
A Dynamic FPGA Implementation of the

Serpent Block Cipher

Cameron Patterson

Xilinx, Inc.
2300 55th Street, Boulder Colorado 80301, USA

Cameron.Patterson@xilinx.com

Abstract. A JBits implementation of the Serpent block cipher in a
Xilinx FPGA is described. JBits provides a Java-based Application Pro-
gramming Interface (API) for the run-time modification of the configu-
ration bitstream. This allows dynamic circuit specialization based on a
specific key and mode (encrypt or decrypt). Subkeys are computed in
software and treated as constants in the Serpent datapath. The result-
ing logic optimization produces a circuit that is half the size and twice
the speed of a static, synthesized implementation. With a throughput
of over 10 Gigabits per second, the JBits implementation has sufficient
bandwidth for SONET OC-192c (optical) networks.

1 Introduction

The United States Department of Commerce defines a standard cryptographic
algorithm for non-classified government use, and the Data Encryption Standard
(DES) has fulfilled this role since 1977 [1]. DES was intended to be used for no
more than 10 years, but the absence of a new standard means that it is still
the workhorse private key encryption algorithm. There are, however, compelling
reasons to replace DES:

– Exhaustive key search has been a serious threat to DES for several years.
Triple DES extends the effective key size, but incurs a significant performance
penalty.

– Cryptographic algorithms must provide high performance in software as well
as hardware. DES is hardware-oriented. When implemented in software, an
n-bit processor performs operations on small subsets of the bits in a word.
The fastest publically available DES software that encrypts a single block at
a time has a throughput of 15 Mbits/sec on a 200 MHz Pentium [2]. If 64
blocks are encrypted in parallel, then software throughput can be increased
to 137 Mbits/sec [3].

– The DES 64-bit block size is insufficient for high bandwidth applications.

In 1997, the National Institute of Standards and Technology (NIST) solicited
candidates for a successor to DES, which is to be called the Advanced Encryption
Standard (AES) [4]. AES, like DES, will be a private key algorithm (i.e. it uses

Ç.K. Koç and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 141–155, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



142 Cameron Patterson

the same key for both encryption and decryption). However, AES defines key
sizes of 128, 192, or 256 bits, and doubles the block size to 128 bits. Fifteen
algorithms were submitted to the First AES Candidate Conference in August
1998 [5]. One year later, NIST announced the five finalists: MARS, RC6TM,
Rijndael, Serpent and Twofish.

Field-Programmable Gate Arrays are frequently used to implement crypto-
graphic algorithms [6]. The author previously implemented DES in the Xilinx
VirtexTM family [7]. An electronic codebook (ECB) mode throughput in excess
of 10 Gbits/sec was achieved using JBits to perform key-specific dynamic cir-
cuit specialization [8]. According to the National Security Agency, high speed
network encryption may require the use of non-feedback modes such as ECB [9].

Key-specific circuit specialization removes a logic level and the associated
routing from the critical path in a DES round. Compared with a static design
that uses the same Virtex process and degree of pipelining, speed is increased
by over 50%. The reduction in circuit size also decreases power consumption
and permits the use of smaller devices. Cheaper packages may be used, since
key input pins are no longer required. The resulting implementation has better
throughput and lower power than the fastest reported DES ASIC [10]. High
volume cost in the SpartanTM-II family should be competitive with ASICs.

The author is developing dynamic implementations of the AES finalists,
which can provide additional data for the selection process. Serpent was cho-
sen first for several reasons:

– It uses many of the same primitive operations as DES. This allows some of
the DES building blocks to be reused.

– The simple round structure means that high clock rates can be achieved with
only one pipeline stage per round.

– Decryption requires inverse permutations and linear transformations, which
would normally increase the size of a static implementation. A dynamic im-
plementation, however, simply reconfigures the same FPGA resources when
either the key or mode changes.

– Speed and size comparisons can be made with a static Virtex design [11].

A dynamic Serpent implementation is twice the speed and half the size of the
static design. If both encryption and decryption are required, then the dynamic
circuit requires an even smaller fraction of the FPGA resources. ECB mode data
throughput is over 10 Gbits/sec. This is the same bandwidth as the dynamic
DES design, and is achieved with a similar degree of pipelining, twice the data
path width and half the clock rate. Power consumption for Serpent should be
about 4 watts, compared with 3.2 watts for DES. Hence, the JBits approach is
providing the same performance and cost benefits for Serpent as it did for DES.
The remainder of this paper applies dynamic circuit specialization to Serpent.

2 The Serpent Algorithm

Serpent is a substitution-permutation (SP) network that uses 32 rounds. The
output of round i is the input to round (i + 1). The algorithm has two different



A Dynamic FPGA Implementation of the Serpent Block Cipher 143

modes of implementation: standard and bitslice. The standard mode operates on
individual bits or groups of four bits, while the bitslice mode improves software
efficiency by operating on entire 32-bit words. Serpent software using the bitslice
optimization encrypts at roughly 32 Mbits/sec on a 200 MHz Pentium [2].

The bitslice mode was chosen for both software and hardware implementa-
tion, since:

– It does not increase the number of lookup tables (LUTs) in the critical path.
– Layout considerations encourage the partitioning of 128-bit data paths into

four 32-bit words.
– Like DES, the standard Serpent mode requires permuting the input bits to

the first round, and permuting the output bits from the final round. Subkey
permutations are also required. Permutations on 128-bit buses consume sig-
nificant routing resources in an FPGA device, and can increase the routing
delay.

Serpent’s bitslice mode is to be assumed in the following exposition.

2.1 The Round Function

The rounds are numbered from 0 to 31. Round i has input Bi and output Bi+1.
The round function is defined as:

Bi+1 = L(Si(Bi ⊕ Ki)) for i = 0, . . . , 30
B32 = (S31(B31 ⊕ K31)) ⊕ K32

Si applies 32 copies of a 4-bit permutation called an S-box. Eight different S-
boxes are used, which are derived from the DES S-boxes. Round i applies S-box
(i mod 8), so that each S-box is used in four different rounds. The generation of
the 128-bit round subkeys Ki is described in Section 2.2. L is a linear transfor-
mation. In bitslice mode, it applies left rotations (<<<), left shifts (<<) and
XORs (⊕) to the 32-bit operands X0, X1, X2, and X3:

X0, X1, X2, X3 := Si(Bi ⊕ Ki)
X0 := X0 <<< 13
X2 := X2 <<< 3
X1 := X1 ⊕ X0 ⊕ X2

X3 := X3 ⊕ X2 ⊕ (X0 << 3)
X1 := X1 <<< 1
X3 := X3 <<< 7
X0 := X0 ⊕ X1 ⊕ X3

X2 := X2 ⊕ X3 ⊕ (X1 << 7)
X0 := X0 <<< 5
X2 := X2 <<< 22

Bi+1 := X0, X1, X2, X3



144 Cameron Patterson

2.2 The Key Schedule

If required, the user-supplied key is first padded to 256 bits. This is done by
assigning a 1 to the most significant bit, and a 0 to the remaining bits. The key
is stored as eight 32-bit words w−8, . . . , w−1. This is used to generate the prekeys
w0, w1, . . . , w131 with the recurrence:

wi := (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ ⊕ i) <<< 11

where φ is the hexadecimal constant 9E3779B9.1 Finally, round subkeys are
computed from the prekeys by applying the S-boxes as follows:

K0 := S3(w0, w1, w2, w3)
K1 := S2(w4, w5, w6, w7)
K2 := S1(w8, w9, w10, w11)

...
K31 := S4(w124, w125, w126, w127)
K32 := S3(w128, w129, w130, w131)

The structure of the rounds and the application of the subkeys are shown in
Figures 1 and 2.

2.3 Decryption

Feistel networks such as DES decrypt by simply applying the round subkeys
in reverse order. Serpent, however, is not a Feistel network. It also requires
applying the inverse of the S-boxes in reverse order, and inverting the linear
transformation. Although this represents an area overhead for ASICs and static
FPGAs, the same logic and routing resources can simply be reconfigured with a
dynamic implementation.

3 Run-Time Reconfiguration

The run-time optimization of FPGAs to the problem instance at hand can have
considerable speed and area advantages. For example, a dynamic implementation
of the DES algorithm exceeds the performance of the fastest known DES ASIC.
In this case, the reduction in circuit complexity more than compensates for the
routing overheads associated with FPGAs.

However, most systems do not exploit the run-time reconfiguration (RTR)
of SRAM-based FPGAs. This is primarily because there is no support for RTR
in the standard design capture, verification and implementation tools. The con-
ventional netlist-based FPGA design flow is the same as for ASICs, and has
far too much time and memory overhead to be used in real-time or embedded
environments.
1 This is the fractional part of the golden ratio (1 +

√
5)/2.



A Dynamic FPGA Implementation of the Serpent Block Cipher 145

X0 X1 X2 X3

X0 X1 X2 X3

128

32 32 32 32

32
32 32

32

32 32 32 32

128

K

B

B

XOR with subkey

Apply S-boxes

Linear
transformation

i

i+1

i128

Fig. 1. Structure of Serpent Rounds 0 to 30

RTR is most easily controlled with a microprocessor. Many systems already
make use of one or more microprocessors for those operations that do not require
hardware speeds. Software can directly create or modify the FPGA’s configu-
ration with a suitable Application Programming Interface (API). This model
readily supports hardware/software co-design, since the integration of hardware
and software occurs early in the development effort.

3.1 JBits

Xilinx provides a Java-based configuration API for the XC4000 and Virtex ar-
chitectures called JBits [12]. The tiles used in an architecture are defined as
JBits classes. For example, Virtex has a Configurable Logic Block (CLB) tile
that includes the associated General Routing Matrix (GRM). A CLB instance is
treated as an object that is referenced by a row and column. The state of the con-
figurable structures in the CLB can be queried or modified. Figure 3 illustrates
the JBits calls required to configure a CLB at (row,col) as a 4-input 4-output



146 Cameron Patterson

in

128

32 32 32 32

128

K

B

B

XOR with subkey

Apply S-boxes

XOR with subkey

31

32

31128

K
32128

32 32 32 32

128

Fig. 2. Structure of Serpent Round 31

registered S-box. There is less code than the equivalent constrained structural
netlist of Virtex primitives defined in an HDL. Many of the configuration settings
used are the power-up defaults.

Generating a configuration bitstream with JBits generally takes on the order
of seconds, compared with minutes or even hours for the Xilinx M2.1 implemen-
tation tools. JBits is a physical design tool, and avoids the optimization problems
that arise during the logical to physical transformation in conventional CAD
flows. All mapping, placement and routing is fully specified in a JBits design.

4 Serpent Implementation

In 1998, Xilinx introduced the Virtex architecture as the successor to the XC4000
family [13]. It uses a 2.5 volt, 0.22 micron, 5 metal layer process. Like the XC4000,
it can be characterized as a symmetric array of CLBs surrounded by IOBs. Each
CLB contains two slices, where each slice is roughly equivalent to an XC4000
CLB (i.e. it contains two 4-input LUTs, two flip flops, and a carry path). System-
level resources such as block RAM and delay-locked loops have also been added.
Unlike the XC4000, Virtex supports packet-based partial reconfiguration [14].



A Dynamic FPGA Implementation of the Serpent Block Cipher 147

public void configureSBox(int row, int col) {

try {

jbits.set(row, col, S0RAM.DUAL_MODE, S0RAM.ON);

jbits.set(row, col, S0RAM.LUT_MODE, S0RAM.ON);

jbits.set(row, col, S0Control.X.X, S0Control.Cin.FOUT);

jbits.set(row, col, S0Control.Y.Y, S0Control.Y.GOUT);

jbits.set(row, col, S0Control.XDin.XDin, S0Control.XDin.X);

jbits.set(row, col, S0Control.YDin.YDin, S0Control.YDin.Y);

jbits.set(row, col, S0Control.LatchMode, S0Control.ON);

jbits.set(row, col, S0Control.Sync, S0Control.ON);

jbits.set(row, col, S1RAM.DUAL_MODE, S1RAM.ON);

jbits.set(row, col, S1RAM.LUT_MODE, S1RAM.ON);

jbits.set(row, col, S1Control.X.X, S1Control.Cin.FOUT);

jbits.set(row, col, S1Control.Y.Y, S1Control.Y.GOUT);

jbits.set(row, col, S1Control.XDin.XDin, S1Control.XDin.X);

jbits.set(row, col, S1Control.YDin.YDin, S1Control.YDin.Y);

jbits.set(row, col, S1Control.LatchMode, S1Control.ON);

jbits.set(row, col, S1Control.Sync, S1Control.ON);

} catch (ConfigurationException ce) {

System.out.println("S-box configuration error at R" +

row + "C" + col);

System.out.println(ce);

}

}

Fig. 3. Implementing a Registered S-box with JBits

The Virtex CLB is well-suited to the Serpent algorithm. An S-box is specified
as a table with a 4-bit input and a 4-bit output. Logic minimization algorithms
find little structure in the S-boxes, so it is reasonable to implement an S-box
as a set of four single-output LUTs that are driven by the same four inputs. A
single Virtex CLB can implement all four LUTs, while the XC4000 architecture
would require two CLBs.

In addition, the Virtex segmented routing structure efficiently implements
the shift and rotation operations in Serpent’s linear transformation stages. Each
Virtex horizontal and vertical channel has 96 hex-length and 24 single-length
segments, which provides high speed and high density wire permutations.

The same approach is used for Serpent as for DES, namely to investigate the
speed, size and power optimizations achievable with dynamic circuit specializa-
tion. Two additional considerations also influenced the design:

– An effort was made to make a fair comparison with a static Virtex imple-
mentation of Serpent. Both designs use only one pipeline stage per round.
The static design includes support for cipher block chaining mode [15], and
the dynamic design has resources available for the required XOR gates.

– Wherever practical, the Serpent core was designed to be compatible with
the JBits DES core. This was largely achieved for throughput, degree of



148 Cameron Patterson

pipelining and power consumption, despite the fact that Serpent has twice
the datapath width and number of rounds compared with DES. Note that
Serpent’s larger key size does not increase the pin requirement, since the
JBits approach does not require any key-handling circuitry or IOBs.

4.1 Dynamic Circuit Specialization Using JBits

Serpent’s key scheduling logic is more complicated than DES, but the datapath is
simpler. This results in even greater benefits when the datapath is implemented
in hardware and the key schedule is precomputed in software. The logical op-
erations performed in the datapath are permutations on groups of 4 bits, and
XORs. As shown in Figure 1, the first 31 rounds require 128 XORs between the
data and subkey bits. Let b be a data bit from Bi and k be the corresponding
subkey bit from Ki. Since k is a constant for a given encryption key, XOR(b, k) is
either b or b. An inversion on an S-box input is equivalent to reordering the LUT
contents. For example, inverting the least significant bit is the same as swap-
ping adjacent entries in the LUT, and inverting the most significant bit can be
achieved by swapping the two halves of the LUT. The result of the optimization
is shown in Figure 4.

X0 X1 X2 X3

X0 X1 X2 X3

128

32 32 32 32

32
32 32

32

32 32 32 32

128

B

B

Apply
key-specific
S-boxes

Linear
transformation

i

i+1

Fig. 4. Optimization of Serpent Rounds 0 to 30



A Dynamic FPGA Implementation of the Serpent Block Cipher 149

The final round, shown in Figure 2, replaces the linear transformation with
an additional XOR between the datapath and subkey K32. These 128 XOR gates
can also be folded into the round’s S-boxes. Again let s be an output bit from
the S-boxes, and k be the corresponding subkey bit form K32. Each XOR results
in either s or s. An inversion on an S-box output is effected by inverting the
contents of the LUT. As shown in Figure 5, the optimized final round contains
only S-boxes.

128

32 32 32 32

32

128

B

B

Apply key-specific
S-boxes

31

32

32 32 32

Fig. 5. Optimization of Serpent Round 31

Dynamic specialization has removed logic, register and routing resources for
4224 two-input XOR gates and 4224 subkey bits. This accounts for the two-
fold reduction in circuit area compared with the static design. IOBs are no
longer required for subkey loading. One of the four logic levels and the associated
routing has also been removed from the critical path between pipeline registers,
which is largely responsible for the speed improvement.

The static design uses an XCV1000BG560 Virtex part, although the authors
indicate that it should fit in an XCV800. By contrast, the dynamic design targets
the significantly less expensive XCV400BG432. Routing delays are not reduced
by using a larger part, because the mapping and placement is fixed. Subkey
precomputation is performed outside the FPGA in both designs, and could be
performed by similar software environments.

4.2 High-Level JBits Code

The Serpent design is defined as a JBits run-time parameterized core (RTPCore).
An RTPCore can generate a bitstream directly. It can also generate EDIF, for
integration with logic simulators and the NGD/NCD-based Xilinx implementa-



150 Cameron Patterson

tion tools. The EDIF flow was used for validation and timing analysis of the
Serpent design.

An RTPCore supports hierarchy with ports and subcores. The subcore’s ports
are connected with nets and buses. Depending on whether a bitstream or EDIF
is being generated, a primitive RTPCore either makes JBits calls to configure
logic and routing resources, or creates a netlist of components from the Virtex
SIMPRIM library.

The constructor for the Serpent module is shown in Figure 6. The arguments
are the hexadecimal value of the encryption key, and the external nets and
buses to be connected to the clock, B0 and B32 ports. For simplicity, encryption
is assumed. An initial key is required to support the static EDIF flow. Note
that run-time modification of the encryption key does not require the core to be
recreated, since the key only affects the contents of LUTs.

public class Serpent extends RTPCore {

public Serpent(String hexKey, Net clk, Bus din, Bus dout) {

byte[] key = Key.fromHexString(hexKey);

int[] preKey = Key.computePreKey(key);

byte[][] subKey = Key.computeSubKey(preKey);

Port clkPort = newInputPort("clk", clk);

Port dinPort = newInputPort("din", din);

Port doutPort = newOutputPort("dout", dout);

Net clkInt = newNet("clk");

Bus[] b = new Bus[NUM_ROUNDS+1];

for (int i = 0; i < b.length; i++)

b[i] = newBus("b" + i, DATAPATH_WIDTH);

clkPort.setIntSig(clkInt);

dinPort.setIntSig(b[0]);

doutPort.setIntSig(b[NUM_ROUNDS]);

SerpentRound[] round = new SerpentRound[NUM_ROUNDS];

for (int i = 0; i < LAST_ROUND; i++)

round[i] = new SerpentRound(i, subKey[i], clkInt, b[i], b[i+1]);

round[LAST_ROUND] = new SerpentRound(subKey[LAST_ROUND],

subKey[LAST_ROUND+1], clkInt,

b[LAST_ROUND], b[LAST_ROUND+1));

}

}

Fig. 6. Serpent Constructor

The key is first converted to binary, then to the prekey array of 132 32-
bit words, and finally to a subkey array of 33 128-bit words. Ports are de-
fined and connected to the external and internal signals. An array is created
to reference the 32 SerpentRound submodules, which are instantiated with



A Dynamic FPGA Implementation of the Serpent Block Cipher 151

the computed subkey(s) and connected to the clock net and the data buses.
The configureSBox method (shown in Figure 3) is called 32 times by each
SerpentRound instance.

The ports, nets and buses are used by both JRoute [16] and the EDIF gen-
erator. JRoute is a routing API built upon JBits, and selects and configures
the routing resources necessary to make connections between CLBs. The core
need only specify the end points of the connections as logical ports, which are
translated to physical CLB pins once the module is placed. JRoute provides a
significant abstraction layer for physical routing, since the core need not specify
the detailed sequence of routing resources needed to complete a route. This can
still be done, however, if JRoute does not select the required path.

4.3 Layout

Rounds 0 to 30 require 32 CLBs for the S-boxes, and 32 CLBs for the linear
transformation. The final round does not perform a linear transformation, and
is implemented entirely with S-boxes. As shown in Figure 7, an 8×8 array of
CLBs is used for the non-final rounds. All 32 rounds fit within the 40×60 CLB
array of an XCV400 device. Every LUT is used in the 2016 CLBs that implement
the 32 rounds.

Linear
Transformation

32
registered
S-boxes

8 CLBs wide

8 CLBs high

Fig. 7. Floorplan for Rounds 0 to 30

RTPCores have a mechanism similar to placement directives [17] for assign-
ing coordinates to relocatable modules. This is used to create the floorplan in
Figure 7, and to define the folded datapath for the 32 rounds. Beginning in the
lower left corner, the rounds are placed horizontally in a zigzag pattern with



152 Cameron Patterson

alternating left-to-right and right-to-left dataflows. This snake-like layout can
be seen in Figure 8.

Fig. 8. EPIC Ratsnest View of the 32 Rounds

The design uses 8064 LUTs, 4352 flip flops, and 257 IOBs. All of the S-box
CLBs and data IOBs are registered. Hence the total number of pipeline stages
from input to output pins is 34. Slice utilization is 84% (4032 slices used from
the 4800 available in an XCV400 device). A total of 384 CLBs and 60 IOBs are
available for additional interface circuitry.

4.4 Validation and Performance

Functional verification was performed with the Model Technology VHDL sim-
ulator. An EDIF file with the S-box LUTs configured for a particular key is
first generated. This is converted to an NGD file using ngdbuild. The ngd2vhdl
program creates a structural VHDL netlist and testbench. Encryption and de-
cryption results were identical to the output from a reference software imple-
mentation [2].



A Dynamic FPGA Implementation of the Serpent Block Cipher 153

Table 1 reports the speed achieved for fully pipelined Serpent implementa-
tions. Both the static and dynamic FPGA designs use the same implementation
technology (Virtex -4 speed grade) and tools (M2.1). The ASIC performance is
estimated by the National Security Agency for a MOSIS 0.5 micron process [9].
High volumes are required before an ASIC can justify using a process technology
similar to Virtex.

The bulk of the performance improvement is achieved with dynamic circuit
specialization, although floorplanning also contributes. Regular floorplans make
reconfiguration more efficient. Power consumption for the XCV400-4 dynamic
design is estimated at 4 watts, and is not reported for the static design. Note
that the highest speed grade XCV400 in a BG432 package may be less expensive
than the lowest speed grade XCV1000 or XCV800 in a BG560 package.

Table 1. Performance Results

Technology Package Design Floorplanned Clock Rate Throughput
Used Methodology (MHz) (Gbits/sec)

Xilinx V1000-4 BG560 static no 37.97 4.86
ASIC static 62.73 8.03
Xilinx V400-4 BG432 dynamic no 75.48 9.66
Xilinx V400-4 BG432 dynamic yes 80.27 10.27
Xilinx V400-6 BG432 dynamic yes 101.44 12.98
Xilinx V400E-8 BG432 dynamic yes 137.15 17.55

In order to change the key or switch between encryption and decryption, 56
of the CLB columns have to be reconfigured (i.e. about 85% of the 2,546,080
configuration bits in an XCV400). Using the 8-bit wide Virtex SelectMapTM port
running at 50 MHz, this reconfiguration is accomplished in under 10 milliseconds.
Assuming the use of a high-end microprocessor, computing new subkeys and
updating the LUTs with JBits calls also requires about 10 milliseconds. This is
roughly the same as the time required for other system operations such as disk
I/O. If there is no switching between encryption and decryption, an offset folding
of the Serpent datapath can reduce the number of reconfigured CLB columns
by 50%.

5 Conclusions

A dynamic implementation of the Serpent block cipher in a Virtex FPGA has
been presented. It achieves a throughput of over 10 Gbits/sec, which is about 100
times faster than software implementations on high-end microprocessors. When
compared with a static Virtex implementation, the dynamic circuit is over twice
the speed and half the size. Power consumption and the number of package pins
required is also reduced. This combination of factors result in significant cost
savings.



154 Cameron Patterson

Creating the key schedule is much more complicated for the AES finalists
than for DES, and suits software implementation. The size of the key, and the
time required to compute the subkeys, makes a high degree of key agility—
such as changing the key on every clock cycle—difficult to achieve. Given this
characteristic of the AES algorithms, FPGA reconfiguration overhead is less
significant compared with DES.

As shown by code fragments in this paper, JBits provides several levels of
abstraction for defining circuits. The lowest level JBits class provides complete
configuration control, while the RTPCore class allows connectivity to be specified
in terms of ports, nets and buses. Placement directives and JRoute help to bridge
these levels. For systems that are partitioned between hardware and software,
this single-language approach greatly reduces the integration effort.

Acknowledgements

Steve Guccione’s development of JBits has made this work possible. Advice and
assistance from the other members of the JBits project at Xilinx and Virginia
Tech is greatly appreciated. This work was supported by the U.S. Defense Ad-
vanced Research Projects Agency, under contract DABT63-99-3-0004.

References

1. National Bureau of Standards. FIPS PUB 46, The Data Encryption Standard.
U.S. Department of Commerce, Jan 1977.

2. Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the Ad-
vanced Encryption Standard. http://www.cl.cam.ac.uk/~rja14/serpent.html.

3. Eli Biham. A fast new DES implementation in software. In Fourth International
Workshop on Fast Software Encryption (FSE’97), pages 260–271. Springer-Verlag
Lecture Notes in Computer Science, Volume 1267, 1997.

4. National Institute of Standards and Technology. Announcing request for candidate
algorithm nominations for the Advanced Encryption Standard (AES). Federal
Register, 62(117):48051–48058, Sep 1997.

5. http://www.nist.gov/aes.

6. Stephen Charlwood and Philip James-Roxby. Evaluation of the XC6200-series ar-
chitecture for cryptographic applications. In Reiner W. Hartenstein and Andres
Keevallik, editors, Eighth International Workshop on Field-Programmable Logic
and Applications (FPL’98), pages 218–227. Springer-Verlag Lecture Notes in Com-
puter Science, Volume 1482, Aug 1998.

7. Cameron Patterson. High performance DES encryption in Virtex FPGAs using
JBits. In Kenneth L. Pocek and Jeffrey M. Arnold, editors, IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM 2000), Apr 2000.

8. Jason Leonard and William H. Mangione-Smith. A case study of partially evaluated
hardware circuits: Key-specific DES. In Wayne Luk, Peter Y.K. Cheung, and
Manfred Glesner, editors, Seventh International Workshop on Field-Programmable
Logic and Applications (FPL’97), pages 151–160. Springer-Verlag Lecture Notes
in Computer Science, Volume 1304, Sep 1997.

http://www.cl.cam.ac.uk/~rja14/serpent.html
http://www.nist.gov/aes


A Dynamic FPGA Implementation of the Serpent Block Cipher 155

9. Bryan Weeks, Mark Bean, Tom Rozylowicz, and Chris Ficke. Hardware perfor-
mance simulations of round 2 Advanced Encryption Standard algorithms. In Third
AES Candidate Conference (AES3), Apr 2000.

10. D. Craig Wilcox, Lyndon G. Pierson, Perry J. Robertson, Edward L. Witzke, and
Karl Gass. A DES ASIC suitable for network encryption at 10 Gbps and beyond. In
Çetin K. Koç and Christof Paar, editors, First International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES’99), pages 37–48. Springer-Verlag
Lecture Notes in Computer Science, Volume 1717, Aug 1999.

11. A.J. Elbirt and C Paar. An FPGA implementation and performance evaluation
of the Serpent block cipher. In ACM Eighth International Symposium on Field
Programmable Gate Arrays (FPGA 2000), pages 33–40, Feb 2000.

12. Steve Guccione, Delon Levi, and Prasanna Sundararajan. JBits: Java based in-
terface for reconfigurable computing. In Second Annual Military and Aerospace
Applications of Programmable Devices and Technologies (MAPLD’99), The Johns
Hopkins University, Laurel, Maryland, Sep 1999.

13. Xilinx, Inc., 2100 Logic Drive, San Jose, California. Virtex 2.5V FPGA Series
Data Sheet, Oct 1999.

14. Steve Kelem. Virtex Configuration Architecture Advanced User’s Guide. Xilinx,
Inc., 2100 Logic Drive, San Jose, California, Jun 1999. Application Note 151.

15. Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., second edition,
1996.

16. Eric Keller. JRoute: a run-time routing API for FPGA hardware. In Seventh Re-
configurable Architectures Workshop (RAW 2000), pages 874–881. Springer-Verlag
Lecture Notes in Computer Science, Volume 1800, May 2000.

17. James Hwang, Cameron Patterson, S. Mohan, Eric Dellinger, Sujoy Mitra, and
Ralph Wittig. Generating layouts for self-implementing modules. In Reiner W.
Hartenstein and Andres Keevallik, editors, Eighth International Workshop on
Field-Programmable Logic and Applications (FPL’98), pages 525–529. Springer-
Verlag Lecture Notes in Computer Science, Volume 1482, Aug 1998.


	Introduction
	The Serpent Algorithm
	The Round Function
	The Key Schedule
	Decryption

	Run-Time Reconfiguration
	JBits

	Serpent Implementation
	Dynamic Circuit Specialization Using JBits
	High-Level JBits Code
	Layout
	Validation and Performance

	Conclusions

