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Abstract. Simulations of PDE-based systems, such as flight vehicles,
the global climate, petroleum reservoirs, semiconductor devices, and nu-
clear weapons, typically perform an order of magnitude or more below
other scientific simulations (e.g., from chemistry and physics) with dense
linear algebra or N-body kernels at their core. In this presentation, we
briefly review the algorithmic structure of typical PDE solvers that is
responsible for this situation and consider possible architectural and al-
gorithmic sources for performance improvement. Some of these improve-
ments are also applicable to other types of simulations, but we examine
their consequences for PDEs: potential to exploit orders of magnitude
more processor-memory units, better organization of the simulation for
today’s and likely near-future hierarchical memories, alternative formu-
lations of the discrete systems to be solved, and new horizons in adaptiv-
ity. Each category is motivated by recent experiences in computational
aerodynamics at the 1 Teraflop/s scale.

1 Introduction

While certain linear algebra and computational chemistry problems whose com-
putational work requirements are superlinear in memory requirements have exe-
cuted at 1 Teraflop/s, simulations of PDE-based systems remain “mired” in the
hundreds of Gigaflop/s on the same machines. A review the algorithmic struc-
ture of typical PDE solvers that is responsible for this situation suggests possible
avenues for performance improvement towards the achievement of the remaining
four orders of magnitude required to reach 1 Petaflop/s.

An ideal 1 Teraflop/s computer of today would be characterized by approxi-
mately 1,000 processors of 1 Gflop/s each. (However, due to inefficiencies within
the processors, a machine sustaining 1 Teraflop/s of useful computation is more
practically characterized as about 4,000 processors of 250 Mflop/s each.) There
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are two extreme pathways by which to reach 1 Petaflop/s from here: 1,000,000
processors of 1 Gflop/s each (only wider), or 10,000 processors of 100 Gflop/s
each (mainly deeper). From the point of view of PDE simulations on Eulerian
grids, either should suit.

We begin in §2 with a brief and anecdotal review of progress in high-end com-
putational PDE solution and a characterization of the computational structure
and complexity of grid-based PDE algorithms.

A simple bulk-synchronous scaling argument (§3) suggests that continued ex-
pansion of the number of processors is feasible as long as the architecture provides
a global reduction operation whose time-complexity is sublinear in the number
of processors. However, the cost-effectiveness of this brute-force approach to-
wards petaflop/s is highly sensitive to frequency and latency of global reduction
operations, and to modest departures from perfect load balance.

Looking internal to a processor (§4), we argue that there are only two inter-
mediate levels of the memory hierarchy that are essential to a typical domain-
decomposed PDE simulation, and therefore that most of the system cost and
performance cost for maintaining a deep multilevel memory hierarchy could be
better invested in improving access to the relevant workingsets, associated with
individual local stencils (matrix rows) and entire subdomains. Improvement of lo-
cal memory bandwidth and multithreading — together with intelligent prefetch-
ing, perhaps through processors in memory to exploit it — could contribute ap-
proximately an order of magnitude of performance within a processor relative to
present architectures. Sparse problems will never have the locality advantages
of dense problems, but it is only necessary to stream data at the rate at which
the processor can consume it, and what sparse problems lack in locality, they
can make up for by scheduling. With statically discretized PDEs, the access
patterns are persistent. The usual ramping up of processor clock rates and the
width or multiplicity of instructions issued are other obvious avenues for per-
processor computational rate improvement, but only if memory bandwidth is
raised proportionally.

Besides these two classes of architectural improvements — more and better-
suited processor/memory elements — we consider two classes of algorithmic
improvements: some that improve the raw flop rate and some that increase the
scientific value of what can be squeezed out of the average flop.

In the first category (§5), we mention higher-order discretization schemes,
especially of discontinuous or mortar type, orderings that improve data locality,
and iterative methods that are less synchronous than today’s.

It can be argued that the second category of algorithmic improvements does
not belong in a discussion focused on computational rates, at all. However, since
the ultimate purpose of computing is insight, not petaflop/s, it must be men-
tioned as part of a balanced program, especially since it is not conveniently
orthogonal to the other approaches. We therefore include a brief pitch (§6) for
revolutionary improvements in the practical use of problem-driven algorithmic
adaptivity in PDE solvers — not just better system software support for well
understood discretization-error driven adaptivity, but true polyalgorithmic and
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multiple-model adaptivity. To plan for a “bee-line” port of existing PDE solvers
to petaflop/s architectures and to ignore the demands of the next generation
of solvers will lead to petaflop/s platforms whose effectiveness in scientific and
engineering computing might be scientifically equivalent only to less powerful
but more versatile platforms. The danger of such a pyrrhic victory is real.

Each of the four “sources” of performance improvement mentioned above to
aid in advancing from current hundreds of Gflop/s to 1 Pflop/s is illustrated with
precursory examples from computational aerodynamics. Such codes have been
executed in the hundreds of Gflop/s on up to 6144 processors of the ASCI Red
machine of Intel and also on smaller partitions of the ASCI Blue machines of IBM
and SGI and large Cray T3Es. (Machines of these architecture families comprise
7 of the Top 10 and 63 of the Top 100 installed machines worldwide, as of June
2000 [3].) Aerodynamics codes share in the challenges of other successfully paral-
lelized PDE applications, though not comprehensive of all difficulties. They have
also been used to compare numerous uniprocessors and examine vertical aspects
of the memory system. Computational aerodynamics is therefore proposed as
typical of workloads (nonlinear, unstructured, multicomponent, multiscale, etc.)
that ultimately motivate the engineering side of high-end computing.

Our purpose is not to argue for specific algorithms or programming models,
much less specific codes, but to identify algorithm/architecture stresspoints and
to provide a requirements target for designers of tomorrow’s systems.

2 Background and Complexity of PDEs

Many of the “Grand Challenges” of computational science are formulated as
PDEs (possibly among alternative formulations). However, PDE simulations
have frequently been absent in Bell Prize competitions (see Fig. 1). PDE simu-
lations require a balance among architectural components that is not necessarily
met in a machine designed to “max out” on traditional benchmarks. The jus-
tification for building petaflop/s architectures undoubtedly will (and should)
include PDE applications. However, cost effective use of petaflop/s machines
for PDEs requires further attention to architectural and algorithmic matters. In
particular, a memory-centric, rather than operation-centric view of computation
needs further promotion.

2.1 PDE Varieties and Complexities

The systems of PDEs that are important to high-end computation are of two
main classifications: evolution (e.g., time hyperbolic, time parabolic) or equilib-
rium (e.g, elliptic, spatially hyperbolic or parabolic). These types can change
type from region to region, or can be mixed in the sense of having subsystems
of different types (e.g., parabolic with elliptic constraint, as in incompressible
Navier-Stokes). They can be scalar or multicomponent, linear or nonlinear, but
with all of the algorithmic accompanying variety, memory and work require-
ments after discretization can often be characterized in terms of five discrete
parameters:
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Fig. 1. Bell Prize Peak Performance computations for the decade spanning 1
Gflop/s to 1 Tflop/s. Legend: “PDE” – partial differential equations, “IE” in-
tegral equations, “NB” n-body problems, “MC” Monte Carlo problems, “MD”
molecular dynamics. See Table 1 for further details.

Table 1. Bell Prize Peak Performance application and architecture summary.
Prior to 1999, PDEs had successfully competed against other applications with
more intensive data reuse only on special-purpose machines (vector or SIMD)
in static, explicit formulations. (“NWT” is the Japanese Numerical Wind Tun-
nel.) In 1999, three of four finalists were PDE-based, all on SPMD hierarchical
distributed memory machines.

Year Type Application Gflop/s System No. procs.

1988 PDE structures 1.0 Cray Y-MP 8
1989 PDE seismic 5.6 CM-2 2,048
1990 PDE seismic 14 CM-2 2,048
1992 NB gravitation 5.4 Delta 512
1993 MC Boltzmann 60 CM-5 1,024
1994 IE structures 143 Paragon 1,904
1995 MC QCD 179 NWT 128
1996 PDE CFD 111 NWT 160
1997 NB gravitation 170 ASCI Red 4,096
1998 MD magnetism 1,020 T3E-1200 1,536
1999 PDE CFD 627 ASCI BluePac 5,832
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– Nx, number of spatial grid points (106–109)

– Nt, number of temporal grid points (1–unbounded)
– Nc, number of unknown components defined at each gridpoint (1–102)

– Na, auxiliary storage per point (0–102)
– Ns, gridpoints in one conservation law “stencil” (5–50)

In these terms, memory requirements, M , are approximately Nx · (Nc+Na+
N2

c ·Ns). This is sufficient to store the entire physical state and allows workspace
for an implicit Jacobian of the dense coupling of the unknowns that participate
in the same stencil, but not enough for a full factorization of the same Jacobian.
Computational work,W , is approximatelyNx ·Nt ·(Nc+Na+N2

c ·(Nc+Ns)). The
last term represents updating of the unknowns and auxiliaries (equation-of-state
and constitutive data, as well as temporarily stored fluxes) at each gridpoint on
each timestep, as well as some preconditioner work on the sparse Jacobian of
dense point-blocks.

From these two simple estimates comes a basic resource scaling “law” for
PDEs. For equilibrium problems, in which solution values are prescribed on the
boundary and interior values are adjusted to satisfy conservation laws in each
cell-sized control volume, the work scales with the number of cells times the
number of iteration steps. For optimal algorithms, the iteration count is constant
independent of the fineness of the spatial discretization, but for commonplace
and marginally “reasonable” implicit methods, the number of iteration steps is
proportional to resolution in single spatial dimension. An intuitive way to ap-
preciate this is that in pointwise exchanges of conserved quantities, it requires
as many steps as there are points along the minimal path of mesh edges for the
boundary values to be felt in the deepest interior, or for errors in the interior to
be swept to the boundary, where they are absorbed. (Multilevel methods, when
effectively designed, propagate these numerical signals on all spatial scales at
once.) For evolutionary problems, work scales with the number of cells or ver-
tices size times the number of time steps. CFL-type arguments place latter on
order of resolution in single spatial dimension. In either case, for 3D problems,
the iteration or time dimension is like an extra power of a single the spatial
dimension, so Work ∝ (Memory)4/3, with Nc, Na, and Ns regarded as fixed.
The proportionality constant can be adjusted over a very wide range by both
discretization (high-order implies more work per point and per memory transfer)
and by algorithmic tuning. This is in contrast to the classical Amdahl-Case Rule,
that would have work and memory directly proportional. It is architecturally sig-
nificant, since it implies that a petaflop/s-class machine can be somewhat “thin”
on total memory, which is otherwise the most expensive part of the machine.
However, memory bandwidth is still at a premium, as discussed later. In archi-
tectural practice, memory and processing power are usually increased in fixed
proportion, by adding given processor-memory elements. Due to this discrepency
between the linear and superlinear growth of work with memory, it is not trivial
to design a single processor-memory unit for a wide range of problem sizes.
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If frequent time frames are to be captured, other resources — disk capacity
and I/O rates — must both scale linearly with W , more stringently than for
memory.

2.2 Typical PDE Tasks

A typical PDE solver spends most of its time apart from pre- and post-processing
and I/O in four phases, which are described here in the language of a vertex-
centered code:

– Edge-based “stencil op” loops (resp., dual edge-based if cell-centered), such
as residual evaluation, approximate Jacobian evaluation, and Jacobian-vector
product (often replaced with matrix-free form, involving residual evaluation)

– Vertex-based loops (resp., cell-based, if cell-centered), such as state vector
and auxiliary vector updates

– Sparse, narrow-band recurrences, including approximate factorization and
back substitution

– Global reductions: vector inner products and norms, including orthogonal-
ization/conjugation and convergence progress and stability checks

The edge-based loops require near-neighbor exchanges of data for the con-
struction of fluxes. They reuse data from memory better than the vertex-based
and sparse recurrence stages, but today they are typically limited by a shortage of
load/store units in the processor relative to arithmetic units and cache-available
operands. The edge-based loop is key to performance optimization, since in a
code that is not dominated by linear algebra this is where the largest amount
of time is spent, and also since it contains a vast excess of instruction-level
concurrency (or “slackness”).

The vertex-based loops and sparse recurrences are purely local in parallel
implementations, and therefore free of interprocessor communication. However,
they typically stress the memory bandwidth within a processor/memory system
the most, and are typically limited by memory bandwidth in their execution
rates.

The global reductions are the bane of scalability, since they require some
type of all-to-all communication. However, their communication and arithmetic
volume is extremely low. The vast majority of flops go into the first three phases
listed.

The insight that edge-based loops are load/store-limited, vertex-based loops
and recurrences memory bandwith-limited, and reductions communication-lim-
ited is key to understanding and improving the performance of PDE codes. The
effect of an individual “fix” may not be seen in most of the code until after an
unrelated obstacle is removed.

2.3 Concurrency, Communication, and Synchronization

Explicit PDE solvers have the generic form:

u� = u�−1 − ∆t� · f(u�−1),
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where u� is the vector of unknowns at time level �, f is the flux function, and ∆t�

is the �th timestep. Let a domain of N discrete data be partitioned over an ensem-
ble of P processors, with N/P data per processor. Since �-level quantities appear
only on the left-hand side, concurrency is pointwise, O(N). The communication-
to-computation ratio has surface-to-volume scaling: O (

(N
P )−1/3

)
. The range

of communication for an explicit code is nearest-neighbor, except for stability
checks in global time-step computation. The computation is bulk-synchronous,
with synchronization frequency once per time-step, or O (

(N
P )−1

)
. Observe that

both communication-to-computation ratio and communication frequency are
constant in a scaling of fixed memory per node. However, if P is increased
with fixed N , they rise. Storage per point is low, compared to an implicit
method. Load balance is straightforward for static quasi-uniform grids with uni-
form physics. Grid adaptivity or spatial nonuniformities in the cost to evaluate
f make load balance potentially nontrivial. Adaptive load-balancing is a crucial
issue in much (though not all) real-world computing, and its complexity is be-
yond this review. However, when a computational grid and its partitions are
quasi-steady, the analysis of adaptive load-balancing can be usefully decoupled
from the analysis of the rest of the solution algorithm.

Domain-decomposed implicit PDE solvers have the form:

ul

∆tl
+ f(ul) =

ul−1

∆tl
, ∆tl → ∞.

Concurrency is pointwise, O(N), except in the algebraic recurrence phase, where
it is only subdomainwise, O(P ). The communication-to-computation ratio is still
mainly surface-to-volume, O (

(N
P )−1/3

)
. Communication still mainly nearest-

neighbor, but convergence checking, orthogonalization/conjugation steps, and
hierarchically coarsened problems add nonlocal communication. The synchro-
nization frequency is usually more than once per grid-sweep, up to the dimension
of the Krylov subspace of the linear solver, since global conjugations need to be
performed to build up the latter: O (

K(N
P )−1

)
. The storage per point is higher,

by factor of O(K). Load balance issues are the same as for the explicit case.
The most important message from this section is that a large variety of prac-

tically important PDEs can be characterized rather simply in terms of memory
and operation complexity and relative distribution of communication and com-
putational work. These simplifications are directly related to quasi-static grid-
based data structures and the spatially and temporally uniform way in which
the vast majority of points interior to a subdomain are handled.

3 Source #1: Expanded Number of Processors

As popularized in [5], Amdahl’s law can be defeated if serial (or bounded con-
currency) sections make up a nonincreasing fraction of total work as problem
size and processor count scale together. This is the case for most explicit or
iterative implicit PDE solvers parallelized by decomposition into subdomains.
Simple, back-of-envelope parallel complexity analyses show that processors can
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be increased as rapidly, or almost as rapidly, as problem size, assuming load is
perfectly balanced. There is, however, an important caveat that tempers the use
of large Beowulf-type clusters: the processor network must also be scalable. Of
course, this applies to the protocols, as well as to hardware. In fact, the entire
remaining four orders of magnitude to get to 1 Pflop/s could be met by hardware
expansion alone. However, it is important to remember that this does not mean
that fixed-size applications of today would run 104 times faster; this argument
is based on memory-problem size scaling.

Though given elsewhere [7], a back-of-the-envelope scalability demonstration
for bulk-synchronized PDE stencil computations is sufficiently simple and com-
pelling to repeat here. The crucial observation is that both explicit and implicit
PDE solvers periodically cycle between compute-intensive and communicate-
intensive phases, making up one macro iteration.

Given complexity estimates of the leading terms of the concurrent computa-
tion (per iteration phase), the concurrent communication, and the synchroniza-
tion frequency; and a model of the architecture including the internode commu-
nication (network topology and protocol reflecting horizontal memory structure)
and the on-node computation (effective performance parameters including ver-
tical memory structure); one can formulate optimal concurrency and optimal
execution time estimates, on per-iteration basis or overall (by taking into ac-
count any granularity-dependent convergence rate).

For three-dimensional simulation computation costs (per iteration) assume
and idealized cubical domain with:

– n grid points in each direction, for total work N = O(n3)
– p processors in each direction, for total processors P = O(p3)
– execution time per iteration, An3/p3 (where A includes factors like number
of components at each point, number of points in stencil, number of auxiliary
arrays, amount of subdomain overlap)

– n/p grid points on a side of a single processor’s subdomain
– neighbor communication per iteration (neglecting latency), Bn2/p2

– global reductions at a cost of C log p or Cp1/d (where C includes synchro-
nization frequency as well as other topology-independent factors)

– A, B, C are all expressed in the same dimensionless units, for instance,
multiples of the scalar floating point multiply-add.

For the tree-based global reductions with a logarithmic cost, we have a total
wall-clock time per iteration of

T (n, p) = A
n3

p3
+B

n2

p2
+ C log p.

For optimal p, ∂T
∂p = 0, or −3An3

p4 − 2B n2

p3 + C
p = 0, or (with θ ≡ 32·B3

243·A2C ),

popt =
(
3A
2C

)1/3 ([
1 + (1−

√
θ)

]1/3

+
[
1− (1 −

√
θ)

]1/3
)
· n.



Four Horizons for Enhancing the Performance of Parallel Simulations 9

This implies that the number of processors along each dimension, p, can grow
with n without any “speeddown” effect. The optimal running time is

T (n, popt(n)) =
A

ρ3
+

B

ρ2
+ C log(ρn),

where ρ =
(

3A
2C

)1/3
([

1 + (1−√
θ)

]1/3

+
[
1− (1 −√

θ)
]1/3

)
. In limit of global

reduction costs dominating nearest-neighbor costs, B/C → 0, leading to

popt = (3A/C)1/3 · n,

and

T (n, popt(n)) = C

[
logn +

1
3
log

A

C
+ const.

]
.

We observe the direct proportionality of execution time to synchronization cost
times frequency, C. This analysis is on a per iteration basis; fuller analysis would
multiply this cost by an iteration count estimate that generally depends upon
n and p; see [7]. It shows that an arbitrary factor of performance can be gained
by following processor number with increasing problem sizes. Many multiple-
scale applications of high-end PDE simulation (e.g., direct Navier-Stokes at high
Reynolds numbers) can absorb all conceivable boosts in discrete problem size
thus made available, yielding more and more science along the way.

The analysis above is for a memory-scaled problem; however, even a fixed-
size PDE problem can exhibit excellent scalability over reasonable ranges of P ,
as shown in Fig. 2 from [4].

4 Source #2: More Efficient Use of Faster Processors

Current low efficiencies of sparse codes can be improved if regularity of refer-
ence is exploited through memory-assist features. PDEs have a simple, periodic
workingset structure that permits effective use of prefetch/dispatch directives.
They also have lots of slackness (process concurrency in excess of hardware con-
currency). Combined with processor-in-memory (PIM) technology for efficient
memory gather/scatter to/from densely used cache-block transfers, and also with
multithreading for latency that cannot be amortized by sufficiently large block
transfers, PDEs can approach full utilization of processor cycles. However, high
bandwidth is critical, since many PDE algorithms do only O(N) work for O(N)
gridpoints’ worth of loads and stores.

Through these technologies, one to two orders of magnitude can be gained
by first catching up to today’s clocks, and then by following the clocks into the
few-GHz range.

4.1 PDE Workingsets

The workingset is a time-honored notion in the analysis of memory system per-
formance [2]. Parallel PDE computations have a smallest, a largest, and a spec-
trum of intermediate workingsets. The smallest is the set of unknowns, geometry
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Fig. 2. Log-log plot of execution time vs. processor number for a full Newton-
Krylov-Schwarz solution of an incompressible Euler code on two ASCI machines
and a large T3E, up to at least 768 nodes each, and up to 3072 nodes of ASCI
Red.

data, and coefficients at a multicomponent stencil. Its size is Ns · (N2
c +Nc+Na)

(relatively sharp). The largest is the set of unknowns, geometry data, and coeffi-
cients in an entire subdomain. Its size is (Nx/P ) · (N2

c +Nc+Na) (also relatively
sharp) The intermediate workingsets are the data in neighborhood collections of
gridpoints/cells that are reused within neighboring stencils.

As successive workingsets “drop” into a level of memory, capacity misses,
(and with effort conflict misses) disappear, leaving only the one-time compulsory
misses (see Fig. 3).

Architectural and coding strategies can be based on workingset structure.
There is no performance value in any memory level with capacity larger than
what is required to store all of the data associated with a subdomain. There
is little performance value in memory levels smaller than the subdomain but
larger than required to permit full reuse of most data within each subdomain
subtraversal (middle knee, Fig. 3). After providing an L1 cache large enough
for smallest workingset (associated with a stencil), and multiple independent
stencils up to desired level of multithreading, all additional resources should be
invested in a large L2 cache. The L2 cache should be of write-back type and its
population under user control (e.g., prefetch/dispatch directives), since it is easy
to determine when a data element is fully used within a given mesh sweep. Since
this information has persistence across many sweeps it is worth determining
and exploiting it. Tables describing grid connectivity are built (after each grid
rebalancing) and stored in PIM. This meta-data is used to pack/unpack densely-
used cache lines during subdomain traversal.
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Fig. 3. Thought experiment for cache traffic for PDEs, as function of the size
of the cache, from small (large traffic) to large (compulsory miss traffic only),
showing knees corresponding to critical workingsets.

stencil
fits in cache

most vertices
maximally reused

subdomain
fits in cache

CAPACITY and CONFLICT MISSES

COMPULSORY MISSES

Data Traffic vs. Cache Size

The left panel of Fig. 4 shows a set of twenty vertices in a 2D airfoil grid
in the lower left portion of the domain whose working data are supposed to fit
in cache simultaneously. In the right panel, the window has shifted in such a
way that a majority of the points left behind (all but those along the upper
boundary) are fully read (multiple times) and written (once) for this sweep.
This is an unstructured analog of compiler “tiling” a regular multidimensional
loop traversal. This corresponds to the knee marked “most vertices maximally
reused” in Fig 3.

To illustrate the effects of reuse of a different type in a simple experiment
that does not require changing cache sizes or monitoring memory traffic, we
provide in Table 2 some data off three different machines for incompressible
and compressible Euler simulation, from [6]. The unknowns in the compressible
case are organized into 5× 5 blocks, whereas those in the compressible case are
organized into 4 × 4 blocks, by the nature of the physics. Data are intensively
reused within a block, especially in the preconditioning phase of the algorithm.
This boosts the overall performance by 7–10%.

The cost of greater per-processor efficiency arranged in these ways is the pro-
gramming complexity of managing data traversals, the space to store gather/scat-
ter tables in PIM, and the time to rebuild these tables when the mesh or physics
changes dynamically.
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Fig. 4. An unstructured analogy to the compiler optimization of “tiling” for a
block of twenty vertices (courtesy of D. Mavriplis).

Table 2. Mflop/s per processor for highly L1- and register-optimized unstruc-
tured grid Euler flow code. Per-processor utilization is only 8% to 27% of peak.
Slightly higher figure for compressible flow reflects larger number of components
coupled densely at a gridpoint.

Origin 2000 SP T3E-900

Processor R10000 P2SC (4-card) Alpha 21164

Instr. Issue 2 4 2

Clock (MHz) 250 120 450

Peak Mflop/s 500 480 900

Application Incomp. Comp. Incomp. Comp. Incomp. Comp.

Actual Mflop/s 126 137 117 124 75 82

Pct. of Peak 25.2 27.4 24.4 25.8 8.3 9.1

5 Source #3: More Architecture-Friendly Algorithms

Algorithmic practice needs to catch up to architectural demands. Several “one-
time” gains remain that could improve data locality or reduce synchronization
frequency, while maintaining required concurrency and slackness. “One-time”
refers to improvements by small constant factors, nothing that scales in N or
P . Complexities are already near their information-theoretic lower bounds for
some problems, and we reject increases in flop rates that derive from less effi-
cient algorithms, as defined by parallel execution time. These remaining algo-
rithmic performance improvements may cost extra memory or they may exploit
shortcuts of numerical stability that occasionally backfire, making performance
modeling less predictable However, perhaps as much as an order of magnitude
of performance remains here.

Raw performance improvements from algorithms include data structure re-
orderings that improve locality, such as interlacing of all related grid-based
data structures and ordering gridpoints and grid edges for L1/L2 reuse. Dis-
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cretizations that improve locality include such choices as higher-order methods
(which lead to denser couplings between degrees of freedom than lower-order
methods) and vertex-centering (which, for the same tetrahedral grid, leads to
denser blockrows than cell-centering, since there are many more than four near-
est neighbors). Temporal reorderings that improve locality include block vector
algorithms (these reuse cached matrix blocks; the vectors in the block are in-
dependent) and multi-step vector algorithms (these reuse cached vector blocks;
the vectors have sequential dependence).

Temporal reorderings may also reduce the synchronization penalty but usu-
ally at a threat to stability. Synchronization frequency may be reduced by de-
ferred orthogonalization and pivoting and speculative step selection. Synchro-
nization range may be reduced by replacing a tightly coupled global process
(e.g., Newton) with loosely coupled sets of tightly coupled local processes (e.g.,
Schwarz).

Precision reductions make bandwidth seem larger. Lower precision represen-
tation in memory of preconditioner matrix coefficients or other poorly known
data causes no harm to algorithmic convergence rates, as along as the data are
expanded to full precision before arithmetic is done on them, after they are in
the CPU.

As an illustration of the effects of spatial reordering, we show in Table 3
from [4] the Mflop/s per processor for processors in five families based on three
versions of an unstructured Euler code: the original F77 vector version, a version
that has been interlaced so that all data defined at a gridpoint is stored near-
contiguously, and after a vertex reordering designed to maximally reuse edge-
based data. Reordering yields a factor of 2.6 (Pentium II) up to 7.5 (P2SC) on
this the unstructured grid Euler flow code.

Table 3. Improvements from spatial reordering: uniprocessor Mflop/s, with and
without optimizations.

Interlacing, Interlacing
Processor clock Edge Reord. (only) Original

R10000 250 126 74 26
P2SC (2-card) 120 97 43 13
Alpha 21164 600 91 44 33
Pentium II (Linux) 400 84 48 32
Pentium II (NT) 400 78 57 30
Ultra II 300 75 42 18
Alpha 21164 450 75 38 14
604e 332 66 34 15
Pentium Pro 200 42 31 16
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6 Source #4: Algorithms Delivering More “Science per
Flop”

Some algorithmic improvements do not improve flop rate, but lead to the same
scientific end in reduced time or at lower hardware cost. They achieve this by
requiring less memory and fewer operations than other methods, usually through
some form of adaptivity. Such adaptive programs are more complicated and less
thread-uniform than those they improve upon in quality/cost ratio. It is desir-
able that petaflop/s machines be “general purpose” enough to run the “best”
algorithms. This is not daunting conceptually, but it puts an enormous premium
on dynamic load balancing. An order of magnitude or more in execution time
can be gained here for many problems.

Adaptivity in PDEs is usually through of in terms of spatial discretization.
Discretization type and order are varied to attain the required accuracy in ap-
proximating the continuum everywhere without over-resolving in smooth, easily
approximated regions. Fidelity-based adaptivity changes the continuous formu-
lation to accommodate required phenomena everywhere without enriching in
regions where nothing happens. A classical aerodynamics example is a full po-
tential model in the farfield coupled to a boundary layer near no-slip surfaces.
Stiffness-based adaptivity changes the solution algorithm to provide more pow-
erful, robust techniques in regions of space-time where the discrete problem
is linearly or nonlinearly “stiff,” without extra work in nonstiff, locally well-
conditioned regions

Metrics and procedures for effective adaptivity strategies are well devel-
oped for some discretization techniques, such as method-of-lines to stiff initial-
boundary value problems in ordinary differential equations and differential alge-
braic systems and finite element analysis for elliptic boundary value problems.
It is fairly wide open otherwise. Multi-model methods are used in ad hoc ways in
numerous commercially important engineering codes, e.g., Boeing’s TRANAIR
code [8]. Polyalgorithmic solvers have been demonstrated in principle, but rarely
in the “hostile” environment of high-performance multiprocessing. Sophisticated
software approaches (e.g., object-oriented programming) make advanced adap-
tivity easier to manage. Advanced adaptivity may require management of hier-
archical levels of synchronization — within a region or between regions. User-
specification of hierarchical priorities of different threads may be required — so
that critical-path computations can be given priority, while subordinate compu-
tations fill unpredictable idle cycles with other subsequently useful work.

To illustrate the opportunity for localized algorithmic adaptivity, consider
the steady-state shock simulation described in Fig. 5 from [1]. During the period
between iterations 3 and 15 when the shock is moving slowly into position, only
problems in local subdomains near the shock need be solved to high accuracy.
To bring the entire domain into adjustment by solving large, ill-conditioned lin-
ear algebra problems for every minor movement of the shock on each Newton
iteration is wasteful of resources. An algorithm that adapts to nonlinear stiff-
ness would seek to converge the shock location before solving the rest of the
subdomain with high resolution or high algebraic accuracy.
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Fig. 5. Transonic full potential flow over NACA airfoil, showing (left) residual
norm at each of 20 Newton iterations, with a plateau between iterations 3 and
15, and (right) shock developing and creeping down wing until “locking” into
location at iteration 15, while the rest of flow field is “held hostage” to this
slowly converging local feature.

7 Summary of Performance Improvements

We conclude by summarizing the types of performance improvements that we
have described and illustrated on problems that can be solved on today’s tera-
scale computers or smaller. In reverse order, together with the possible perfor-
mance factors available, they are:

– Algorithms that deliver more “science per flop”
• possibly large problem-dependent factor, through adaptivity (but we
won’t count this towards rate improvement)

– Algorithmic variants that are more architecture-friendly
• expect half an order of magnitude, through improved locality and re-
laxed synchronization

– More efficient use of processor cycles, and faster processor/memory
• expect one-and-a-half orders of magnitude, through memory-assist lan-
guage features, PIM, and multithreading

– Expanded number of processors
• expect two orders of magnitude, through dynamic balancing and ex-
treme care in implementation

Extreme concurrency — one hundred thousand heavyweight processes and
a further factor of lightweight threads — are necessary to fully exploit this
aggressive agenda. We therefore emphatically mention that PDEs do not arise
individually from within a vacuum. Computational engineering is not about
individual large-scale analyses, done fast and well-resolved and “thrown over
the wall.” Both results of an analysis and their sensitivities are desired. Often
multiple operation points for a system to be simulated are known a priori, rather
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than sequentially. The sensitivities may be fed back into an optimization process
constrained by the PDE analysis. Full PDE analyses may also be inner iterations
in a multidisciplinary computation. In such contexts, “petaflop/s” may mean
1,000 analyses running somewhat asynchronously with respect to each other,
each at 1 Tflop/s. This is clearly a less daunting challenge and one that has
better synchronization properties for exploiting such resources as “The Grid”
than one analysis running at 1 Pflop/s.

As is historically the case, the high end of scientific computing will drive
technology improvements across the entire information technology spectrum.
This is ultimately the most compelling reason for pushing on through the next
four orders of magnitude.
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