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Abstract. Nearest-neighbor queriesin high-dimensional space are of high impor-
tance in various applications, especially in content-based indexing of multimedia
data. For an optimization of the query processing, accurate models for estimating
the query processing costs are needed. In this paper, we propose anew cost model
for nearest neighbor queries in high-dimensional space, which we apply to en-
hance the performance of high-dimensional index structures. The model is based
on new insights into effects occurring in high-dimensional space and provides a
closed formulafor the processing costs of nearest neighbor queries depending on
the dimensionality, the block size and the database size. From the wide range of
possible applications of our model, we select two interesting samples: First, we
usethemodel to provetheknown linear complexity of the nearest neighbor search
problem in high-dimensiona space, and second, we provide a technique for opti-
mizing the block size. For data of medium dimensionality, the optimized block
size allows significant speed-ups of the query processing time when compared to
traditional block sizes and to the linear scan.

1. Introduction

Nearest neighbor queries are important for various applications such as content-based index-
ing in multimedia systems [10], similarity search in CAD systems [7, 17], docking of mole-
cules in molecular biology [21], and string matching in text retrieval [1]. Most applications
use some kind of feature vector for an efficient access to the complex original data. Examples
of feature vectors are color histograms [20], shape descriptors [15, 18], Fourier vectors [23],
and text descriptors [14]. According to [3], hearest neighbor search on high-dimensional fea-
ture vectors may be defined as follows:

Given a data s&Sof points in al-dimensional space [O,dfl,]ind the data poilIN fromDS
which is closer to the given query paiithan any other point in tH2S More formally:

NN(Q) = {e0 DS|Te 1 DS: [é-Ql <[le-Ql} .

A problem of index-based nearest neighbor search is that it is difficult to estimate the time
which is needed for executing the nearest neighbor query. The estimation of the time, how-
ever, is crucial for optimizing important parameters of the index structures such as the block
size. An adequate cost model should work for data sets with an arbitrary number of dimen-
sions and an arbitrary size of the database, and should be applicable to different data distribu-
tions and index structures. Most important, however, it should provide accurate estimates of
the expected query execution time in order to allow an optimization of the parameters of the
index structure.

In a previous paper [3], we proposed a cost model which is very accurate for estimating the
cost of nearest-neighbor queries in high-dimensional space. This cost model is based on ta-
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bleswhich are generated using the Montecarl o integration method. Although expensive nu-
merical integration occursonly inthe compiletime of the cost estimator, not in the execution
time (when actually determining the cost of query execution), expensive numerical stepsare
completely avoided in the cost model proposed in this paper. Based on recent progress in
understanding the effects of indexing high-dimensiona spaces [4], we develop anew cost
model for an index-based processing of nearest neighbor queriesin high-dimensiona space.
Themodd iscompletely analytical alowing adirect application to query optimization prob-
lems. The basic idea of the model is to estimate the number of data pages intersecting the
nearest neighbor sphere by first determining the expected radius of the sphere. Assuming a
certain location of the query point and a partition of the data space into hyperrectangles, the
number of intersected pages can be represented by a staircase function. The staircase func-
tionresultsfrom thefact that the data pages can be collected into groups such that all pagesin
a group have the same “skewness” to the query point. Each page in the group is intersected
simultaneously and, therefore, the cost model results in a staircase function.

The model has a wide range of interesting theoretical and practical applications. The model
may, for example, be used to confirm the known theoretical result [24] that the time com-
plexity of nearest neighbor search in a very high dimensional space is linear. Since the model
provides a closed formula for the time complexity (depending on the parameters: dimension-
ality, database size, and block size), the model can also be used to determine the practically
relevant break-even dimensionality between index-based search and linear scan (for a given
database size). For dimensionalities below the break-even point, the index-based search per-
forms better, for dimensionalities above the break-even point, the linear scan performs bet-
ter. Since the linear scan of the database can also be considered as an index structure with an
infinite block size, the query optimization problem can also be modeled as a continuous
block size optimization problem. Since our model can be evaluated analytically and since the
block size is one of the parameters of the model, the cost model can be applied to determine
the block size for which the minimum estimated costs occur. The result of our theoretical
analysis is surprising and shows that even for medium-dimensional spaces, a large block size
(such as 16kB for 16 dimensions) clearly outperforms traditional block sizes (2 kByte or 4
KByte) and the linear scan. An index structure built with the optimal block size always
shows a significantly better performance, resulting in traditional block sizes in lower dimen-
sional spaces and to a linear scan in very high dimensions. Also, the query processing cost
will never exceed the cost for a linear scan, as index structures typically do in very high di-
mensions due to a large number of random seek operations. A practical evaluation and com-
parison to real measurements confirms our theoretical results and shows speed-ups of up to
528% over the index-based search and up to 500% over the linear scan. Note that a cost mod-
el such as the one proposed in [3] can hardly be used for a parameter optimization because of
the numerical component of the model.

2. Related Work

The research in the field of nearest neighbor search in high-dimensional space may be divid-
ed into three areas: index structures, nearest neighbor algorithms on top of index structures,
and cost models.

The first index structure focusing on high-dimensional spaces was the TV-tree proposed by
Lin, Jagadish, and Faloutsos [16]. The basic idea of the TV-tree is to divide attributes into
attributes which are important for the search process and others which can be ignored be-
cause these attributes have a small chance to contribute to query processing. The major draw-
back of the TV-tree is that information about the behavior of single attributes, e.g. their selec-
tivity, is required. Another R-tree-like high-dimensional index structure is the SS-tree [25]
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which uses spheresingtead of bounding boxesin the directory. Although the SS-tree clearly
outperforms the R*-tree, spheres tend to overlap in high-dimensional spaces and therefore,
the performance al so degenerates. In[13], animprovement of the SS-tree has been proposed,
where the concepts of the R-tree and SS-tree are integrated into a new index structure, the
SR-tree. The directory of the SR-tree consists of spheres (SS-tree) and hyperrectangles (R-
tree) such that the area corresponding to a directory entry is the intersection between the
sphere and the hyperrectangle. Another approach has been proposed in [6]. The X-treeisan
index structure adapting the algorithms of R*-treesto high-dimensiond datausing two tech-
niques: Firgt, the X-treeintroduces an overlap-free split algorithm which isbased on the split
history of the tree. Second, if the overlap-free split algorithm would lead to an unbalanced
directory, the X-tree omits the split and the corresponding directory node becomes a so-
called supernode. Supernodes are directory nodes which are enlarged by a multiple of the
block sze. Another approach related to nearest neighbor query processing in high-dimen-
sional spaceisthe parallel method described in [4]. The basic idea of the declustering tech-
niqueisto assign the buckets corresponding to different quadrants of the dataspaceto differ-
ent disks, thereby alowing an optimal speed-up for the parallel processing of nearest
neighbor queries.
_ 1 Besides the index structures, the agorithms
Query Point used to perform the nearest neighbor search are
obvioudy important. The algorithm of Rouso-
poulos et. a. [19] operates on R-trees. It

NN-sphere (0.4) traversesthetreein atop-down fashion, aways
visiting the closest bounding box first. Sincein
NN-sphere (0.6) case of bounding boxes there aways exists a

maximal distanceto the closest point inthe box,
the algorithm can prune some of the branches
0 1 early in the search process. The agorithm,
however, can be shown to be suboptimal since,
in general, it visits more nodes than necessary,
i.e., more nodes than intersected by the nearest
neighbor sphere. An algorithm which avoids
this problem is the algorithm by Hjaltason and
Samet [12]. This algorithm traverses the space
partitions ordered by the so-called MINDIST
which is the distance of the closest point in the box to the query point. Since the algorithm
doesnot work in astrict top-down fashion, the algorithm hasto kegp alist of visited nodesin
main memory. Thealgorithm can be shown to betime-optimal [3]; however, in high-dimen-
sional spaces, the size of theligt, and therefore the required main memory, may become pro-
hibitively large.

The third related area are cost models for index-based nearest neighbor queries. One of the
early models is the model by Friedman, Bentley, and Finkel [11]. The assumptions of the
model, however, are unredistic for the high-dimensional case, snce N is assumed to con-
vergeto infinity and boundary effects are not considered. The model by Cleary [9] extends
the Friedman, Bentley, and Finkel mode by alowing non-rectangular-bounded pages, but
still doesnot account for boundary effects. Sproull [22] usesthe exigting model sfor optimiz-
ing the nearest neighbor searchin high dimensions and showsthat the number of data points
must be exponential in the number of dimensions for the models to provide accurate esti-
mates. A cost model for metric spaces hasrecently been proposedin [8]. The model, howev-
er, has been designed for a specific index-structure (the M-tree) and only appliesto metric

Figure1l: Two-dimensional Example
for the Data Pages Affected
by the Nearest Neighbor
Search for an Increasing NN-
distance
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spaces. In [3], acost model has been proposed which is very accurate even in high-dimen-
sionsasthe model takesboundary effectsinto account. The model isbased on the concept of
the Minkowsky-sum which isthevolume created by enlarging the bounding box by the que-
ry sphere. Using the Minkowsky-sum, the modeling of the nearest neighbor search istrans-
formed into an equivalent problem of modeling point queries. Unfortunately, when bound-
ary effects are consdered, the Minkowsky-sum can only be determined numericaly by
Montecarlo integration. Thus, none of the models can be used to optimize the parameters of
high-dimensiona indexing techniquesin aquery processor.

3. A Mode for the Performance of Nearest Neighbor Queriesin
High-Dimensional Space

As afirgt step of our model, we determine the expected distance of the query point to the

actual nearest neighbor in the database. For smplification, in the first approximation we as-

sumeuniformly distributed data® in anormalized dataspa(:e[o,l]d havingavolumeof 1. The

nearest neighbor distance may then be approximated by the volume of the spherewhich on
theaverage contains one data point. Thus,

d
G =
Volsp(NN-dlst) =N ° F(d/2+10) [CNN-dist™ =
where T(n) is the gamma function (F(x+1) = XEFSX)' r1) =1 ad
r(1/2) = ./m), which may be approximated by '(n) = (n/e)" /2 Ot[h. From the
above equation, the expected nearest neighbor distance may be determined as

NN-dist(N, d) = dU/@ _ L Djjri @z+1)
NOfd T

In general, the number of data pointsis not growing exponentially, which meansthat not all
dimensionsare used as split axes. Without loss of generdity, we assumethat thefirst d’ di-
mens ons have been used as split dimensions. Thus, d’ may bedetermined as

. N
d = ’V|ngEICTﬁE-‘.

For simplification, we further assume that each of the d’ split dimensions has been split in

themiddle.

To determine the number of pageswhich are intersected by the nearest neighbor sphere, we
now haveto determine the number of pages depending on NN-dist(N,d)n our first approxi-

mation, we only consider thesimple casethat the query pointislocated inacorner of the data
spaoez. Infigure 1, we show atwo-dimensional examplefor the data pageswhich are affect-

ed by the nearest neighbor search for anincreasing NN-dist(N, d) Since the dataspaceisas-

sumed to be normalized to [0,1] d and since the data pages are split at most once, we haveto

consider more than one data pageif NN-dist(N, d) = 0.5 . Inthis case, two additional data
pages have to be accessed in our two-dimensional example (cf. figure 1). If NN-dist(N, d)
increasesto morethan 0.5 [1,/2 , we have to consider even more datapages, namely &l four

2l

1. Insection 5, we provide an extension of the model for non-uniform data distributions.
2. In high-dimensiona space, this assumption is not unrealistic since most of the data points
are close to the surface of the data space (for details see[5]).
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pagesin our example. Inthegeneral case, we haveto consider more data pageseachtimethe
NN-dist(N,d) exceedsthevalue 0.5 (/i . Wethereforeobtain

NN-dist(N, d) = 0.5 0/ (fori=1..d)

: N-dist(N, d . ,

= IZH_EEZ (fori=1...d)
nl o [[d/2+1)f

= i N O _

- i= O (fori=1..d)
0 0.5 0
0 0

3
j=2Md*+2) o nid+2) (fori=1..d)

el 2

4% [N
The number of data pages which have to be considered in each step are the data pages that

differini of the d’ split dimensions, which may be determined as %?E

d dimension

N number of datapoints

|db] sizeof thedatabase

#b number of data pagesin the database

[b| pagesize

u storage utilization

d number of split dimensions

Ces average number of data points per index page

Tio 1/O time (disc accesstime independent from the size
of theaccessed data bl ock)

Tr transfer and processing time (linearly dependsonthe
sizeof the accessed datablock)

NN-dist(|db|, d nearest neighbor distance depending on |dbjand d

P(N,d) number of data pagesdependingonNand d

P(db|, d) number of data pages depending on |dbjand d

X(#b) percentage by whichthelinear scanisfaster

Table 1: Important Symbols
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Integrating the formulas provides the number of data pages which have to accessed in per-
forming anearest neighbor query on adatabase with N data pointsin ad-dimensional space:

200d+2) qj/n[(d+2)3
el 4182 IN?
P(N, d) = )3 Eﬁg.

k=0
In the following, we determine the development of P(N, d) for a constant size database
(Jdb| = const) . Inthiscase, the number of data pagesisa so constant

_ ldb
#b o] L
and the number of datapointslinearly depends on the database size |db| and the dimension-
adityd
\ = ldbl
7

The nearest neighbor distance NN-dist now depends on the dimensiondlity (d) and the size of

thedatabase (|db|)
NN-dist(|dbl, d) = = QJ@
Jm |db|

andsince C; = [b| Cu/d, thenumber of split dimensionsd’ becomes

.- oN O - nldbl g
‘ POQZECEHD-‘ POQZEIbI wo|-

The number of data pageswhich haveto be accessed in performing anearest neighbor query
ind-dimensiona space can now be determined as

200d+2) Qj,n[dzE(d+2)3
el 478 [db|?

nldol o
P(ldbl, d) = > E[")gzﬁlu aTal
K=0 O k O

In figure 2, we show the development of P(|db|, d) depending on the dimensiondity d.
P(|dbl, d) isastaircase function which increases to the maximum number of data pages
(#b). The staircase property resultsfrom the discontinuousincrease of P(|dbl, d) eachtime

NN-dist(N, d)=050/i (for i=1...d),
whichisaconsequence of using the cornersof the data space asquery points. Sincefor prac-
tical purposesthisassumption isnot sufficient, in section 5 we extend the model to consider
other query pointsaswell.

4. Evaluation

After introducing our anaytical cost model, we are now ableto compare the time needed to
perform an index-based nearest neighbor search with the sequential scan of the database. L et
usfirst consider the factor by which asequential read isfaster than arandom block-wise ac-
cess. Given afixed size database (|db| ) consisting of #b = |db|/ (|b| Cl) blocks, thetime
needed to read the database sequentially is T, 5 + #b (0T, . Reading the same databasein a
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Figure 2: Number of Page Accesses as Deter mined by our Cost M odel

block-wise fashion requires #b [{T, 5 + T,) . Fromthat we get the factor X, by which the
sequential read isfagter, as

#HOOT o+ Tqy)

X(#Db) b OT o+ Ty,) = Tjo+#b O, O X(#b) = T oAb,
In figure 3a, we show the development of X(#b) depending on the size of the database for
regdligtic system parameters which we measured in our experiments (Tjg = 10 ms,
Tt = 1.5ms). Notethat for very large databases, X(#b) converges against asystem constant

T o+T
lim X(#b) = -2—T1
#b - o Ty

It isaso interesting to consider the inverse of X(#b), which is the percentage of blocks that
could be read randomly instead of sequentialy reading the whole database. The function
1/ (X(#b)) isplottedinfigure 3bfor aconstant database Sze.

L et usnow compare thetime needed to perform an index-based nearest neighbor searchwith
the time needed to sequentialy search the database. The time needed to read the database

: 0.40
/ 0.35

61 /X(#b)

0.30
51

| 0.25
4 0.20
| 015 \YX(#0)

100 200 300 400 500#b 100 200 300 400 500#b
a. Factor by which seg. scan isfaster b. Percentage of pages which can be read

randomly instead of seq. scan
Figure 3: Development of X(#b) and 1/X(#b)
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Figure4: Comparison of Index-based Search and the Sequential Scan Depending
on the Dimensionality d for a Fixed-Size Database

sequentialy is Ty + #b (T, + Tp,) , andthetime needed to randomly accessthe nec-

essary pagesin anindex-based searchis
200d+2) Qj/n[dzE(d+2)3
efn 4% Odbl?

log nldbl o O
TIndexSearch(|db|’ d) = (TIO + TTr) O z qu| cud O
k=0 O k O

In figure 4, the time resulting from the two formulas is shown for a fixed database size of
256,000 blocks. Note that in the example for d = 44, the linear scan becomes faster than the
index-based search. In figure 5, we show the time development depending on both, the di-
mensionality and the database size. It is clear that for al redistic parameter settings, there
exists a dimensionality d for which the linear scan becomes faster than the index-based
search.

Thisfactissummarized inthefollowing lemma:

Lemma: (Complexity of Index-based Nearest Neighbor Search)
For redlistic.system parameters(i.e., T, >0, |db| > |b| , and u> 0), therealwaysexistsa
dimension d, for which the sequential scan is faster than an index-based search. More for-
mally,

Ojdb| [d: TIndexSearch(|db|’ d) > TLinScan(|db|)'

| dea of the Proof: -
From our previous observations, itisclear that T, o, search(/dbl, d) increasesfaster than
T\ inscan(ldbl) andfinaly all datablocks of the database areread. Thisisthe casefor

2“5’*2)[3 il od+2)° _ o, ld0L 0
= log, ,
ety 40P gdb? Hol ud
in which case the index-based search randomly accesses dl blocks of the database. A se-
quential read of thewhole databaseisfaster than the block-wise accessby afactor of
|dbl Ty + Try)
bl Cu O, o + [db| OT,
and therefore, the correctness of thelemmaisshown. g.e.d.

X(#b) =
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Figure5: Comparison of Index-based Search and the Sequential Scan Depending on
the Database Size |db| and the Dimensionality d

Notethat thisresult confirmsthe pessimistic result by Weber et al. [24] that nearest neighbor

search in high-dimensiond space has alinear time complexity. Infigure 6, we compare the
performance estimationsof our numerical model [ 3] and the new analytical modd (proposed

in this paper) to the performance of the R*-tree[2] on auniformly distributed data set with a

fixed number of data pages (256) and varying dimensiondlity (d = 2 ... 50). Asone can see,

the analytical cost model provides an accurate prediction of the R*-tree’s performance over a
wide range of dimensions. Even for low and medium dimensions, the prediction of our mod-
el is pretty close to the measured performance.
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Figure6: Comparison of Cost Models and Measured R*-Tree Performance De-
pending on the Dimension
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5. Optimized Processing of Nearest Neighbor Queriesin High-
Dimensional Space

The objective of this section isto show, how the results obtained above can be used for an
optimization of the query processing. We have shown in section 4 that data spaces exi<t,
whereitismoreefficient to avoid anindex-based search. I nstead, the sequential scanyieldsa
better performance. In contrast, for low-dimensiond data spaces, multidimensional index
sructuresyield acomplexity which islogarithmic in the number of data objects. In thissec-
tion, we show that it isoptimal for data spaceswith moderate dimensionality to use alogical
block size which isamultiple of the physical block size provided by the operating system.
Therefore, we have to consider three different cases of query processing: (1) Index-based
query processing with traditional block size (4 KByte) in low-dimensional data spaces, (2)
Sequential Scan processing in high-dimensional data spaces and (3) Index-based query pro-
ng with enlarged block-sizein medium-dimensional data spaces. Asthe sequential scan
can be consdered asan index with infinite block size, the third case subsumes case (2). Case
(2) istrivially subsumed by case (3). Therefore, the problem isreduced to asingle optimiza-
tion task of minimizing the access costs by varying thelogical block size.

In order to obtain an accurate estimation of the minimum-cost blocksize, especidly in the
presence of non-uniform datadistributions, we haveto dightly extend our model. Hence, we
express the expected |ocation of the query point more accurately than assuming the query
point to bein acorner of the data space. If we assume that the location of the query point is
uniformly distributed, we are able to determine the expected distance Edi st of the query point
to the closest corner of the data space. However, the formulafor Edist israther complex and
therefore not applicablefor practical purposes. |nstead, we use the following empirically de-
rived approximation of theformulawhichisvery accurate up to dimension 100:
. g0:53
Edist 7

Figure 7 comparesthe exact and the approximated distances demonstrating the good accura-
cy of theapproximation.

25 e
" A
./‘/
27 o - Exact Distance
8 ~
& > - A imated
15 ’ pproxima
_ﬁ o Distance |
a r’
1 P
,/’
05 K

0
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Dimension

Figure7: Approximated distance of thequery point to the closest corner of data space
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If we assume that the query point is located on the diagond of the data space, we can adapt
our model using the approximate value of Edigt. In this case, we have to consider more data

) . d053
pages each time NN-dist(N, d) exceeds the value B).S -

0/i rather than exceeding
4.fd"
0.5 /i inthe original moddl. Thus, our extended cost function turnsout as:

d+2 ry[m(d +2) 2
0.53,
eDT[g)_g_d_D? 4 0db|? (k2

4./d8

rldbl 0o
5 i
K=0 O k O

Figure 8 depicts the graph of the extended cost model with varying dimension and varying
block size. Asthe modd is discrete over the dimensions, there are some dtaircases. On the
other hand, the mode is continuousover the blocksize and therefore, amenable to an optimi-

total time

log, (1)

Figure 8: Graph of the Extended Cost Function: The staircasein thefront isassociat-
ed to dimensionsfor which aminimum block sizeyieldsleast cost. Thestair-
case in the back shows dimensions for which sequential scan causes less

coststhan index sear ch wher easthe stair casein the middle shows minimum
cost for an optimal block sizein a medium sizerange.
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zation by differentiation. In Figure 8, all three cases can be seen: For low dimensions (stair-
case in the front), the cost function is monotonoudly increasing with increasing block size.
Therefore, thelowest possible blocksize should be taken. Inthe high-dimensional case (stair-
case in the back), the cost function is monotonously decreasing with increasing block size.
Therefore, theoptimal blocksizeisinfinite, or in other words, we are supposed to use sequen-
tial scaninstead of indexing.

The most interesting phenomenon isthe staircaseinthemiddle. Herethe cost functionismo-
notonoudy falling to aminimum and then monotonoudly increasing. The cost function has
obvioudy asingleminimumand no further local extrema, which facilitatesthe search for the
optimum. In order tofind the block sizefor which the minimum cost occur, wesimply derive
the cogt function with respect to the block size. The derivative of the cost function
T\ ndexsearch (|dbl, d, |b]) can be determined, asfollows:

aTIndexSearch(|db|a d, |b|) _
d|b| -

d+2 Eljrr[(d+2)3[t12
053 2 2
em[B)_5_d_uz 40db|2 &

4./a”
0 log ldbl O 0
= m(TIO"' |b| DTTI’) d Z 2|:'b| DJD E
k=0

d+2 EHTIE(d+2)3[U2
dos3 4 0db|2 (&2
eD‘[EE).S—Ll—JaEF Cldb
2 DT bl T |ng |db| E-‘
= — +
Z a|b|5( 1o+ bl OT'y) Ubl Cu %
k=0

k
d+2 Ehjm
eD-[[B).5_d_O_'§_SEF 4 db|2 k2
Mal:log ldb)
= Y O 2Hol WEHTy, + (T + (bl CTy,) [96)
k=0 kU
nldbl o O nldbl 0. .0
N i T T R SR e T

with % =

bl On(2) , where W isthewell-known

digammafunction, the derivative of the natural logarithm of the I" -function:
_ 2
Yx) = Ix In(r (X)) .

The derivative of T gexsearch IS CONtinuous over |b]. Three cases can be distinguished: (1)
The derivative is podtive over al block sizes. In this case, the minimum block sze is opti-
mal. (2) The derivative is negative. Then, an infinite blocksize is optimal and the search is
processed by sequentially scanning the only datapage. (3) Thederivative of the cost function
hasazerovaue. Inthiscase, the equation

aTInde)(Search(|db|’ d, |b|) _
a|b| -
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Figure 9: Optimal Block Sizefor Varying Dimensions

hasto be solved, determining the optimal blocksize [b| = ||y Finding the optimal blocksize
can be done by a simple binary search. Asthe cost function is smooth, thiswill lead to an
optimal blocksize after asmall (logarithmic) number of steps.

The development of the optimal block size over varying dimensions and varying database
sizesisdepictedin Figure9. The position of the optimumiis, as expected, heavily affected by
the dimension of the data space. At dimensions below 9, it is optimal to use the minimal
block size of the system, inthis case 1K Byte. In contrast, when searchingina 17-dimension-
al data space (or higher), the optimal block size is infinite. Therefore, the sequential scan
yields the best performance in this case. The position of the optimum aso depends on the
database sze. Figure 10 shows the optimal block size with varying the database size. Al-
though the variation is not very strong, the optimal block sze is decreasing with increasing
thedatabase sze. Wetherefore suggest adynamical adaption of theblock sizeif the database
sizeisunknown apriori.

Finally, wearegoing to evaluatethe accuracy of our cost model. For thispurpose, we created
indexeson real datacontaining4, 8, and 16-dimensional Fourier vectors(derived from CAD
data, normalized to the unit hypercube). The size of the databases was 2.5 and 1.0 M Bytes.
Figure 11 shows the results of these experiments (total €lapsed time in seconds), revealing
the three different cases of query processing mentioned in the beginning of this section. The
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60 125 250 500 1000 2000 4000 8000
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Figure 10: Optimal Block Sizefor Varying Sizes of the Database
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|eft Side showsthe results of the 4-dimensional data space, where normal index based query
processing with small block sizes is optimal. To the right, we have the high-dimensional
case, where the infinite block size (sequential scan) is optimal. The interesting case (8-di-
mensiond data space) is presented in the middle. Here, the performance forms an optimum
at ablock size of 32K Bytes, which isvery unusua in database applications. The query pro-
ng software using thislogica block size (16 contiguous pages of the operating system)
yields substantial performance improvements over the normal index (258%) aswell asover
the sequential scan (205%). The maximal speedup reached in this series of experimentswas
528% over normal index processing and 500% over theinfinite block size (sequential scan).

6. Conclusions syl

Inthispaper, weproposeanew analytical cost b ——X-Tree
model for nearest neighbor queriesin high-di- 04 —&— Model
mensional paces. The model is based on re- 035
cent insights into the effects occurring in
high-dimensional spaces and can be applied
to optimizethe processing of nearest neighbor
queries. One important application is the de-
termination of an optimal block size depend-
ing on the dimensiondity of the data and the il

database size. Since the linear scan can be 005

seen as a specia configuration of an index 0+t
structure with an infinite block size, an index fiee s goss SRk
structure using the optimal block sizewill per-
forminvery high dimensionsasgood asalin- 0.5 |
ear scan of the database. For a medium di-
mensionality, the optimal block size leads to 035 |
significant performance improvements over
theindex-based search and thelinear scan. An
experimental evauation shows that an index
structure using the optimal block size outper-
forms an index structure using the normal
block size of 4 KByteshy up to 528%.

025

Total Elapsed Time

——X-Tree
—&— Maodel

Total Elapsed Time
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