which is plugged into the
platform and has direct access to the location information provided by the platform.
Triggered by changes in location, the agent can request the appropriate HTML data
from the content server.

The key motivation behind introducing the notion of context agents is to enable the
developer to distinguish the functionality of the application from the acquisition and
manipulation of context data. Importantly, this allows context agents to be used for
integrating non-context-aware applications (like an ordinary web browser) into a
context-aware system.

5.6 Adaptation Control
This module is responsible for monitoring the status of contextual triggers and
making decisions about the behaviour of the platform and the applications. The
decision taking procedure is based on a set of adaptation policies specified by the
user. These adaptation policies are specified by defining priorities both among the
applications running on the system and among the resources of the system. This
prioritisation represents the importance of these entities according to the user needs.

The adaptation control is further divided into two sub-modules: internal adaptation
and external adaptation as explained below.

Internal adaptation. This module coordinates the context monitors that are required
for all applications running on the system and coordinates potential adaptation within
the platform itself. The adaptation actions that can be performed on context
acquisition are tightly coupled with the context classification that has been described
earlier (in section 5.3). Context services are clustered into context types according to
the type of information they provide. For example, a GPS device and a network based
location mechanism would be members of the same type of context, i.e. location.
Both these mechanisms can provide similar types of information but have different
specifications and different requirements. When the system gets into a state whereby
one of the two mechanisms is favoured (according to the adaptation policies specified
by the user) then the platform will switch to the mechanism that is preferred (as
illustrated in figure 5).

Fig. 5. Internal adaptation: switching between different location mechanisms.

In the example discussed, all applications that require location information do so
via the location proxy object. Thus, the actual mechanism for retrieving contextual
information is hidden from the application. This transparent access to context enables
the platform to switch between mechanisms without affecting the applications
involved. To illustrate this, consider the example described in section 2.1.4 and a
scenario in which it is crucial to reduce the aggregate level of power consumption. In
such a scenario, the platform could reduce power consumption by switching off the
GPS device, and using the network locator in order to retrieve location information.

External adaptation. This module is responsible for coordinating the adaptive
behaviour of the applications running on the system. Its operation is driven by both a
set of adaptation policies defined by the user and the XML description of each
application specifying its various operation modes (as described in section 5.4).
Recall that the XML description of each operation mode is marked according to its
effect on resource utilisation (e.g. power, network) and the use of context services.
The adaptation control module can use this information in order to decide which
operation mode has to be triggered under each potential set of circumstances. In more
detail, when resources (power, network, etc.) become unavailable the adaptation
control picks the adaptation mechanism with the lowest resource requirements.

In order to clarify this approach, consider the following example (which is
illustrated in figure 6). Two adaptive applications run on a mobile device: a web
browser and a video player. The adaptation policies specified by the user define
priorities between the applications and the resources (such that the lower the number
the greater the priority). The adaptation control module is aware of the adaptive
modes that these applications can support by accessing the application database. It
also knows the status of all the contextual data that is available on the system. When

GPS

Network
Location

Location
Proxy

Adaptation Interface

Application

any of the contextual triggers reach a value that triggers a reaction by the system, the
adaptation control has to decide which adaptation mechanism should be invoked. In
the example presented, both power and available bandwidth are low. However, the
adaptation control would choose to overcome the power problem, because the user
has specified that power is the most important resource. Note that enabling the user to
specify priorities has in this case enabled the platform to overcome an area of
potential conflict (as highlighted in section 2.1.2).

Fig. 6. External adaptation: making adaptation choices according to adaptation policies

In order to decide which application to invoke, the adaptation control component
checks the prioritisation of the applications and picks the application that is less
important to the user (i.e. the video player). The appropriate adaptation mode would
then be triggered causing the video player to switch to low power mode. If the
reduction in power resulting from this action is insufficient then the adaptation control
component would proceed with the next course of action, i.e. turning off the video
player and triggering the web browser to enter low power mode.

6. Conclusions

In this paper, we have argued that existing architectural approaches for supporting
adaptive mobile applications have a number of shortcomings. Furthermore, analysis
of these shortcomings has led to the identification of a set of architectural
requirements. Namely: support for a common contextual space, mechanisms to
support co-ordinated adaptations between multiple adaptive applications and support
for user defined adaptation policies. We have also described the architecture of our
platform, which has been designed to meet these requirements and which enables
mobile systems to extend their awareness of all relevant contexts that might affect
overall system adaptation policies. Fundamental to our approach is the idea of having
system-wide decision making policies that consider the most efficient adaptation
outcome from a number of possible adaptations. This is achieved by requiring the
applications to provide information about themselves, their adaptation mechanisms,
and the contextual triggers that can affect their behaviour.

Application DB
 WebBrowser
• LowPowerMode
• LowBandMode

VideoPlayer
• LowPowerMode
• LowBandMode

Context DB
Power drops
AvailNetBand drops

Adaptation Policies

Application priorities
1. WebBrowser
2. VideoPlayer

Resource priorities
3. Power
4. AvailNetBand

Adaptation Control
Choice 1:

VideoPlayer.LowPower
Choice 2:

VideoPlayer.off
Choice 3:

WebBrowser.LowPower

References

1. Advanced Configuration and Power Interface Specification, Revision 1.0,
Intel/Microsoft/Toshiba (1999).

2. Cheverst, K., N. Davies, K. Mitchell, A. Friday.: Experiences of Developing and Deploying
a Context-Aware Tourist Guide: The GUIDE Project. In: Proc. of MOBICOM’2000,
Boston, ACM Press (2000)

3. Davies N., K. Cheverst, K. Mitchell, A. Friday.: Caches in the Air: Disseminating
Information in the Guide System. In: Proc. of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA ‘99) (1999)

4. Davies N., A. Friday, S. Wade, G. Blair.: L2imbo: A Distributed Systems Platform for
Mobile Computing. In: ACM Mobile Networks and Applications (MONET), Special Issue
on Protocols and Software Paradigms of Mobile Networks, 3(2) (1998) 143-156

5. Dey A., Abowd G., Salber D.: A Context-Based Infrastructure for Smart Environments. In:
Proc. of the 2000 Conference on Human Factors in Computing Systems (2000)

6. Elis C.: The Case for Higher-Level Power Management. In: Proc. of HotOS (1999)
7. Flinn J., M. Satyanarayanan.: PowerScope: A Tool for Profiling the Energy Usage of

Mobile Applications. In: Proc. of the Second IEEE Workshop on Mobile Computing
Systems and Applications (1999)

8. Friday A., N. Davies, G. Blair, K. Cheverst.: Developing Adaptive Applications: The MOST
Experience. In: Journal of Integrated Computer-Aided Engineering, 6(2) 143- 157

9. Goland, Y., Cai T., Leach P., Gu Y., Albright S.: Simple Service Discovery Protocol,
Version 1.03. IETF Internet-Draft. http://www.ietf.org/internet-drafts/draft-cai-ssdp-v1-
03.txt

10. Joseph A., J. Tauber, F. Kaashoek.: Mobile Computing with the Rover Toolkit. In: IEEE
Transactions on Computers: Special issue on Mobile Computing, 43(3), (1997)

11. Katz R.: Adaptation and Mobility in Wirless Information Systems. In: IEEE Personal
Communications, 1(1) (1994) 6-17

12. Kravets R., P. Krishnan.: Application-Driven Power Management for Mobile
Communication. In: Fourth ACM International Conference on Mobile Computing and
Networking (MOBICOM ‘98) (1998)

13. Kunz T., J. Black.: An Architecture for Adaptive Mobile Applications. In: Proc. of the 11th
International Conference on Wireless Communications (Wireless ‘99) (1999)

14. Long, S., R. Kooper, G.D. Abowd, C.G. Atkeson.: Rapid Prototyping of Mobile
Context-Aware Applications: The Cyberguide Case Study. In: Proc. of the 2nd ACM
International Conference on Mobile Computing (MOBICOM) (1996)

15. Marzullo K., R. Cooper, M. Wood, K. Birman.: Tools for Distributed Application
Management. In: IEEE Computer, 24(8) (1991) 42-51

16. Noble B., M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, K. Walker.: Agile
Application-Aware Adaptation for Mobility. In: Proc of the 16th ACM Symposium on
Operating System Principles (1997)

17. Pascoe J.: The Stick-e Note Architecture: Extending the Interface Beyond the User. In: Proc.
of the International Conference on Intelligent User Interfaces (1997)

18. Terry D. B., M. Theimer, K. Petersen A. J. Demers.: Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System. In: Proc of the 15th ACM Symposium on
Operating System Principles (1995)

19. Universal Plug and Play Device Architecture, Version 0.91, Microsoft Corporation, March
2000. http://www.upnp.org/download/UPnP_Device_Architecture.mht

20. Weiser M.: Some Computer Science Issues in Ubiquitous Computing. In: Communications
of the ACM, 6(7) (1993) 75-84

