
On Optimizing Nearest Neighbor
Queries in High-Dimensional Data Spaces

Stefan Berchtold1, Christian Böhm2, Daniel Keim3, Florian Krebs2, Hans-Peter Kriegel2

1 stb gmbh, Ulrichsplatz 6, 86150 Augsburg, Germany
{Stefan.Berchtold}@stb-gmbh.de

2 University of Munich, Oettingenstr. 67, 80538 Munich, Germany
{boehm,kriegel}@informatik.uni-muenchen.de

3 University of Halle-Wittenberg, Kurt-Mothes Str. 1, 06099 Halle (Saale), Germany
keim@informatik.uni-halle.de

Abstract. Nearest-neighbor queries in high-dimensional space are of high impor-
tance in various applications, especially in content-based indexing of multimedia
data. For an optimization of the query processing, accurate models for estimating
the query processing costs are needed. In this paper, we propose a new cost model
for nearest neighbor queries in high-dimensional space, which we apply to en-
hance the performance of high-dimensional index structures. The model is based
on new insights into effects occurring in high-dimensional space and provides a
closed formula for the processing costs of nearest neighbor queries depending on
the dimensionality, the block size and the database size. From the wide range of
possible applications of our model, we select two interesting samples: First, we
use the model to prove the known linear complexity of the nearest neighbor search
problem in high-dimensional space, and second, we provide a technique for opti-
mizing the block size. For data of medium dimensionality, the optimized block
size allows significant speed-ups of the query processing time when compared to
traditional block sizes and to the linear scan.

1. Introduction
Nearest neighbor queries are important for various applications such as content-based index-
ing in multimedia systems [10], similarity search in CAD systems [7, 17], docking of mole-
cules in molecular biology [21], and string matching in text retrieval [1]. Most applications
use some kind of feature vector for an efficient access to the complex original data. Examples
of feature vectors are color histograms [20], shape descriptors [15, 18], Fourier vectors [23],
and text descriptors [14]. According to [3], nearest neighbor search on high-dimensional fea-
ture vectors may be defined as follows:

Given a data set DS of points in a d-dimensional space [0, 1]d, find the data point NN from DS
which is closer to the given query point Q than any other point in the DS. More formally:

.

A problem of index-based nearest neighbor search is that it is difficult to estimate the time
which is needed for executing the nearest neighbor query. The estimation of the time, how-
ever, is crucial for optimizing important parameters of the index structures such as the block
size. An adequate cost model should work for data sets with an arbitrary number of dimen-
sions and an arbitrary size of the database, and should be applicable to different data distribu-
tions and index structures. Most important, however, it should provide accurate estimates of
the expected query execution time in order to allow an optimization of the parameters of the
index structure.

In a previous paper [3], we proposed a cost model which is very accurate for estimating the
cost of nearest-neighbor queries in high-dimensional space. This cost model is based on ta-

NN Q() e DS∈ e DS: e Q– e Q–≤∈∀{ }=

J. Van den Bussche and V. Vianu (Eds.): ICDT 2001, LNCS 1973, pp. 435−449, 2001.
 Springer-Verlag Berlin Heidelberg 2001

http://www.dcs.bbk.ac.uk/icdt2001/index.html
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70108
http://kops.ub.uni-konstanz.de/volltexte/2009/7010/

bles which are generated using the Montecarlo integration method. Although expensive nu-
merical integration occurs only in the compile time of the cost estimator, not in the execution
time (when actually determining the cost of query execution), expensive numerical steps are
completely avoided in the cost model proposed in this paper. Based on recent progress in
understanding the effects of indexing high-dimensional spaces [4], we develop a new cost
model for an index-based processing of nearest neighbor queries in high-dimensional space.
The model is completely analytical allowing a direct application to query optimization prob-
lems. The basic idea of the model is to estimate the number of data pages intersecting the
nearest neighbor sphere by first determining the expected radius of the sphere. Assuming a
certain location of the query point and a partition of the data space into hyperrectangles, the
number of intersected pages can be represented by a staircase function. The staircase func-
tion results from the fact that the data pages can be collected into groups such that all pages in
a group have the same “skewness” to the query point. Each page in the group is intersected
simultaneously and, therefore, the cost model results in a staircase function.

The model has a wide range of interesting theoretical and practical applications. The model
may, for example, be used to confirm the known theoretical result [24] that the time com-
plexity of nearest neighbor search in a very high dimensional space is linear. Since the model
provides a closed formula for the time complexity (depending on the parameters: dimension-
ality, database size, and block size), the model can also be used to determine the practically
relevant break-even dimensionality between index-based search and linear scan (for a given
database size). For dimensionalities below the break-even point, the index-based search per-
forms better, for dimensionalities above the break-even point, the linear scan performs bet-
ter. Since the linear scan of the database can also be considered as an index structure with an
infinite block size, the query optimization problem can also be modeled as a continuous
block size optimization problem. Since our model can be evaluated analytically and since the
block size is one of the parameters of the model, the cost model can be applied to determine
the block size for which the minimum estimated costs occur. The result of our theoretical
analysis is surprising and shows that even for medium-dimensional spaces, a large block size
(such as 16kB for 16 dimensions) clearly outperforms traditional block sizes (2 kByte or 4
KByte) and the linear scan. An index structure built with the optimal block size always
shows a significantly better performance, resulting in traditional block sizes in lower dimen-
sional spaces and to a linear scan in very high dimensions. Also, the query processing cost
will never exceed the cost for a linear scan, as index structures typically do in very high di-
mensions due to a large number of random seek operations. A practical evaluation and com-
parison to real measurements confirms our theoretical results and shows speed-ups of up to
528% over the index-based search and up to 500% over the linear scan. Note that a cost mod-
el such as the one proposed in [3] can hardly be used for a parameter optimization because of
the numerical component of the model.

2. Related Work
The research in the field of nearest neighbor search in high-dimensional space may be divid-
ed into three areas: index structures, nearest neighbor algorithms on top of index structures,
and cost models.

The first index structure focusing on high-dimensional spaces was the TV-tree proposed by
Lin, Jagadish, and Faloutsos [16]. The basic idea of the TV-tree is to divide attributes into
attributes which are important for the search process and others which can be ignored be-
cause these attributes have a small chance to contribute to query processing. The major draw-
back of the TV-tree is that information about the behavior of single attributes, e.g. their selec-
tivity, is required. Another R-tree-like high-dimensional index structure is the SS-tree [25]

436

which uses spheres instead of bounding boxes in the directory. Although the SS-tree clearly
outperforms the R*-tree, spheres tend to overlap in high-dimensional spaces and therefore,
the performance also degenerates. In [13], an improvement of the SS-tree has been proposed,
where the concepts of the R-tree and SS-tree are integrated into a new index structure, the
SR-tree. The directory of the SR-tree consists of spheres (SS-tree) and hyperrectangles (R-
tree) such that the area corresponding to a directory entry is the intersection between the
sphere and the hyperrectangle. Another approach has been proposed in [6]. The X-tree is an
index structure adapting the algorithms of R*-trees to high-dimensional data using two tech-
niques: First, the X-tree introduces an overlap-free split algorithm which is based on the split
history of the tree. Second, if the overlap-free split algorithm would lead to an unbalanced
directory, the X-tree omits the split and the corresponding directory node becomes a so-
called supernode. Supernodes are directory nodes which are enlarged by a multiple of the
block size. Another approach related to nearest neighbor query processing in high-dimen-
sional space is the parallel method described in [4]. The basic idea of the declustering tech-
nique is to assign the buckets corresponding to different quadrants of the data space to differ-
ent disks, thereby allowing an optimal speed-up for the parallel processing of nearest
neighbor queries.

Besides the index structures, the algorithms
used to perform the nearest neighbor search are
obviously important. The algorithm of Rouso-
poulos et. al. [19] operates on R-trees. It
traverses the tree in a top-down fashion, always
visiting the closest bounding box first. Since in
case of bounding boxes there always exists a
maximal distance to the closest point in the box,
the algorithm can prune some of the branches
early in the search process. The algorithm,
however, can be shown to be suboptimal since,
in general, it visits more nodes than necessary,
i.e., more nodes than intersected by the nearest
neighbor sphere. An algorithm which avoids
this problem is the algorithm by Hjaltason and
Samet [12]. This algorithm traverses the space
partitions ordered by the so-called MINDIST

which is the distance of the closest point in the box to the query point. Since the algorithm
does not work in a strict top-down fashion, the algorithm has to keep a list of visited nodes in
main memory. The algorithm can be shown to be time-optimal [3]; however, in high-dimen-
sional spaces, the size of the list, and therefore the required main memory, may become pro-
hibitively large.

The third related area are cost models for index-based nearest neighbor queries. One of the
early models is the model by Friedman, Bentley, and Finkel [11]. The assumptions of the
model, however, are unrealistic for the high-dimensional case, since N is assumed to con-
verge to infinity and boundary effects are not considered. The model by Cleary [9] extends
the Friedman, Bentley, and Finkel model by allowing non-rectangular-bounded pages, but
still does not account for boundary effects. Sproull [22] uses the existing models for optimiz-
ing the nearest neighbor search in high dimensions and shows that the number of data points
must be exponential in the number of dimensions for the models to provide accurate esti-
mates. A cost model for metric spaces has recently been proposed in [8]. The model, howev-
er, has been designed for a specific index-structure (the M-tree) and only applies to metric

Figure 1: Two-dimensional Example
for the Data Pages Affected
by the Nearest Neighbor
Search for an Increasing NN-
distance

Query Point

NN-sphere (0.4)

NN-sphere (0.6)

0 1

1

radius

437

spaces. In [3], a cost model has been proposed which is very accurate even in high-dimen-
sions as the model takes boundary effects into account. The model is based on the concept of
the Minkowsky-sum which is the volume created by enlarging the bounding box by the que-
ry sphere. Using the Minkowsky-sum, the modeling of the nearest neighbor search is trans-
formed into an equivalent problem of modeling point queries. Unfortunately, when bound-
ary effects are considered, the Minkowsky-sum can only be determined numerically by
Montecarlo integration. Thus, none of the models can be used to optimize the parameters of
high-dimensional indexing techniques in a query processor.

3. A Model for the Performance of Nearest Neighbor Queries in
High-Dimensional Space

As a first step of our model, we determine the expected distance of the query point to the
actual nearest neighbor in the database. For simplification, in the first approximation we as-
sume uniformly distributed data1 in a normalized data space [0,1]d having a volume of 1. The
nearest neighbor distance may then be approximated by the volume of the sphere which on
the average contains one data point. Thus,

where is the gamma function (, and
), which may be approximated by . From the

above equation, the expected nearest neighbor distance may be determined as

In general, the number of data points is not growing exponentially, which means that not all
dimensions are used as split axes. Without loss of generality, we assume that the first di-
mensions have been used as split dimensions. Thus, d’ may be determined as

.

For simplification, we further assume that each of the split dimensions has been split in
the middle.
To determine the number of pages which are intersected by the nearest neighbor sphere, we
now have to determine the number of pages depending on NN-dist(N,d). In our first approxi-
mation, we only consider the simple case that the query point is located in a corner of the data
space2. In figure 1, we show a two-dimensional example for the data pages which are affect-
ed by the nearest neighbor search for an increasing NN-dist(N, d). Since the data space is as-
sumed to be normalized to [0,1]d and since the data pages are split at most once, we have to
consider more than one data page if . In this case, two additional data
pages have to be accessed in our two-dimensional example (cf. figure 1). If NN-dist(N, d)
increases to more than , we have to consider even more data pages, namely all four

1. In section 5, we provide an extension of the model for non-uniform data distributions.
2. In high-dimensional space, this assumption is not unrealistic since most of the data points

are close to the surface of the data space (for details see [5]).

VolSp
d

NN-dist() 1
N
----=

πd

Γ d 2⁄ 1+()
---------------------------- NN-dist

d⋅ 1
N
----=⇔

Γ n() Γ x 1+() x Γ x()⋅= Γ 1() 1=
Γ 1 2⁄() π= Γ n() n e⁄()n

2 π n⋅ ⋅⋅≈

NN-dist N d,() Γ d 2⁄ 1+()

N πd⋅

d

1

π
------- Γ d 2⁄ 1+()

N
----------------------------d⋅= =

d’

d’ log2
N

Ceff
--------- 

 =

d’

NN-dist N d,() 0.5≥

0.5 2⋅

438

pages in our example. In the general case, we have to consider more data pages each time the
NN-dist(N,d) exceeds the value . We therefore obtain

(for i = 1 ... d’)

(for i = 1 ...d’)

(for i = 1 ...d’)

(for i = 1 ...d’)

The number of data pages which have to be considered in each step are the data pages that

differ in i of the split dimensions, which may be determined as .

0.5 i⋅

NN-dist N d,() 0.5 i⋅=

 i
NN-dist N d,()

0.5
--------------------------------- 

 =
2

⇔

 i

1

π
------- Γ d 2⁄ 1+()

N
----------------------------d⋅

0.5

 
 
 
 
 

=

2

⇔

 i
2 d 2+()⋅

e π⋅
------------------------ π d 2+()3⋅

4 e
2

N
2⋅ ⋅

---------------------------d⋅≈⇒

d’

d dimension

N number of data points

|db| size of the database

#b number of data pages in the database

|b| page size

u storage utilization

d’ number of split dimensions

Ceff average number of data points per index page

TIO I/O time (disc access time independent from the size
of the accessed data block)

TTr transfer and processing time (linearly depends on the
size of the accessed data block)

NN-dist(|db|, d) nearest neighbor distance depending on |db| and d

P(N,d) number of data pages depending on N and d

P(|db|, d) number of data pages depending on |db| and d

X(#b) percentage by which the linear scan is faster

Table 1: Important Symbols

d’
i 

 

439

Integrating the formulas provides the number of data pages which have to accessed in per-
forming a nearest neighbor query on a database with N data points in a d-dimensional space:

.

In the following, we determine the development of for a constant size database
. In this case, the number of data pages is also constant

and the number of data points linearly depends on the database size and the dimension-
ality d

.

The nearest neighbor distance NN-dist now depends on the dimensionality (d) and the size of
the database (|db|)

and since , the number of split dimensions d’ becomes

.

The number of data pages which have to be accessed in performing a nearest neighbor query
in d-dimensional space can now be determined as

In figure 2, we show the development of depending on the dimensionality d.
 is a staircase function which increases to the maximum number of data pages

(#b). The staircase property results from the discontinuous increase of each time

,

which is a consequence of using the corners of the data space as query points. Since for prac-
tical purposes this assumption is not sufficient, in section 5 we extend the model to consider
other query points as well.

4. Evaluation
After introducing our analytical cost model, we are now able to compare the time needed to
perform an index-based nearest neighbor search with the sequential scan of the database. Let
us first consider the factor by which a sequential read is faster than a random block-wise ac-
cess. Given a fixed size database () consisting of blocks, the time
needed to read the database sequentially is . Reading the same database in a

P N d,() d’
k 

 

k 0=

2 d 2+()⋅
e π⋅

------------------------ π d 2+()3⋅
4 e

2
N

2⋅ ⋅
---------------------------d⋅

∑=

P N d,()
db const=()

#b
db

b u⋅
-------------=

db

N
db
d

---------=

NN-dist db d,() 1

π
------- d Γ⋅ d 2⁄ 1+()

db
-----------------------------------d⋅=

Ceff b u⋅ d⁄=

d’ log2
N

Ceff
--------- 

  log2
db

b u⋅
------------- 

 = =

P db d,() log2
db

b u⋅
------------- 

 

k 
 
 

k 0=

2 d 2+()⋅
e π⋅

------------------------ π d
2

d 2+()3⋅ ⋅
4 e

2
db

2⋅ ⋅
-------------------------------------d⋅

∑=

P db d,()
P db d,()

P db d,()

NN-dist N d,() 0.5 i⋅≥ for i 1…d’=()

db #b db b u⋅()⁄=
TIO #+ b TTr⋅

440

block-wise fashion requires . From that we get the factor X, by which the
sequential read is faster, as

In figure 3a, we show the development of X(#b) depending on the size of the database for
realistic system parameters which we measured in our experiments (TI0 = 10 ms,
TTr = 1.5 ms). Note that for very large databases, X(#b) converges against a system constant

.

It is also interesting to consider the inverse of X(#b), which is the percentage of blocks that
could be read randomly instead of sequentially reading the whole database. The function

 is plotted in figure 3b for a constant database size.

Let us now compare the time needed to perform an index-based nearest neighbor search with
the time needed to sequentially search the database. The time needed to read the database

0

50000

100000

150000

200000

250000

20 40 60 80 100
d

Figure 2: Number of Page Accesses as Determined by our Cost Model

250,000

200,000

150,000

50,000

100,000

20 40 60 80 100d0

#b TIO TTr+()⋅

X #b() #⋅ b TIO TTr+()⋅ TIO #+ b TTr⋅= X #b()
#b TIO TTr+()⋅
TIO #+ b TTr⋅

---------------------------------------=⇒

3

4

5

6

7

100 200 300 400 500
anzBlocks

0.15

0.2

0.25

0.3

0.35

0.4

100 200 300 400 500
anzBlocks

Figure 3: Development of X(#b) and 1/X(#b)

b. Percentage of pages which can be reada. Factor by which seq. scan is faster
randomly instead of seq. scan

0.40

0.35

0.30

0.20

0.15

0.25

100 200 300 400

7

6

5

4

3

100 200 300 400 500 #b 500 #b

1/X(#b)

X(#b)

lim X(#b)

X #b()
#b ∞→

lim
TIO TTr+

TTr
-----------------------=

1 X #b()()⁄

441

sequentially is , and the time needed to randomly access the nec-
essary pages in an index-based search is

In figure 4, the time resulting from the two formulas is shown for a fixed database size of
256,000 blocks. Note that in the example for d = 44, the linear scan becomes faster than the
index-based search. In figure 5, we show the time development depending on both, the di-
mensionality and the database size. It is clear that for all realistic parameter settings, there
exists a dimensionality d for which the linear scan becomes faster than the index-based
search.

This fact is summarized in the following lemma:

Lemma: (Complexity of Index-based Nearest Neighbor Search)
For realistic system parameters (i.e., , , and), there always exists a
dimension , for which the sequential scan is faster than an index-based search. More for-
mally,

.

Idea of the Proof:
From our previous observations, it is clear that increases faster than

 and finally all data blocks of the database are read. This is the case for

,

in which case the index-based search randomly accesses all blocks of the database. A se-
quential read of the whole database is faster than the block-wise access by a factor of

and therefore, the correctness of the lemma is shown. q.e.d.

TIO #+ b TTr TCPU+()⋅

TIndexSearch db d,() TIO TTr+()= log2
db

b u⋅
------------- 

 

k 
 
 

k 0=

2 d 2+()⋅
e π⋅

------------------------ π d
2

d 2+()3⋅ ⋅
4 e

2
db

2⋅ ⋅
-------------------------------------d⋅

∑⋅

0

50000

100000

150000

200000

250000

20 40 60 80 100
d

Figure 4: Comparison of Index-based Search and the Sequential Scan Depending
on the Dimensionality d for a Fixed-Size Database

250,000

200,000

150,000

100,000

50,000

0 20 40 60 80 100d

TIO 0> db b> u 0>
d̃

db d̃: TIndexSearch db d̃,() TLinScan db()>∃∀

TIndexSearch db d̃,()
TLinScan db()

2 d̃ 2+()⋅
e π⋅

------------------------ π d̃
2

d̃ 2+()
3

⋅ ⋅

4 e
2

db
2⋅ ⋅

-------------------------------------d⋅ log2
db

b u⋅
------------- 

 =

X #b()
db TIO TTr+()⋅

b u T⋅ ⋅ IO db+ TTr⋅
---=

442

Note that this result confirms the pessimistic result by Weber et al. [24] that nearest neighbor
search in high-dimensional space has a linear time complexity. In figure 6, we compare the
performance estimations of our numerical model [3] and the new analytical model (proposed
in this paper) to the performance of the R*-tree [2] on a uniformly distributed data set with a
fixed number of data pages (256) and varying dimensionality (d = 2 ... 50). As one can see,
the analytical cost model provides an accurate prediction of the R*-tree’s performance over a
wide range of dimensions. Even for low and medium dimensions, the prediction of our mod-
el is pretty close to the measured performance.

10
20

30
40

50
60 d

200000
400000

600000
800000

1e+06
db

0

2000

4000

6000

8000

10000

Figure 5: Comparison of Index-based Search and the Sequential Scan Depending on
the Database Size |db| and the Dimensionality d

Figure 6: Comparison of Cost Models and Measured R*-Tree Performance De-
pending on the Dimension

443

5. Optimized Processing of Nearest Neighbor Queries in High-
Dimensional Space

The objective of this section is to show, how the results obtained above can be used for an
optimization of the query processing. We have shown in section 4 that data spaces exist,
where it is more efficient to avoid an index-based search. Instead, the sequential scan yields a
better performance. In contrast, for low-dimensional data spaces, multidimensional index
structures yield a complexity which is logarithmic in the number of data objects. In this sec-
tion, we show that it is optimal for data spaces with moderate dimensionality to use a logical
block size which is a multiple of the physical block size provided by the operating system.
Therefore, we have to consider three different cases of query processing: (1) Index-based
query processing with traditional block size (4 KByte) in low-dimensional data spaces, (2)
Sequential Scan processing in high-dimensional data spaces and (3) Index-based query pro-
cessing with enlarged block-size in medium-dimensional data spaces. As the sequential scan
can be considered as an index with infinite block size, the third case subsumes case (2). Case
(1) is trivially subsumed by case (3). Therefore, the problem is reduced to a single optimiza-
tion task of minimizing the access costs by varying the logical block size.

In order to obtain an accurate estimation of the minimum-cost blocksize, especially in the
presence of non-uniform data distributions, we have to slightly extend our model. Hence, we
express the expected location of the query point more accurately than assuming the query
point to be in a corner of the data space. If we assume that the location of the query point is
uniformly distributed, we are able to determine the expected distance Edist of the query point
to the closest corner of the data space. However, the formula for Edist is rather complex and
therefore not applicable for practical purposes. Instead, we use the following empirically de-
rived approximation of the formula which is very accurate up to dimension 100:

Figure 7 compares the exact and the approximated distances demonstrating the good accura-
cy of the approximation.

Figure 7: Approximated Distance of the Query Point toFigure 7: Approximated distance of the query point to the closest corner of data space

Edist
d0.53

4
-----------=

444

If we assume that the query point is located on the diagonal of the data space, we can adapt
our model using the approximate value of Edist. In this case, we have to consider more data

pages each time NN-dist(N, d) exceeds the value rather than exceeding

 in the original model. Thus, our extended cost function turns out as:

.

Figure 8 depicts the graph of the extended cost model with varying dimension and varying
block size. As the model is discrete over the dimensions, there are some staircases. On the
other hand, the model is continuous over the blocksize and therefore, amenable to an optimi-

Figure 8: Graph of the Extended Cost Function: The staircase in the front is associat-
ed to dimensions for which a minimum block size yields least cost. The stair-
case in the back shows dimensions for which sequential scan causes less
costs than index search whereas the staircase in the middle shows minimum
cost for an optimal block size in a medium size range.

log2(|b|)

to
ta

l t
im

e

di
m

en
si

on

0.5
d0.53

4 d
-----------– 

  i⋅

0.5 i⋅

log2
db

b u⋅
------------- 

 

k 
 
 

k 0=

d 2+

e π 0.5
d0.53

4 d
-----------– 

  2
⋅ ⋅

--- π d 2+()3 d2⋅ ⋅
4 db 2 e2⋅ ⋅

-------------------------------------d⋅

∑

445

zation by differentiation. In Figure 8, all three cases can be seen: For low dimensions (stair-
case in the front), the cost function is monotonously increasing with increasing block size.
Therefore, the lowest possible blocksize should be taken. In the high-dimensional case (stair-
case in the back), the cost function is monotonously decreasing with increasing block size.
Therefore, the optimal blocksize is infinite, or in other words, we are supposed to use sequen-
tial scan instead of indexing.
The most interesting phenomenon is the staircase in the middle. Here the cost function is mo-
notonously falling to a minimum and then monotonously increasing. The cost function has
obviously a single minimum and no further local extrema, which facilitates the search for the
optimum. In order to find the block size for which the minimum cost occur, we simply derive
the cost function with respect to the block size. The derivative of the cost function
TIndexSearch (|db|, d, |b|) can be determined, as follows:

with , where is the well-known

digamma function, the derivative of the natural logarithm of the -function:

.

The derivative of TIndexSearch is continuous over |b|. Three cases can be distinguished: (1)
The derivative is positive over all block sizes. In this case, the minimum block size is opti-
mal. (2) The derivative is negative. Then, an infinite blocksize is optimal and the search is
processed by sequentially scanning the only data page. (3) The derivative of the cost function
has a zero value. In this case, the equation

∂TIndexSearch db d b, ,()
∂ b

-- =

∂
∂ b
--------- TIO b TTr⋅+() log2

db
b u⋅
------------- 

 

k 
 
 

k 0=

d 2+

e π 0.5
d0.53

4 d
-----------– 

  2
⋅ ⋅

--- π d 2+()3 d2⋅ ⋅
4 db 2 e2⋅ ⋅

-------------------------------------d⋅

∑⋅=

∂
∂ b
--------- TIO b TTr⋅+() log2

db
b u⋅

------------- 
 

k 
 
 

 
 
 

k 0=

d 2+

e π 0.5
d0.53

4 d
-----------– 

  2
⋅ ⋅

--- π d 2+()3 d2⋅ ⋅
4 db 2 e2⋅ ⋅

-------------------------------------d⋅

∑=

log2
db

b u⋅
------------- 

 

k 
 
 

TTr TIO b TTr⋅+() %⋅+()⋅

k 0=

d 2+

e π 0.5
d0.53

4 d
-----------– 

  2
⋅ ⋅

--- π d 2+()3 d2⋅ ⋅
4 db 2 e2⋅ ⋅

-------------------------------------d⋅

∑=

%

Ψ log2
db

b u⋅
------------- 

  k– 1+ 
  Ψ log2

db
b u⋅

------------- 
  1+ 

 –

b ln 2()⋅
--= Ψ

Γ

Ψ x()
∂

∂x
----- ln Γ x()()=

∂TIndexSearch db d b, ,()
∂ b

-- 0=

446

has to be solved, determining the optimal blocksize |b| = |b|opt. Finding the optimal blocksize
can be done by a simple binary search. As the cost function is smooth, this will lead to an
optimal blocksize after a small (logarithmic) number of steps.

The development of the optimal block size over varying dimensions and varying database
sizes is depicted in Figure 9. The position of the optimum is, as expected, heavily affected by
the dimension of the data space. At dimensions below 9, it is optimal to use the minimal
block size of the system, in this case 1KByte. In contrast, when searching in a 17-dimension-
al data space (or higher), the optimal block size is infinite. Therefore, the sequential scan
yields the best performance in this case. The position of the optimum also depends on the
database size. Figure 10 shows the optimal block size with varying the database size. Al-
though the variation is not very strong, the optimal block size is decreasing with increasing
the database size. We therefore suggest a dynamical adaption of the block size if the database
size is unknown a priori.

Finally, we are going to evaluate the accuracy of our cost model. For this purpose, we created
indexes on real data containing 4, 8, and 16-dimensional Fourier vectors (derived from CAD
data, normalized to the unit hypercube). The size of the databases was 2.5 and 1.0 MBytes.
Figure 11 shows the results of these experiments (total elapsed time in seconds), revealing
the three different cases of query processing mentioned in the beginning of this section. The

Figure 9: Optimal Block Size for Varying Dimensions

Figure 10: Optimal Block Size for Varying Sizes of the Database

447

left side shows the results of the 4-dimensional data space, where normal index based query
processing with small block sizes is optimal. To the right, we have the high-dimensional
case, where the infinite block size (sequential scan) is optimal. The interesting case (8-di-
mensional data space) is presented in the middle. Here, the performance forms an optimum
at a block size of 32KBytes, which is very unusual in database applications. The query pro-
cessing software using this logical block size (16 contiguous pages of the operating system)
yields substantial performance improvements over the normal index (258%) as well as over
the sequential scan (205%). The maximal speedup reached in this series of experiments was
528% over normal index processing and 500% over the infinite block size (sequential scan).

6. Conclusions
In this paper, we propose a new analytical cost
model for nearest neighbor queries in high-di-
mensional spaces. The model is based on re-
cent insights into the effects occurring in
high-dimensional spaces and can be applied
to optimize the processing of nearest neighbor
queries. One important application is the de-
termination of an optimal block size depend-
ing on the dimensionality of the data and the
database size. Since the linear scan can be
seen as a special configuration of an index
structure with an infinite block size, an index
structure using the optimal block size will per-
form in very high dimensions as good as a lin-
ear scan of the database. For a medium di-
mensionality, the optimal block size leads to
significant performance improvements over
the index-based search and the linear scan. An
experimental evaluation shows that an index
structure using the optimal block size outper-
forms an index structure using the normal
block size of 4 KBytes by up to 528%.

References
[1] Altschul S. F., Gish W., Miller W., Myers

E. W., Lipman D. J.: ‘A Basic Local Align-
ment Search Tool’, Journal of Molecular
Biology, Vol. 215, No. 3, 1990, pp. 403-
410.

[2] Beckmann N., Kriegel H.-P., Schneider R.,
Seeger B.: ‘The R*-tree: An Efficient and
Robust Access Method for Points and
Rectangles’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Atlantic
City, NJ, 1990, pp. 322-331.

[3] Berchtold S., Böhm C., Keim D., Kriegel
H.-P.: ‘A Cost Model For Nearest Neigh-
bor Search in High-Dimensional Data
Space’, Proc. ACM PODS Int. Conf. on Figure 11: Accuracy of model (real data)

448

Principles of Databases, Tucson, Arizona, 1997.
[4] Berchtold S., Böhm C., Braunmüller B., Keim D., Kriegel H.-P.: ‘Fast Parallel Similarity

Search in Multimedia Databases’, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Tucson, Arizona, 1997.

[5] Berchtold S., Keim D. A.: ’High-dimensional Index Structures: Database Support for Next
Decades’s Applications’, Tutorial, Proc. ACM SIGMOD Int. Conf. on Management of
Data, 1998, p. 501.

[6] Berchtold S., Keim D., Kriegel H.-P.: ‘The X-tree: An Index Structure for High-Dimen-
sional Data’, 22nd Conf. on Very Large Databases, 1996, Bombay, India.

[7] Berchtold S., Keim D., Kriegel H.-P.: ‘Fast Searching for Partial Similarity in Polygon
Databases’, VLDB Journal, Dec. 1997.

[8] Ciacia P., Patella M., Zezula P.: ’A Cost Model for Similarity Queries in Metric Spaces’,
Proc. ACM PODS Int. Conf. on Principals of Databases, Seattle, WA, 1998, pp. 59-68.

[9] Cleary J. G.: ‘Analysis of an Algorithm for Finding Nearest Neighbors in Euclidean Space’,
ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, pp.183-192.

[10] Faloutsos C., Barber R., Flickner M., Hafner J., et al.: ‘Efficient and Effective Querying by
Image Content’, Journal of Intelligent Information Systems, 1994, Vol. 3, pp. 231-262.

[11] Friedman J. H., Bentley J. L., Finkel R. A.: ‘An Algorithm for Finding Best Matches in
Logarithmic Expected Time’, ACM Transactions on Mathematical Software, Vol. 3, No. 3,
September 1977, pp. 209-226.

[12] Hjaltason G. R., Samet H.: ‘Ranking in Spatial Databases’, Proc. 4th Int. Symp. on Large
Spatial Databases, Portland, ME, 1995, pp. 83-95.

[13] Katayama N., Satoh S.: ‘The SR-Tree: An Index Structure for High-Dimensional Nearest
Neighbor Queries’, Proc. ACM SIGMOD Int. Conf. on Management of Data, 1997.

[14] Kukich K.: ‘Techniques for Automatically Correcting Words in Text’, ACM Computing
Surveys, Vol. 24, No. 4, 1992, pp. 377-440.

[15] Jagadish H. V.: ‘A Retrieval Technique for Similar Shapes’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1991, pp. 208-217.

[16] Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-tree: An Index Structure for High-Dimen-
sional Data’, VLDB Journal, Vol. 3, 1995, pp. 517-542.

[17] Mehrotra R., Gary J. E.: ‘Feature-Based Retrieval of Similar Shapes’, Proc. 9th Int. Conf.
on Data Engineering, Vienna, Austria, 1993, pp. 108-115.

[18] Mehrotra R., Gary J. E.: ‘Feature-Index-Based Similar Shape Retrieval’, Proc. of the 3rd
Working Conf. on Visual Database Systems, March 1995.

[19] Roussopoulos N., Kelley S., Vincent F.: ‘Nearest Neighbor Queries’, Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1995, pp. 71-79.

[20] Shawney H., Hafner J.: ‘Efficient Color Histogram Indexing’, Proc. Int. Conf. on Image
Processing, 1994, pp. 66-70.

[21] Shoichet B. K., Bodian D. L., Kuntz I. D.: ‘Molecular Docking Using Shape Descriptors’,
Journal of Computational Chemistry, Vol. 13, No. 3, 1992, pp. 380-397.

[22] Sproull R.F.: ‘Refinements to Nearest Neighbor Searching in k-Dimensional Trees’, Algo-
rithmica 1991, pp. 579-589.

[23] Wallace T., Wintz P.: ‘An Efficient Three-Dimensional Aircraft Recognition Algorithm
Using Normalized Fourier Descriptors’, Computer Graphics and Image Processing, Vol.
13, pp. 99-126, 1980.

[24] Weber R., Schek H.-J., Blott S.: ‘A Quantitative Analysis and Performance Study for Simi-
larity-Search Methods in High-Dimensional Spaces’, Proc. Int. Conf. on Very Large Data-
bases, New York, 1998.

[25] White, D., Jain R.: ‘Similarity Indexing with the SS-Tree’, Proc. 12th Int. Conf. on Data
Engineering, New Orleans, LA, 1996, pp. 516-523.

449

	On Optimizing Nearest Neighbor Queries in High-Dimensional Data Spaces
	1. Introduction
	2. Related Work
	3. A Model for the Performance of Nearest Neighbor Queries in High-Dimensional Space
	4. Evaluation
	5. Optimized Processing of Nearest Neighbor Queries in High-Dimensional Space
	6. Conclusions
	References

	Text8: First publ. in: Proceedings of the 8th International Conference on Database Theory, 2001, pp. 435-449
	Text9:
	Text10: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70108
URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7010/

