
Personal Workflow Management in Support of
Pervasive Computing

San-Yih Hwang, Jeng-Kuen Chiu, Wan-Shiou Yang

Department of Information Management
National Sun Yat-Sen University, Taiwan

{syhwang,jack,ryang}@mis.nsysu.edu.tw

1. Introduction

With the advent of new wireless technologies, mobile personal computers (MPCs) are
quickly gaining their popularity. Concurrently an increasingly number of services for
MPCs have been developed. However, current services view PMCs as a vehicle to
perform individual activities. No attempt has been made to provide process services
that reach mobile users via their PMCs. In the real world, many personal applications
are process-oriented, e.g., planning a trip, holding a party, applying a new job, etc.
We expect PMCs to help manage and execute these processes in the future, serving
the role of planning, coordinating, and reminding task executions so as to accomplish
predefined personal goals. On the other hand, traditional workflow management
systems are mainly used to coordinate business processes in enterprises. These
processes must be repetitive and have well-formed structures. Personal processes
differ from their business counterparts in that they are subject to change and rigid
regulations on control flow are seldom imposed. As a result, personal activities are
related mainly due to their data dependencies and their coordination must be flexible.
These differences demand a new personal workflow model as well as the innovative
design of a personal workflow system (PWFS).

2. The Process Model

We model a process as a set of tasks, each of which is associated with several
attributes such as name, input data, output data, the durations and places in which this
task can be executed. We can view a PWFS as a function that, when time and place
allow, maps a set of input data and a set of tasks into a set of output data. Formally,
this function can be specified as

{ } execution invalid indicatewhere,222 ⊥⊥∪→× datataskdata DDD

Viewing a PWF as a function described above allows us to place the following
inquiries:

1. Given a set of input data items and a set of tasks to be executed, what data
items can be generated?

2. Given a set of input data, what tasks should be executed in order to produce a
specific set of output data?

3. To execute a specific set of tasks, what input data items are needed?

Therefore, we propose the following three operations that intend to answer the above
three queries:

ProduceData: inputset × taskset → outputset
InvolvedTask: inputset × outputset → taskset
RequiredData: taskset × outputset → inputset

With the above three operations, many queries about the execution of a personal
process can be specified. For example, suppose the user would like to identify the set
of tasks that can be co-executed with C after both A and B complete, the following
SQL statement is specified:

SELECT t.name
FROM TASK t, c
WHERE t IN InvolvedTask(ProduceData(avail,(‘A’,’B’)),ANY)
AND c.name = ‘C’
AND t.time OVERLAPS c.time
AND t.place OVERLAPS c.place;

3. Implementation Issues

We propose to adopt metagraphs [1], a formal model designed to express data
dependencies of processes in model bases community, to specify personal processes.
The analytical capability of metagraphs paves the way for efficiently implementing
the proposed operations. Besides, implementing a personal workflow system involves
many issues. To name a few: the storage of personal processes, the design of
graphical interface, the presentation of worklist, the development of triggering
system, the design of temporal and spatial operations, and so forth. These issues will
be investigated when we come to stage of implementation.

A unique feature about business processes is its flexibility. It is quite often that
mobile users execute tasks that produce unexpected results or even engage in some
totally unplanned tasks. In this case, rather than rejecting this change, the PWFS can
do nothing but to accept the consequence. In return, the PWFS examines the impact
of this change and adjusts the unexecuted part of the task definitions according to
user’s decision. For example, the execution of a task may generate fewer data items
than expected. As a result, some subsequent task may become unexecutable due to the
lack of required input data. However, while the entire task may not be executed, part
of the task may still be executable, resulting in the splitting of a task. On the other
hand, executing a task may sometimes produce extra data items. These extra data
items may in turn enable the early execution of some tasks or make others obsolete.
Operations for measuring the effect of unexpected task execution have been proposed
but are not presented here due to space limitations.

References

[1] A. Basu and R.W. Blanning, “A Formal Approach to Workflow Analysis,” Information
Systems Research, 11(1), 2000, pp.17-36.

