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Abstract

This paper presents a general methodology for the e�cient parallelization

of existing data cube construction algorithms. We describe two di�erent par-

titioning strategies, one for top-down and one for bottom-up cube algorithms.

Both partitioning strategies assign subcubes to individual processors in such

a way that the loads assigned to the processors are balanced. Our methods

reduce inter-processor communication overhead by partitioning the load in ad-

vance instead of computing each individual group-by in parallel as is done in

previous parallel approaches. In fact, after the initial load distribution phase,

each processor can compute its assigned subcube without any communication

with the other processors. Our methods enable code reuse by permitting the

use of existing sequential (external memory) data cube algorithms for the sub-

cube computations on each processor. This supports the transfer of optimized

sequential data cube code to a parallel setting.

The bottom-up partitioning strategy balances the number of single attribute

external memory sorts made by each processor. The top-down strategy par-

titions a weighted tree in which weights re
ect algorithm speci�c cost mea-

sures like estimated group-by sizes. Both partitioning approaches can be im-

plemented on any shared disk type parallel machine composed of p processors

connected via an interconnection fabric and with access to a shared parallel

disk array.

We have implemented our parallel top-down data cube construction method

in C++ with the MPI message passing library for communication and the

LEDA library for the required graph algorithms. We tested our code on an

eight processor cluster, using a variety of di�erent data sets with a range of

sizes, dimensions, density, and skew. The tests show that our partitioning

strategies generate a close to optimal load balance between processors. The

actual run times observed show an optimal speedup of p.
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1 Introduction

Data cube queries represent an important class of On-Line Analytical Processing

(OLAP) queries in decision support systems. The precomputation of the di�erent

group-bys of a data cube (i.e., the forming of aggregates for every combination of

GROUP BY attributes) is critical to improving the response time of the queries [16].

Numerous solutions for generating the data cube have been proposed. One of the main

di�erences between the many solutions is whether they are aimed at sparse or dense

relations [4, 17, 21, 22, 28]. Solutions within a category can also di�er considerably.

For example, top-down data cube computations for dense relations based on sorting

have di�erent characteristics from those based on hashing.

To meet the need for improved performance and to e�ectively handle the increase

in data sizes, parallel solutions for generating the data cube are needed. In this pa-

per we present a general framework for the e�cient parallelization of existing data

cube construction algorithms. We present load balanced and communication e�cient

partitioning strategies which generate a subcube computation for every processor.

Subcube computations are then carried out using existing sequential, external mem-

ory data cube algorithms.

Balancing the load assigned to di�erent processors and minimizing the commu-

nication overhead are the core problems in achieving high performance on parallel

systems. At the heart of this paper are two partitioning strategies, one for top-down

and one for bottom-up data cube construction algorithms. Good load balancing ap-

proaches generally make use of application speci�c characteristics. Our partitioning

strategies assign loads to processors by using metrics known to be crucial to the per-

formance of data cube algorithms [1, 4, 22]. The bottom-up partitioning strategy

balances the number of single attribute external sorts made by each processor [4].

The top-down strategy partitions a weighted tree in which weights re
ect algorithm

speci�c cost measures such as estimated group-by sizes [1, 22].

The advantages of our load balancing methods compared to the previously pub-

lished parallel data cube construction methods [13, 14] are:

� Our methods reduce inter-processor communication overhead by partitioning

the load in advance instead of computing each individual group-by in parallel (as
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proposed in [13, 14]). In fact, after our load distribution phase, each processor

can compute its assigned subcube without any inter-processor communication.

� Our methods maximize code reuse from existing sequential data cube imple-

mentations by using existing sequential data cube algorithms for the subcube

computations on each processor. This supports the transfer of optimized se-

quential data cube code to the parallel setting.

Our partitioning approaches are designed for standard, shared disk type, parallel

machines: p processors connected via an interconnection fabric where the proces-

sors have standard-size local memories and access to a shared disk array. We have

implemented and tested our parallel top-down data cube construction method. We

implemented sequential pipesort [1] in C++, and our parallel top-down data cube

construction method (Section 4) in C++ with MPI [2]. We tested our code on an

eight processor cluster, using a variety of di�erent data sets with a range of sizes, di-

mensions, density, and skew. The tests show that our partitioning strategies generate

a close to optimal load balance between processors. The actual run times observed

show an optimal speedup of p.

The paper is organized as follows. Section 2 describes the parallel machine model

underlying our partitioning approaches as well as the input and the output con�g-

uration for our algorithms. Section 3 presents our partitioning approach for paral-

lel bottom-up data cube generation and Section 4 outlines our method for parallel

top-down data cube generation. In Section 5 we indicate how our top-down cube

parallelization can be easily modi�ed to obtain an e�cient parallelization of the Ar-

rayCube method [28]. Section 6 presents the performance analysis of our parallel

top-down partitioning approach. Section 7 concludes the paper and discusses possi-

ble extensions of our methods.

2 Parallel Computing Model

We use the standard shared disk parallel machine model. That is, we assume p proces-

sors connected via an interconnection fabric where processors have typical workstation

size local memories and concurrent access to a shared disk array. For the purpose of
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parallel algorithm design, we use the Coarse Grained Multicomputer (CGM) model

[5, 8, 15, 18, 24]. More precisely, we use the EM-CGM model [6, 7, 9] which is a

multi-processor version of Vitter's Parallel Disk Model [25, 26, 27].

For our parallel data cube construction methods we assume that the d-dimensional

input data set R of size N is stored on the shared disk array. The output, i.e. the

group-bys comprising the data cube, will be written to the shared disk array. For

the choice of output �le format, it is important to consider the way in which the

data cube will be used in subsequent applications. For example, if we assume that a

visualization application will require fast access to individual group-bys then we may

want to store each group-by in striped format over the entire disk array.

3 Parallel Bottom-Up Data Cube Construction

In many data cube applications, the underlying data set R is sparse; i.e., N is much

smaller than the number of possible values in the given d-dimensional space. Bottom-

up data cube construction methods aim at computing the data cube for such cases.

Bottom-up methods like BUC [4] and PartitionCube [part of [21]] calculate the group-

bys in an order which emphasizes the reuse of previously computed sort orders and

in-memory sorts through data locality. If the data has previously been sorted by

attribute A then, creating an AB sort order does not require a complete resorting. A

local resorting ofA-blocks (blocks of consecutive elements that have the same attribute

A) can be used instead. The sorting of such A-blocks can often be performed in local

memory and, hence, instead of another external memory sort, the AB order can be

created in one single scan through the disk. Bottom-up methods [4, 21] attempt to

break the problem into a sequence of single attribute sorts which share pre�xes of

attributes and can be performed in local memory with a single disk scan. As outlined

in [4, 21], the total computation time of these methods is dominated by the number

of such single attribute sorts.

In this section we describe a partitioning of the group-by computations into p

independent subproblems. Our goal is to balance the number of single attribute

sorts required to solve each subproblem and to ensure that each subproblem has

overlapping sort sequences in the same way as for the sequential methods (thereby
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avoiding additional work).

Let A1, ..., Ad be the attributes of the data cube such that jA1j � jA2j � ...

� jAdj where jAij is the number of di�erent possible values for attribute Ai. As

observed in [21], the set of all groups-bys of the data cube can be partitioned into

those that contain A1 and those that do not contain A1. In our partitioning approach,

the groups-bys containing A1 will be sorted by A1. We indicate this by saying that

they contain A1 as a pre�x. The group-bys not containing A1 (i.e., A1 is projected

out) contain A1 as a post�x. We then recurse with the same scheme on the remaining

attributes. We shall utilize this property to partition the computation of all group-bys

into independent subproblems computing group-bys. The load between subproblems

will be balanced and they will have overlapping sort sequences in the same way as

for the sequential methods. In the following we give the details of our partitioning

method.

Let x, y, z be sequences of attributes representing sort orders and let A be an

arbitrary single attribute. We introduce the following de�nition of sets of attribute

sequences representing sort orders (and their respective group-bys):

B1(x;A; z) = fx; xAg (1)

Bi(x;Ay; z) = Bi�1(xA; y; z) [ Bi�1(x; y; Az); 2 � i � log p+ 1 (2)

The entire data cube construction corresponds to the set Bd(;; A1 : : : Ad; ;) of sort

orders and respective group-bys, where d is the dimension of the the data cube. We

refer to i as the rank of Bi(: : :). The set Bd(;; A1 : : : Ad; ;) is the union of two subsets

of rank d � 1: Bd�1(A1; A2 : : : Ad; ;) and Bd�1(;; A2 : : : Ad; A1). These, in turn, are

the union of four subsets of rank d� 2. A complete example for a 4-dimensional data

cube with attributes A, B, C, D is shown in Figure 1.

For the sake of simplifying the discussion, we assume that p is a power of 2.

Consider the 2p B-sets of rank d� log2(p)� 1. Let � = (B1
; B

2
; : : :B

2p) be these 2p

sets in the order de�ned by Equation (2). De�ne

Shu�e(�) =< B
1
[ B

2p
; B

2
[ B

2p�1
; B

3
[B

2p�2
; : : : ; B

p
[B

p+1
>

=< �1; : : : ;�p >

We assign set �i = B
i
[ B

2p�i+1 to processor Pi, 1 � i � p. Observe that from the
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B4(;; ABCD; ;) B3(;; BCD;A) B2(;; CD;BA) B1(;; D;CBA) = f;; Dg

B1(C;D;BA) = fC;CDg

B2(B;CD;A) B1(B;D;CA) = fB;BDg

B1(BC;D;A) = fBC;BCDg

B3(A;BCD; ;) B2(A;CD;B) B1(A;D;CB) = fA;ADg

B1(AC;D;B) = fAC;ACDg

B2(AB;CD; ;) B1(AB;D;C) = fAB;ABDg

B1(ABC;D; ;) = fABC;ABCDg

Figure 1: Partitioning For A 4-Dimensional Data Cube With Attributes A, B, C, D.

construction of all group-bys in each �i it follows that every processor performs the

same number of single attribute sorts.

Algorithm 1 Parallel Bottom-Up Cube Construction.

Each processor Pi, 1 � i � p, performs the following steps, independently and in

parallel:

(1) Calculate �i as described above.

(2) Compute all group-bys in �i using a sequential (external-memory) bottom-

up cube construction method.

| End of Algorithm |

Algorithm 1 can easily be generalized to values of p which are not powers of 2.

We also note that Algorithm 1 requires p � 2d�1. This is usually the case in practice.

However, if a parallel algorithm is needed for larger values of p, the partitioning

strategy needs to be augmented. Such an augmentation could, for example, be a

partitioning strategy based on the number of data items for a particular attribute.

This would be applied after partitioning based on the number of attributes has been

done. Since the range p 2 f20 : : : 2d�1g covers current needs with respect to machine

and dimension sizes, we do not further discuss such augmentations in this paper.

The following four properties summarize the main features of Algorithm 1 that

make it load balanced and communication e�cient:

� The computation of each group-by is assigned to a unique processor.
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� The calculation of the group-bys in �i, assigned to processor Pi, requires the

same number of single attribute sorts for all 1 � i � p.

� The sorts performed at processor Pi share pre�xes of attributes in the same way

as in [4, 21] and can be performed with disk scans in the same manner as in

[4, 21].

� The algorithm requires no inter-processor communication.

4 Parallel Top-Down Data Cube Construction

Top-down approaches for computing the data cube, like the sequential PipeSort, Pipe

Hash, and Overlap methods [1, 10, 22], use more detailed group-bys to compute less

detailed ones that contain a subset of the attributes of the former. They apply to

data sets where the number of data items in a group-by can shrink considerably as the

number of attributes decreases (data reduction). A group-by is called a child of some

parent group-by if the child can be computed from the parent by aggregating some

of its attributes. This induces a partial ordering of the group-bys, called the lattice.

An example of a 4-dimensional lattice is shown in Figure 2, where A, B, C, and D are

the four di�erent attributes. The PipeSort, PipeHash, and Overlap methods select

a spanning tree T of the lattice, rooted at the group-by containing all attributes.

PipeSort considers two cases of parent-child relationships. If the ordered attributes

of the child are a pre�x of the ordered attributes of the parent (e.g., ABCD ! ABC)

then a simple scan is su�cient to create the child from the parent. Otherwise, a sort is

required to create the child. PipeSort seeks to minimize the total computation cost by

computing minimum cost matchings between successive layers of the lattice. PipeHash

uses hash tables instead of sorting. Overlap attempts to reduce sort time by utilizing

the fact that overlapping sort orders do not always require a complete new sort. For

example, the ABC group-by has A partitions that can be sorted independently on C

to produce the AC sort order. This may permit independent sorts in memory rather

than always using external memory sort.

Next, we outline a partitioning approach which generates p independent subprob-

lems, each of which can be solved by one processor using an existing external-memory
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all

Figure 2: A 4-Dimensional Lattice.

top-down cube algorithm. The �rst step of our algorithm determines a spanning tree

T of the lattice by using one of the existing approaches like PipeSort, PipeHash, and

Overlap, respectively. To balance the load between the di�erent processors we next

perform a storage estimation to determine approximate sizes of the group-bys in T .

This can be done, for example, by using methods described in [11] and [23]. We now

work with a weighted tree. The most crucial part of our solution is the partitioning

of the tree. The partitioning of T into subtrees induces a partitioning of the data

cube problem into p subproblems (subsets of group-bys). Determining an optimal

partitioning of the weighted tree is easily shown to be an NP-complete problem (by

making, for example, a reduction to processor scheduling). Since the weights of the

tree represent estimates, a heuristic approach which generates p subproblems with

\some control" over the sizes of the subproblems holds the most promise. While we

want the sizes of the p subproblems balanced, we also want to minimize the number

of subtrees assigned to a processor. Every subtree may require a scanning of the

entire data set R and thus too many subtrees can result in poor I/O performance.

The solution we develop balances these two considerations.

Our heuristics makes use of a related partitioning problem on trees for which e�-

cient algorithms exist, the min-max tree k-partitioning problem [3] de�ned as follows:

Given a tree T with n vertices and a positive weight assigned to each vertex, delete k

edges in the tree such that the largest total weight of a resulting subtree is minimized.

The min-max tree k-partitioning problem has been studied in [3, 12, 20]. These

methods assume that the weights are �xed. Note that, our partitioning problem on
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T is di�erent in that, as we cut a subtree T 0 out of T , an additional cost is introduced

because the group-by associated with the root of T 0 must now be computed from

scratch through a separate sort. Hence, when cutting T 0 out of T , the weight of the

root of T 0 has to be increased accordingly. We have adapted the algorithm in [3]

to account for the changes of weights required. This algorithm is based on a pebble

shifting scheme where k pebbles are shifted down the tree, from the root towards

the leaves, determining the cuts to be made. In our adapted version, as cuts are

made, the cost for the parent of the new partition is adjusted to re
ect the cost of the

additional sort. Its original cost is saved in a hash table for possible future use since

cuts can be moved many times before reaching their �nal position. In the remainder,

we shall refer to this method as the modi�ed min-max tree k-partitioning.

However, even a perfect min-max k-partitioning does not necessarily result in a

partitioning of T into subtrees of equal size, and nor does it address tradeo�s arising

from the number of subtrees assigned to a processor. We use tree-partitioning as

an initial step for our partitioning. To achieve a better distribution of the load

we apply an over partitioning strategy: instead of partitioning the tree T into p

subtrees, we partition it into s � p subtrees, where s is an integer, s � 1. Then, we

use a \packing heuristic" to determine which subtrees belong to which processors,

assigning s subtrees to every processor. Our packing heuristic considers the weights

of the subtrees and pairs subtrees by weights to control the number of subtrees. It

consists of s matching phases in which the p largest subtrees (or groups of subtrees)

and the p smallest subtrees (or groups of subtrees) are matched up. Details are

described in Step 2b of Algorithm 2.

Algorithm 2 Sequential Tree-partition(T , s, p).

Input: A spanning tree T of the lattice with positive weights assigned to the nodes

(representing the cost to build each node from it's ancestor in T ). Integer parameters

s (oversampling ratio) and p (number of processors).

Output: A partitioning of T into p subsets �1; : : : ;�p of s subtrees each.

(1) Compute a modi�ed min-max tree s � p -partitioning of T into s � p subtrees

T1; : : : ; Ts�p.

(2) Distribute subtrees T1; : : : ; Ts�p among the p subsets �1; : : : ;�p, s subtrees per

subset, as follows:
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(2a) Create s � p sets of trees named �i, 1 � i � sp, where initially �i = fTig.

The weight of �i is de�ned as the total weight of the trees in �i.

(2b) For j = 1 to s� 1

� Sort the �-sets by weight, in increasing order. W.l.o.g., let �1 , : : : ,

�sp�(j�1)p be the resulting sequence.

� Set �i := �i [ �sp�(j�1)p�i+1, 1 � i � p.

� Remove �sp�(j�1)p�i+1, 1 � i � p.

(2c) Set �i = �i, 1 � i � p.

| End of Algorithm |

The above tree partition algorithm is embedded into our parallel top-down data

cube construction algorithm. Our method provides a framework for parallelizing any

sequential top-down data cube algorithm. An outline of our approach is given in the

following Algorithm 3.

Algorithm 3 Parallel Top-Down Cube Construction.

Each processor Pi, 1 � i � p, performs the following steps independently and in

parallel:

(1) Apply the storage estimation method in [23] and [11] to determine the ap-

proximate sizes of all group-bys in T .

(2) Select a sequential top-down cube construction method (e.g., PipeSort, Pipe

Hash, or Overlap) and compute the spanning tree T of the lattice as used

by this method. Compute the weight of each node of T : the estimated cost

to build each node from it's ancestor in T .

(3) Execute Algorithm Tree-partition(T , s, p) as shown above, creating p sets

�1, : : :, �p. Each set �i contains s subtrees of T .

(4) Compute all group-bys in subset �i using the sequential top-down cube

construction method chosen in Step 1.

| End of Algorithm |

Our performance results described in Section 6 show that an over partitioning with

s = 2 or 3 achieves very good results with respect to balancing the loads assigned
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to the processors. This is an important result since a small value of s is crucial for

optimizing performance.

5 Parallel Array-Based Data Cube Construction

Our method in Section 4 can be easily modi�ed to obtain an e�cient parallelization

of the ArrayCube method presented in [28]. The ArrayCube method is aimed at

dense data cubes and structures the raw data set in a d-dimensional array stored

on disk as a sequence of \chunks". Chunking is a way to divide the d-dimensional

array into small size d-dimensional chunks where each chunk is a portion containing

a data set that �ts into a disk block. When a �xed sequence of such chunks is stored

on disk, the calculation of each group-by requires a certain amount of bu�er space

[28]. The ArrayCube method calculates a minimum memory spanning tree of group-

bys, MMST, which is a spanning tree of the lattice such that the total amount of

bu�er space required is minimized. The total number of disk scans required for the

computation of all group-bys is the total amount of bu�er space required divided

by the memory space available. The ArrayCube method can now be parallelized by

simply applying Algorithm 3 with T being the MMST. More details will be given in

the full version of this paper.

6 Experimental Performance Analysis

We have implemented and tested our parallel top-down data cube construction method

presented in Section 4. We implemented sequential pipesort [1] in C++, and our par-

allel top-down data cube construction method (Section 4) in C++ with MPI [2]. Most

of the required graph algorithms, as well as data structures like hash tables and graph

representations, were drawn from the LEDA library [19]. Still, the implementation

took one person year of full time work. We chose to implement our parallel top-down

data cube construction method rather than our parallel bottom-up data cube con-

struction method because the former has more tunable parameters that we wish to

explore. As parallel hardware platform, we use a cluster consisting of a front-end

machine and eight processors. The front-end machine is used to partition the lattice
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Figure 3: Running Time In Seconds As A Function Of The Number Of Processors.

(Fixed Parameters: Data Size = 1,000,000 Rows. Dimensions = 7. Experiments Per

Data Point = 5.)

and distribute the work among the other 8 processors. The front-end machine is an

IBM Net�nity server with two 9 GB SCSI disks, 512 MB of RAM and a 550-MHZ

Pentium processor. The processors are 166 MHZ Pentiums with 2G IDE hard drives

and 32 MB of RAM, except for one processor which is a 133 MHZ Pentium. The

processors run LINUX and are connected via a 100 Mbit Fast Ethernet switch with

full wire speed on all ports. Clearly, this is a very low end, older, hardware platform.

However, for our main goal of studying the speedup obtained by our parallel method

rather than absolute times, this platform is su�cient. In fact, the speedups measured

on this low end cluster are lower bounds for the speedup that our software would

achieve on newer and more powerful parallel machines.

Figure 3 shows the running time observed as a function of the number of pro-

cessors used. For the same data set, we measured the sequential time (sequential

pipesort [1]) and the parallel time obtained through our parallel top-down data cube
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construction method (Section 4), using an oversampling ratio of s = 2. The data set

consisted of 1,000,000 records with dimension 7. Our test data values were uniformly

distributed over 10 values in each dimension. Figure 3 shows the running times of

the algorithm as we increase the number of processors. There are three curves shown.

The runtime curve shows the time taken by the slowest processor (i.e. the processor

that received the largest workload). The second curve shows the average time taken

by the processors. The time taken by the front-end machine, to partition the lattice

and distribute the work among the compute nodes, was insigni�cant. The theoreti-

cal optimum curve shown in Figure 3 is the sequential pipesort time divided by the

number of processors used.

We observe that the runtime obtained by our code and the theoretical optimum

are essentially identical. That is, for an oversampling ratio of s = 2, an optimal

speedup of p is observed. (The anomaly in the runtime curve at p = 4 is due to the

slower 133 MHZ Pentium processor.)

Interestingly, the average time curve is always below the theoretical optimum

curve, and even the runtime curve is sometimes below the theoretical optimum curve.

One would have expected that the runtime curve would always be above the theoret-

ical optimum curve. We believe that this superlinear speedup is caused by another

e�ect which bene�ts our parallel method: improved I/O. When sequential pipesort

is applied to a 10 dimensional data set, the lattice is partitioned into pipes of length

up to 10. In order to process a pipe of length 10, pipesort needs to write to 10 open

�les at the same time. It appears that under LINUX, the number of open �les can

have a considerable impact on performance. For 100,000 records, writing them to 4

�les each took 8 seconds on our system. Writing them to 6 �les each took 23 seconds,

not 12, and writing them to 8 �les each took 48 seconds, not 16. This bene�ts our

parallel method, since we partition the lattice �rst and then apply pipesort to each

part. Therefore, the pipes generated in the parallel method are considerably shorter.

Figure 4 shows the running times of our top-down data cube parallelization as

we increase the data size from 100,000 to 1,000,000 rows. The main observation is

that the parallel runtime increases slightly more than linear with respect to the data

size which is consistent with the fact that sorting requires time O(n logn). Figure

4 shows that our parallel top-down data cube construction method scales gracefully
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with respect to the data size.

Figure 5 shows the running time as a function of the oversampling ratio s. We

observe that, for our test case, the parallel runtime (i.e. the time taken by the

slowest processor) is best for s = 3. This is due to the following tradeo�. Clearly, the

workload balance improves as s increases. However, as the total number of subtrees,

s�p, generated in the tree partitioning algorithm increases, we need to perform more

sorts for the root nodes of these subtrees. The optimal tradeo� point for our test case

is s = 3. It is important to note that the oversampling ratio s is a tunable parameter.

The best value for s depends on a number of factors. What our experiments show is

that s = 3 is su�cient for the load balancing. However, as the data set grows in size,

the time for the sorts of the root nodes of the subtrees increases more than linear

whereas the e�ect on the imbalance is linear. For substantially larger data sets, e.g.

1G rows, we expect the optimal value for s to be s = 2.
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Of Di�erent Possible Data Values In Each Dimension. (Fixed Parameters: Data Size

= 200,000 Rows. Number Of Processors = 8. Dimensions = 7. Experiments Per

Data Point = 5.)

Figure 6 shows the running time of our top-down data cube parallelization as we

increase the dimension of the data set from 2 to 10. Note that, the number of group-

bys that must be computed grows exponentially with respect to the dimension of

the data set. In Figure 6, we observe that the parallel running time grows essentially

linear with respect to the output size. We also tried our code on very high dimensional

data where the size of the output becomes extremely large. For example, we executed

our parallel algorithm for a 15-dimensional data set of 10,000 rows, and the resulting

data cube was of size more than 1G.

Figure 7 shows the running time of our top-down data cube parallelization as we

increase the cardinality in each dimension, that is the number of di�erent possible

data values in each dimension. Recall that, top-down pipesort [1] is aimed at dense

data cubes. Our experiments were performed for 3 cardinality levels: 5, 10, and 100

18



0

100

200

300

400

500

600

0 1 2 3

tim
e

runtime (slowest proc)

average time (all proc.)

skew

Figure 8: Running Time In Seconds As A Function Of The Skew Of The Data Values

In Each Dimension, Based On ZIPF. (Fixed Parameters: Data Size = 200,000 Rows.

Number Of Processors = 8. Dimensions = 7. Experiments Per Data Point = 5.)

possible values per dimension. The results shown in Figure 7 con�rm our expectation

that the method performs better for denser data.

Figure 8 shows the running time of our top-down data cube parallelization for

data sets with skewed distribution. We used the standard ZIPF distribution in each

dimension with � = 0 (no skew) to � = 3. Since data reduction in top-down pipesort

[1] increases with skew, the total time observed is expected to decrease with skew

which is exactly what we observe in Figure 8. Our main concern regarding our

parallelization method was how balanced the partitioning of the tree would be in

the presence of skew. The main observation in Figure 8 is that the relative di�erence

between runtime (slowest processor) and average time does not increase as we increase

the skew. This appears to indicate that our partitioning method is robust in the

presence of skew.
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7 Conclusion

We presented two di�erent, partitioning based, data cube parallelizations for stan-

dard shared disk type parallel machines. Our partitioning strategies for bottom-up

and top-down data cube parallelization balance the loads assigned to the individual

processors, where the loads are measured as de�ned by the original proponents of the

respective sequential methods. Subcube computations are carried out using existing

sequential data cube algorithms. Our top-down partitioning strategy can also be

easily extended to parallelize the ArrayCube method. Experimental results indicate

that our partitioning methods are e�cient in practice. Compared to existing paral-

lel data cube methods, our parallelization approach brings a signi�cant reduction in

inter-processor communication and has the important practical bene�t of enabling

the re-use of existing sequential data cube code.

A possible extension of our data cube parallelization methods is to consider a

shared nothing parallel machine model. If it is possible to store a duplicate of the

input data set R on each processor's disk, then our method can be easily adapted

for such an architecture. This is clearly not always possible. It does solve most of

those cases where the total output size is considerably larger than the input data

set; for example sparse data cube computations. As reported in [21], the data cube

can be several hundred times as large as R. Su�cient total disk space is necessary

to store the output (as one single copy distributed over the di�erent disks) and a p

times duplication of R may be smaller than the output. Our data cube parallelization

method would then partition the problem in the same way as described in Sections 3

and 4, and subcube computations would be assigned to processors in the same way as

well. When computing its subcube, each processor would read R from its local disk.

For the output, there are two alternatives. Each processor could simply write the

subcubes generated to its local disk. This could, however, create a bottleneck if there

is, for example, a visualization application following the data cube construction which

needs to read a single group-by. In such a case, each group-by should be distributed

over all disks, for example in striped format. To obtain such a data distribution, all

processors would not write their subcubes directly to their local disks but bu�er their

output. Whenever the bu�ers are full, they would be permuted over the network.
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In summary we observe that, while our approach is aimed at shared disk parallel

machines, its applicability to shared nothing parallel machines depends mainly on the

distribution and availability of the input data set R. An interesting open problem is

to identify the \ideal" distribution of input R among the p processors when a �xed

amount of replication of the input data is allowed (i.e., R can be copied r times,

1 � r < p).
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