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Abstract. This work proposes a processor architecture for elliptic curves
cryptosystems over fields GF'(2™). This is a scalable architecture in terms
of area and speed that exploits the abilities of reconfigurable hardware
to deliver optimized circuitry for different elliptic curves and finite fields.
The main features of this architecture are the use of an optimized bit-
parallel squarer, a digit-serial multiplier, and two programmable pro-
cessors. Through reconfiguration, the squarer and the multiplier archi-
tectures can be optimized for any field order or field polynomial. The
multiplier performance can also be scaled according to system’s needs.
Our results show that implementations of this architecture executing the
projective coordinates version of the Montgomery scalar multiplication
algorithm can compute elliptic curve scalar multiplications with arbitrary
points in 0.21 msec in the field GF(2'7). A result that is at least 19 times
faster than documented hardware implementations and at least 37 times
faster than documented software implementations.

1 Introduction

This work proposes a scalable elliptic curve processor architecture (ECP) which
operates over finite fields GF(2™). One of its key features is its suitability for
reconfigurable hardware. Unlike traditional VLSI hardware, reconfigurable de-
vices such as Field Programmable Gate Arrays (FPGA) do not possess fixed
functionality after fabrication but can be reprogrammed during operation. The
scalability of the ECP architecture and the flexibility of reconfigurable hardware
afford implementations the following benefits:

Architecture Efficiency. The complexity of finite field arithmetic architec-
tures depends greatly on whether arithmetic for one specific field is being
implemented, or for general finite fields. The most dramatic example is per-
haps squaring in GF(2™) using standard basis. For a specific field, squaring
can be performed in one clock cycle, whereas a general architecture usually
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requires m/2 clock cycles (where m > 160 for elliptic curves cryptosystems)
[BERY). Consequently, one algorithmic option that we explore in this pa-
per relies on the bit-parallel computation of squares, resulting in extremely
efficient implementations. The use of reconfigurable hardware allows appli-
cations to use an optimized squarer for every finite field.

Scalability. Depending on the application, different levels of security may be
required. The main factor that determines the security of elliptic curve cryp-
tosystem is the size of the underlying finite field. For instance, NIST an-
nounced recently a list of curves ranging from 163-571 bits [NISSY]. Realiz-
ing such a wide operand range efficiently in traditional hardware is a major
challenge, whereas the ECP’s architectural scalability and the FPGAs re-
configurability allow optimized processor instantiations for any field size.
Moreover, the fine-grained scalability of the ECP’s architecture provides a
wide range of time-area, performance-cost architectural options. Section W
provides some examples.

Algorithm Agility. It is a design paradigm of modern security protocols that
cryptographic algorithms can be negotiated on a per-session basis. With the
proposed ECP, it is possible through reconfiguration to (1) switch algorithm
parameters and (2) to switch to another type of public-key algorithm.

Resource Efficiency. The vast majority of security protocols use public-key al-
gorithms in the beginning of a session for tasks such as entity authentication
and key establishment and private-key algorithms for bulk data encryption
after that. With reconfigurable platforms, it is possible to reuse the same
device for both tasks.

The remainder of the paper is structured as follows. Section B summarizes
the previous works on elliptic curve implementations. Section B provides the
most crucial mathematical and algorithmic background needed to understand
the ECP. Section B describes the ECP architecture and its main components.
Section @describes prototype implementations and results. Section Blsummarizes
the conclusions.

2 Previous Work

A number of software and hardware implementations have been documented for
the computation of point multiplication, which is the basic operation used by
elliptic curve cryptographic systems. Among the most significant hardware im-
plementations are [ENRECIESSHIESSTOREST|. The ones in RN SEST)
use off-the-shelf processors to perform elliptic curve operations and accelerators
to perform finite field arithmetic. The implementation in [BERSZGE uses an ASIC
accelerator and the one in [SESSH] uses an FPGA accelerator. The implementa-
tions in [RASHIEESST] are standalone elliptic curve processors in FPGAs. Both
[RasUSESSUY) define roadmaps for full-size, secure elliptic curve implementa-
tions but do not document successful implementations of them.

The implementations in [ANRGIESSTARESGH] use normal basis represen-

tation. They use bit-serial multipliers, which require about m clock cycles to
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compute a multiplication in GF(2™) and compute squares with cyclic shifts.
(The use of digit-serial multipliers, which are used in this work, is mentioned in
[E558Y] but the documented implementations use bit-serial multipliers.)

The hardware implementation documented in [RasS4] uses standard basis
representation. This implementation is suitable for composite fields GF((2%)")
where u % v = m. Its core-processing element is a hybrid multiplier which com-
putes a multiplication in v clock cycles. This multiplier is also used to compute
squares. It should be pointed out that recent developments demonstrate that
some forms of composite fields give rise to elliptic curves that posses crypto-
graphic weaknesses [E=ES0n].

Among the best performing software implementations which are reported in
open literature are [EEaSGHETTW]. The performance of these implementations,
as demonstrated in Section l rival that of the traditional hardware implemen-
tations previously mentioned. The main reasons for their high performance are
their use of very efficient algorithms that are optimized for modern processors
and the availability of processors with wide words that operate at very high clock
rates.

The elliptic curve processor architecture introduced in this work exhibits
the features of the aforementioned hardware and software implementations. Its
hardware architecture is scalable and its processing units, like the ones used
by the software implementations, are programmable. In addition, its architec-
ture is neither restricted to use polynomials on extension degrees of a special
form, as is the case for [Easid], nor it favors particular fields, as is the case for
[ARVEIIESSUWRESTY| that favor fields for which Gaussian normal bases exist.
It is also, to the authors’ knowledge, the only standalone elliptic curve processor
architecture that has been rendered into a full-size, secure elliptic curve imple-
mentation in FPGA technology.

3 Mathematical Background

3.1 Elliptic Curves Algorithms and Choice of Field Representation

This section provides a brief description of the elliptic curve algorithms used by
the elliptic curve processor (ECP). The first algorithm is the double-and-add
algorithm for scalar multiplications using projective coordinates as defined in
[E553). The other algorithm is the projective coordinates version of the Mont-
gomery scalar multiplication method described in [EES8]. The distinctive char-
acteristics of these two algorithms are that the double-and-add algorithm adds
and doubles elliptic curve points, while the Montgomery method adds and dou-
bles only the x coordinates of two points, P; and Ps, where P, = P; + P and P
is the point that is being multiplied. Since the relationship between P; and P,
is maintained throughout the multiplication, the addition of P, and P» yields
the point 2P; + P. From this detail and Algorithm 2 in the Appendix, one can
verify that the intermediate points P; obtained during the computation of kP
correspond to the intermediate points obtained with the double-and-add algo-
rithm. At the end of the multiplication process, the & coordinate of kP is given
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by the x coordinate of P; and the y coordinate is derived from the x coordinates
of P; and P> and from the coordinates of P. The two multiplication methods
previously discussed are presented in Algorithm 1 and 2 in the Appendix. Note
that these algorithms, as the rest of this document, assume that the elliptic curve
equation is defined as % 4+ zy = 23 + ax? +b. These algorithms also assume that
the binary representation of k£ is given by k = Zi;(l) k2% with k;_1 # 0. The
computational complexity of these algorithms is summarized in Table [l

Table 1. Complexity of point multiplication in GF(2™) (a, b # 0)

Complexity Montgomery Double-and-Add
(average)
#Squares H(m—1)+3 T(m—-1)+1
#Mult. 6(m —1)+10 10.5(m —1)+3
F#Inverses 1 1

From TableM it is clear that an efficient method for squaring will have a con-
siderable impact on the overall performance. Through the use of reconfigurable
hardware it is possible to compute a square in one clock cycle for any field order
even though a standard basis representation is being used. It appears very dif-
ficult to achieve the same behavior with traditional ASIC hardware platforms.
An alternative is a normal basis representation, but this comes at the cost of a
more complex multiplication architecture. In particular, normal basis multipliers
can be prohibitively expensive for fields for which optimum normal bases do not
exist. For an ECP with flexible finite field support, normal basis representation
appear not to be the best choice.

It is important to note that the point multiplication algorithms consist of
a main function, the double and add or the montgomery scalar multiplication
functions in the algorithms shown in the Appendix. These main functions call
point addition, point multiplication, coordinate conversion, and other functions
as subroutines. In turn, these subroutines call finite field arithmetic subroutines.
This hierarchical view is helpful for understanding the processor architecture
described in Section H.

3.2 GF(2™) Field Arithmetic

This section provides a brief introduction to GF'(2™) finite field arithmetic. The
reader is referred to ERSA for in-depth study of this topic.

For all practical purposes, the computation of elliptic curve point double and
a point addition is realized with algorithms involving field additions, squares,
multiplications, and inversions. This work considers arithmetic in fields of char-
acteristic two, GF(2™), using a standard basis representation. This basis repre-

sentation is also known as polynomial or canonical basis representations. A field
GF(2™) is isomorphic to GF(2)[z]/(F(x)), where F(x) = 2™ + 22:0 fiztis a
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monic irreducible polynomial of degree m with coefficients f; € {0, 1}. Here each
residue class is represented by the polynomial of least degree in its class.

A standard basis representation uses the basis defined by the set of elements
{1,a,0? ... ,a™ 1}, where a is a root of the irreducible polynomial F(z). In
this basis, field elements are represented as polynomials in « of degree less than
m with coefficients 0 or 1; for example, an element A is represented as A =
St aiad with coefficients a; € {0,1}. In hardware, the field elements are
represented by binary m-tuples as in (am—1, @Gm—2, - .- ao).

The addition of two elements requires the modulo 2 addition of the coeffi-
cients of the field elements. In hardware, a bit-parallel adder requires m XOR
gates, and an addition can be generally computed in one clock cycle.

The squaring of a field element A = Z;T;l a;a’ is ruled by Equation (H).
A bit-parallel realization of this squarer requires at most (r — 1)(m — 1) gates
[PaaOv P SO where r represents the number of non-zero coefficients of the
field polynomial.

m—1
A? = Z a;0* mod F(a) (1)
i=0
The multiplication of two field elements A and B can be expressed as shown in
Equation (H). This equation is arranged so that it facilitates the understanding
of the digit-serial multiplier used by the ECP. This multiplier is of the type
introduced in [SESH], and it is described here in Section
In Equation (B, B is expressed in kp digits (1 < kp < [m/D]) as follows:
B =Y/% " BiaP" where B; = Y. ' bpiija’ and D is the digit size in bits.
Note that when m/D is not an integer, B is extended to an integer number
of digits (kp = [m/D]) by setting its most significant coefficients to 0 (b, =
bit1 =...=bkp«p-1=0).

kp—1
AB= (A ) Bia”")mod F(a) (2)
i=0
kp—1
= (Y Bi(Aa” mod F(a))) mod F(a)
i=0
The ECP lacks inversion circuitry. This work recommends the computation
of inversions with repeated multiplications using the algorithms described in
[ECRABZERSY]. These algorithms compute inverses with |logy(m — 1) + W(m —
1)—1 multiplications [ESS99], where W (m—1) represents the number of non-zero
coefficients in the binary representation of m — 1.

4 Processor Architecture

To compute kP efficiently one needs a blend of efficient algorithms and hardware
architectures. Efficient algorithms are needed to compute point multiplication
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and field operations. One also needs a platform that supports the efficient com-
putation of such algorithms. This work proposes a processor architecture opti-
mized for the use of efficient elliptic curve algorithms, which is also well suited
for implementations in reconfigurable hardware.

The elliptic curve processor (ECP), shown in Figure ll consists of three main
components. These components are the main controller (MC), the arithmetic
unit controller (AUC), and the arithmetic unit (AU). The MC is the ECP’s
main controller. It orchestrates the computation of kP and interacts with the
host system. The AUC controls the AU. It orchestrates the computation of
point additions, point doublings, and coordinate conversions. The AU performs
the GF(2™) field additions, squares, multiplications, and inversions under AUC
control. For the point multiplication algorithms given in the Appendix, the MC
executes the double and add and the montgomery scalar multiplication func-
tions, the AUC performs all the other subroutines, and the AU is the hardware
that computes the finite field operations.

Prog Prog
ecp
control control Lcontrol _)
tat status
toffrom < HWE MC AUC | s AU
Host  command | | command _— 4 T
prees Tw «) T®

Fig. 1. Elliptic curve processor architecture

The following is a typical sequence of steps for the computation of kP in the
ECP using the double-and-add algorithm and projective coordinates. First, the
host loads k into the MC, loads the coordinates of P into the AU, and commands
the MC to start processing. Then, the MC does its initialization, which includes
finding the most significant non-zero coefficient of k. The MC then commands
the AUC to perform its initialization, which includes the conversion of P from
affine to projective coordinates. During the computation of kP, the MC scans one
bit of k at time starting with the second most significant coefficient and ending
with the least significant one. In each of these iterations, the MC commands the
AU/AUC to do a point double. If the scanned bit is a 1, it also commands the
AU/AUC to do a point addition. For each of these point operations, the AUC
generates the control sequence that guides the AU through the computation of
the required field operations. After the least significant bit of k is processed, the
MC commands the AU/AUC to convert the result back to affine coordinates.
When the AU/AUC finishes this operation, the MC signals to the host the
completion of the kP operation. Finally, the host reads the coordinates of kP
from the AU.

The ECP incorporates a set of techniques that maximizes resource utilization
and speed. The most evident feature is concurrency. The ECP uses two loosely
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coupled controllers, the MC and the AUC controllers, that execute their respec-
tive operations concurrently. These are very simple processors that execute one
instruction per clock cycle. The AU uses concurrency. The AU incorporates a
multiplier, a squarer, and a register file, all of which can operate in parallel on
different data.

Another technique is pipelining. The regular architecture of the ECP allows
it to use pipeline stages to reduce the critical path delay of the hardware and
thus increase its operational frequency. The ECP incorporates pipelining in the
AU and assures its maximum utilization with the AUC. The AUC maximizes
pipeline utilization by minimizing pipeline fills and flushes. For example, the
AUC can start loading operands for the next multiplication before the current
one finishes.

The last main technique is the use of a large register set. The ECP’s large
register set supports algorithms that rely on precomputations. There are many
such algorithms. Here we consider two examples. An example is the fixed window
point multiplication algorithm. This algorithm requires on average m + 2¥~!
point doubles, |m/w| + 2%¥~! point additions, and the storage of 2¥ points.
Another algorithm is an adaptation of a fixed base exponentiation method in-
troduced in [RENSNVUE for operations involving a fixed point. This algorithm
requires on average |m/w| + 2 point additions, the storage of [m/w] points,
and no point doubles. In the previous expressions, w is the window size, which
is a measure of the number of bits of k£ processed in parallel. It must be pointed
out that these optimizations can be used with the projective coordinate equa-
tions for point double and point addition defined in [BIZSH] but not with the
ones defined in [EGY]. As this later algorithm requires that the relationship
P2 = P1+ P be maintained throughout the point multiplication process, while
the aforementioned optimizations rely on precomputing absolute multiples of a
point; for example, 1P, 2P, ... (2¥ —1)P.

To illustrate the benefits of precomputation, consider an implementation for
GF(21%7) using the projective coordinates defined in [EI383] and w = 4. Com-
pared to the traditional double-and-add algorithm, the fixed window algorithm
is approximately 1.1 times faster and the fixed point algorithm is over 2.5 times
faster.

4.1 Arithmetic Unit

The AU, shown in Figure B is the unit responsible for field arithmetic. It con-
sists of a register file, a least significant digit first (LSD) multiplier, a squarer,
an accumulator, and a zero test circuit. The AU arranges these components in
a streamlined, pipelined configuration that exhibits low fan out. The architec-
ture contains two feedback paths that allow fast availability of operands to the
multiplier, the squarer, and the register file.

The AU components operate under AUC control. The AUC’s control extends
to all the components shown in Figure ll This fine control allows the AUC to ex-
tract maximum throughput from the AU by paralleling functions and managing
pipeline delays.
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Fig. 2. Arithmetic unit

The multiplier and the squarer support the computation of field additions,
squares, multiplications, and inversions. The addition of A and B is done by first
computing A 1 and then adding to it the product B * 1. The 1 operand can be
supplied by the multiplexer m3 or the register file. This addition method exploits
the ability of the LSD multiplier to accumulate products and eliminates the need
for an adder. Field inversions are computed with repeated multiplications using
the inversion algorithms described in [CERARERGY).

The register file stores operands, precomputed values, and temporary values.
It accepts input operands, such as the coordinates of P and the elliptic curve
parameters a and b from the host system. It also accepts the results from the
multiplier or the squarer selected by the multiplexer m4. It outputs operands
to the multiplier and results to the host system. The basic components of the
register file are the input and output registers and the RAM memory. RAM
memory supports a large number of registers and the input and output register
resolve access contentions to it.

The accumulator stores results from the multiplier and the squarer. It sup-
plies the input operand of the squarer and one of the input operands of the
multiplier. The zero test circuit, upon command, samples the content of the ac-
cumulator and compares it with zero. It maintains its result until another test
is issued.

The AU employs a bit-parallel squarer [MmUUEESEGY]. In the ECP’s archi-
tecture, this squarer is capable of computing a square in one clock cycle. This
squarer is a rendition of Equation (M) using XOR gates. For the field polyno-
mials recommended for cryptographic applications [EI=XGH RSN ANSTY) ) the
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squarer complexity is at most (m-+t-+1)/2 gates for irreducible trinomials F'(z) =
2™+t +1 and 4(m — 1) gates for pentanomials F(x) = ™ + 2! + 212 + 23 +1
[[A5:5Y]. Moreover, for trinomials the critical path delay is at most two gate
delays [AmYd].

The AU uses an LSD multiplier of the type introduced in [SE54]. This semi-
systolic multiplier computes products according to Equation (@) using Algorithm
3. This multiplier computes a product sum AB + C mod F(«) within [m/D]
clock cycles. More precisely, the product is computed in kp clock cycles, where
kp (1 < kp < [m/D]) represents the number of digits of B. The performance

and consequently complexity of this multiplier is a function of the digit size D
[<uou.

Algorithm 3: LSD multiplication

Inputs: A =" Lo
B = ZkD 'B; ozDZ, where
B Z] -0 bDZ+]O[j
Output: C = (AB 4+ C) mod F(a)
C = 0 or the previous value of C
fori=0to kp —1 do
C = B;(AaP? mod F(a))+C
end for
C=C mod F(a)

As previously described, the ECP takes advantage of the accumulation prop-
erty of its multiplier to compute additions. The addition A+ B requires two clock
cycles when it is necessary to compute A*1 and then add to it the product Bx1.
It requires only one clock cycle when adding to the result of the previously com-
puted multiplication or addition. In this last case one of the operands is already
in the multiplier’s accumulator.

A block diagram of the LSD multiplier is included in Figure B along with
the other components of the AU. Its components are the B shift register, the
AaP? mod F(a), the digit multiplier, the accumulator, and the mod F(a) cir-
cuits. The B shift register delivers one digit of the B operand in each clock cycle.
The Aa”? mod F () circuit computes an element Ao’ mod F(«) in each clock
cycle from A for i = 1 or from the previously computed Aa®~Y mod F(a) for
i=2,...,kp—1. The digit multiplier computes a product B;(Aa”? mod F(a))
in each clock cycle and the accumulator adds it to the cumulative sum of the pre-
viously computed products. The accumulated result is reduced by the mod F(«)
circuit. The architecture of the multiplier is regular with only the reduction op-
erations (mod F'(«)) dependent on the field polynomials.

The complexity of this multiplier, assuming no pipelining of the digit multi-
plier circuit, is approximately 2Dm + Tm gates and 3m registers for m >> D.
The digit multiplier circuit is a main contributor to the complexity and per-
formance of the multiplier. Its gate complexity is proportional to the digit size,
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2Dm gates, and, when it is implemented with binary trees, its critical path delay
is [log, 2D] gate delays.

Note that all the estimates given in this section assume 2-input gates, account
for system I/0O, and assume optimum field polynomials according to the defini-
tion given in [SE54. These are field polynomials F'(x) = merZEZO fix® for which
m —t > D. Over 99% of the field polynomials in [ELIRERNSTIIERNS satisfy
this condition for digit sizes up to D = 50 and fields in the range 160 < m < 1024.

5 Prototype Implementations

Three ECP prototypes were built to verify the suitability of the ECP archi-
tecture for reconfigurable FPGA logic. These prototypes support elliptic curves
over the field GF(2'67), which is an attractive field for secure cryptosystems,
with this field being defined by the field polynomial F(z) = 2157 4 26 4 1. How-
ever, we would like to stress that the ECP can be reconfigured with optimized
architectures for any field GF'(2™).

Each prototype used a 16-bit MC processor with 256 words of program mem-
ory, a 24-bit AUC processor with 512 words of program memory, and 128 reg-
isters, each of which is 167 bits wide. They also provided 32-bit I/O interface
to the host system. To verify the scalability of the ECP architecture, each of
the prototypes used an LSD multiplier with a different digit size. The proto-
types used LSD multipliers with digit sizes equal to 4, 8, and 16. To verify the
ECP’s ability to handle multiple algorithms, the operation of the prototypes was
verified with the two elliptic curve algorithms described in the Appendix. The
implementation of these two algorithms demonstrates the ability of the ECP to
adopt new, highly efficient algorithms. For example, an ECP can be deployed
with one algorithm today and then updated with a better algorithm in the fu-
ture.

The prototypes were implemented using the Xilinix’s XCV400E-8-BG432
(Virtex E) FPGA. The prototypes were coded in VHDL. They were synthe-
sized with Synopsis’” FPGA Express 3.0 and Xilinx’s Design Manager M2.1i.
The details of these prototype implementations are discussed in the following
subsections.

5.1 ECP Algorithms and Programming

The ECP prototypes were tested with two programs. One of the programs imple-
mented the projective coordinates version of the Montgomery scalar multiplica-
tion algorithm and the other the projective coordinates version of the traditional
double-and-add algorithm, none of which relies on precomputations. It should
be noted that use of algorithms that rely on precomputation is supported by the
ECP and their use will typically result in faster implementations than the ones
documented here.

The number of clock cycles required to compute kP for each of the programs
is summarized in Table l Because each step of the Montgomery algorithm re-
quires the computation of a point addition and a point double, this table groups
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these two operations in a single row. For the double-and-add algorithm, inde-
pendent rows for point addition and point double are provided because each step
of the algorithm requires a point double but not necessarily a point addition.

Note that the entries in Table ll contain terms multiplied by [167/D7, where
D is the digit size of the multiplier being used. These terms reflect the number of
G F(21%7) multiplications, each of which is executed in [167/D] clock cycles. The
constant terms in the table account for squares, additions and processing over-
head. Each square is computed in one clock cycle. Each additions is computed in
one clock cycle if one of the operands is already in the multiplier’s accumulator
or in two clock cycles if that is not the case. The overhead processing time varies
with each operation and it is accounted for each operation in the table. The
times for coordinate conversions includes the computation of inverses using the
inversion algorithm described in [ManQy].

For both elliptic curve algorithms, the MC program used 56% of the MC’s
program memory. The AUC program used 90-98% of the AUC’s program mem-
ory depending on the algorithm and the digit size. The high AUC memory uti-
lization is due to the in-line coding of the point double and point add functions,
which are by far the most frequently used operations. This is evident from the
low overhead reported in Table [ for these functions. To conserve memory, in-
line coding was not used for infrequently executed functions such as coordinate
conversion. Consequently, these operations exhibit high overhead.

Table 2. Number of clock cycles required to compute kP over GF (2167)

Operation Double-and-Add Montgomery
# Clock Cycles # Clock Cycles
Point Double 5[167/D] + 25 6[167/D] + 17
Point Add 11[167/D7 + 31
Coor. Conv., etc.,  13[167/D] + 575 20[167/D] + 764
kP (10.5[167/D] + 47.5)* (6[167/D] + 24) * 166

166 + 13[167/D] + 575 +20[167/D] + 764

Table H approximates the number of cycles required for the computation of
point multiplication for arbitrary GF(2™) fields. The approximations are based
exclusively on the number of multiplications and the number of clock cycles
required to compute them with an LSD multiplier with digit size D. This ta-
ble assumes that inverses are computed using one of the algorithms defined in
[ECXARZnYY]. The inversion is assumed to require |[log,(m—1)] +W(m—1)—1
multiplications [BSS99], where W(m — 1) represents the number of non-zero
coefficients in the binary representation of m — 1.
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Table 3. Number of clock cycles required to compute kP over GF(2™)

Operation Double-and-Add Montgomery
# Clock Cycles # Clock Cycles
Point Double 5[m/D] 6[m/D]
Point Add 11[m/D]
Coor. Conv. (34 (|logy(m — 1) (10 + (|logy(m —1)|
+W(m —1) = 1))[m/D] +W(m —1) —1))[m/D]
kP (10.5(m — 1) + 3 + (|logy(m — 1) | (6(m — 1) + 10 + (|logy(m — 1) ]
+W(m —1) = 1))[m/D] +W(m —1) —1))[m/D]

5.2 Performance and Comparisons

This section summarizes the performance of the ECP prototype implementations
and shows how it compares against leading software and hardware implementa-
tions.

Table @l summarizes the performance of the ECP prototypes for the two el-
liptic curve algorithms. The results in this table illustrate that the Montgomery
method is about 1.7 times faster than the traditional double-and-add algorithm.
One can deduce from Table ll that this is a direct result of the number of mul-
tiplications required by each algorithm (= 10.5/6), as the processing time for
additions, squares, and inversions is almost negligible.

Table B also shows that the speedup increases as the digit size increases.
The increase is not proportional to the digit size. What happens is that as the
digit size increases, the multiplication processing time decreases proportionally.
Consequently, the additions, the squarings, and the overhead processing costs
increase relative to that of multiplications. Another contributing factor is the
modest reduction in clock rate as the digit size increases and thus the size of the
ECP. For the prototypes, an appreciable reduction in clock rate occurs as the
digit size increased from 4 to 8. The clock rate remained fairly constant as the
digit size increased from 8 to 16.

Table 4. Point multiplication performance of ECP prototypes

Digit Clock Montgomery double- Speedup
Size (MHz)  (msec) and-add rel. to

(msec) D=4
4  85.7 0.55 0.96 1
8 74.5 0.35 0.61 1.8
16 76.7 0.21 0.36 3.0

Table B lists the performance of leading published software (SW) and hard-
ware (HW) implementations along with that of the fastest ECP prototype im-
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plementation. The data in this table correspond to k values whose binary rep-
resentation contains roughly the same number of 1’s and 0’s. Table H shows
that the performance of software implementations on platforms with wide words
and high clock rates rival that of traditional hardware implementations. It also
shows that the performance of the fastest ECP implementation is at least 19
times faster than that of traditional hardware implementations and 37 times
faster than software implementations.

Table 5. Performance of leading software and hardware implementations

Implementation SW/ Fields Platform Point Speedup
HW Mult. rel. to
(msecs) ECP
D =16
Montgomery SW  GF(2'%%) UltraSparc 13.5 64
[im=in)] 64-bit,300MHz
Almost Inv. SW  GF(2'%%) DEC Alpha 7.8 37
S 64-bit,175MHz
ASIC Coprocessor HW — GF(2'5%) VLSI 3.9 19
[ 40 MHz est.
FPGA Coprocessor HW — GF(2'%9) Xilinx FPGA 18.4 88
BT XC4020XL,15 MHz  est.
Composite HW GF(((2Y)?%)?")  Xilinx FGPA 4.5 21
fields AT GF((2%)*")  XC4062,16MHz  est.
ECP HW  GF(2'7) Xilinx FPGA 0.21 1
D=16 XCV400E,76.7MHz

5.3 Logic Complexity

The logic complexity of the ECP prototypes is summarized in Tablell in terms
of the main components of modern FPGAs. These components are lookup tables
(LUT) which are used as programmable gates, flip-flops (FF), and Block RAM
which are configurable 4k-bit RAMs [ESf]. The normalized complexity of the
ECP prototypes is approximately 228 +6.6m+([2D/3] —1)m LUTs, 22449.2m
FF, and 44 [m/32] 4k-bit Block RAMSs for m >> D, 4-input LUTs, 32-bit Block
RAMSs, and D a multiple of 4. Note that the complexity is a function of the digit
size D, which as mentioned previously is the main parameter that defines the
performance and complexity of the ECP, and the size of the finite field (m).
Interestingly, of all the logic elements only LUT logic complexity varies largely
as a function of D. The multiplier’s digit multiplier circuit is responsible for this
variability as its size varies proportionally with the digit size.

The prototype implementations used between 15% and 28% of the LUTSs
(depending on the digit size), 16% of the FFs, and 25% of the Block RAMs
available in the XCV400E-8-BG432 FPGA. Together, the AUC and the MC
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Table 6. Logic complexity of ECP prototypes

Digit #LUT #FF # Block
Size RAM
4 1627 1745 10
8 2136 1753 10

16 3002 1769 10

processors, ignoring the complexity of the register that holds the k operand,
used less than 13% of the logic resources and 40% of the memory elements. In
turn, the AU used 76-87% of the LUTSs, 59% of the flip-flops, and 60% of the
memory elements. The remaining resources were used by system I/0 logic. This
breakdown shows that the ECP prototype implementations devoted most of its
resources to arithmetic processing.

6 Conclusions

This work introduced a new elliptic curve processor architecture. This is a scal-
able and programmable processor architecture that exploits reconfigurability to
deliver optimized solutions for different elliptic curves and finite fields. The ECP
architecture is characterized by two loosely coupled processors responsible for
the algorithmic functions of point multiplication and by a streamlined, pipelined
finite field arithmetic unit that can be optimized for each finite field.

This work demonstrated that the ECP can attain high processing speeds in
FPGA logic with three prototype implementations. The fastest prototype imple-
mentation was capable of computing a point multiplication in the field G'F(2157)
at least 19 times faster than documented hardware implementations and 37 times
faster than documented software implementations. Moreover, because the ECP
is programmable as well as configurable, these prototype implementations can
be programmed to use future, more efficient elliptic curve algorithms, and their
size and performance can be tailored, through reconfiguration, to meet future
needs.
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A Relevant Algorithms

Algorithm 1: Double-and-add scalar multiplication using projective coordinates

double and add(z,y, k) add(Xo, Yo, Zo, X1,Y1, Z1)
(X,Y, Z) = conv projective(z,y) /* if P1 = O then return Py*/
(Xo, Yo, Zo) = (X,Y, Z) /* Py = P */ if (X1,Y1,71) = O then
for ¢ =1 — 2 downto 0 do return(Xo, Yo, Zo)
(X,Y,Z) = double(X,Y, Z) /* P=2P */ /[*elseif Py = —P; then return O */
if ki =1 then /’x< P= P+ P() >k/ else if (X(),YE),Z()) = 7(X1,Y'1,Z1)
(X,Y,Z) = add(Xo, Yo, Zo, X, Y, Z) then return(O)
end if /* else if Pp = P; then return 2Py*/
end for else if (Xo, Yo, Zo)=(X1,Y1, Z1) then
(z,y) = conv affine(X,Y, Z) (X2,Y2,Z2) = double(Xo, Yo, Zo)
return (z,y) else /* return P» = Py + P1 */
double(X,Y, Z) Up = XoZ}
/* if P = O then return O */ So = YoZ3
if (X,Y,Z) = O then return(O) Ui = X173
else /* P # O return 2P */ W =Uo+ Us
Zy=XxZ* S1=Y123
Xo = (X + Y4 22%)* R=So+ S
U=Z+X*+YZ L= ZW
Yo = X"Zy + UX> V =RX;+ LV
endif Zg = LZ1
return(X2, Y2, Z2) T=R+ Zs
conv projective(z, y) Xy =aZ2+TR+W?3
return (X =z,Y =y, Z =1) Yo =TXs + VIL?
conv affine(X,Y, Z) endif
return(z = X/Z%,y =Y/Z?) return(X2, Y2, Z2)

Algorithm 2: Montgomery scalar multiplication using projective coordinates

montgomery scalar multiplication(z, y, k) conv projective(z, y)
/*P1:P,P2:2P*/ X1:.’L'; Z1:1
(X1, Z1,X2,Y2) = conv projective(z, y) Xo=a*+b, Zy =2
for ¢ = — 2 downto 0 do return(X1, Z1, X2, Z2)
if k; = 1 then madd(X1,Z1,X2,Zg,m)
/*P1.X =P.X+ PQ.X,PQ.X = 2P2.X*/ X1 =X12>X2771 + .’L‘(X1Zg =+ X221)2
(X1,Z1) = madd(X1,Z1,X2,Zg,:L') Z1 = (X122+X221)2
(X2, Z2) = mdouble(X2, Z2) return(X1, Z1)
else mdouble(X, Z)
/*P2.X = P1.X + Po.X,P1.X = 2P, X*/ return(X = X* + bZ*,Z = X*Z?)
(X2, Z2) = madd(Xa2, Z2, X1, Z1,x) compute xy (X1, Z1, X2, Z2,2,y)
(X1,Z1) = mdouble(X1,Zl) Tk :X1/Z1
end if Yk = ((X1/Z1+.’L')(X2/Zg +.’L‘)+
end for 224+ y)x (X1/Z1 + x)/x +y)

return(compute xy (X1, Z1, X2, Z2,,y)) return(zg, yx)
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