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Abstract. A semi-synchronous parallel programming language and the
corresponding computing model are presented. The language is primar-
ily designed for massively parallel fine grained applications such as cel-
lular automata, finite element methods, partial differential equations or
systolic algorithms. In this language it is assumed that the number of
parallel processes in a program is much larger than the number of pro-
cessors of the machine on which it is to be run. The computational model
and the communication model of the language are presented. Finally, the
language syntax and some performance measurements are presented.

1 Introduction

Many parallel programming models have been proposed in the past years as
alternatives to both message passing and data parallel programming. Among
the most prolific class of alternate models there is the family of languages based
on concurrent objects or actors [1, 2].

In actor- or object-based models, parallelism of execution is expressed ex-
plicitly. These models allow to express the distribution of data explicitly and
in a natural way. This opens interesting opportunities for automated data- and
process-mapping.

Nearly all models based on concurrent objects or actors use asynchronous ex-
ecution models, i.e., execution schemes where computation and message sending
are not inherently automatically globally synchronised. This entails that com-
munication is not easy to implement efficiently and concurrent object systems
are often restricted to coarse grain parallelism for performance reasons.

In the following a parallel programming language whose computation model
can be seen as an extension of the BSP [3] model and other synchronous object-
oriented models is presented.

2 The ParCeL-2 Programming Model

A ParCeL-2, program is typically composed of a large number of fine grained
processes executing concurrently. Each process execution consists of a sequence
of supersteps. A superstep is composed of two phases: a computation phase and
a communication phase. Supersteps are separated by synchronisation barriers.
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During the computation phase of a superstep, a process executes computa-
tions which only manipulate data local to this process. A process can send data
to other processes in the course of a computation phase. The effective transmis-
sion of data between processes happens at the end of each superstep. This means
that no data are exchanged during computation phases. It can be observed that
this computing model is an intrinsically distributed memory MIMD model.

Aggregates of processes can be constructed in order to build abstract pro-
cesses whose behaviour is more complex than an elementary process but the rest
of the program does not need to know how this behaviour is implemented. Aggre-
gates of processes offer means of creating arbitrarily complex process topologies
and hierarchical parallel program designs.

In ParCeL-2, unlike in BSP, every process, or cell, can execute supersteps with
a slower frequency than that of the execution environment’s global clock. This
is why ParCeL-2 is called semi-synchronous. This is useful since complex cells
containing other cells may need more time to produce a meaningful result than
an elementary cell. This is a way of saying that if a cell has a synchronisation
period n, data will only send along or read from its channels every n elementary
supersteps.

In ParCeL-2, processes can only communicate through predeclared channels.
Channels have four main properties. They are typed: a channel, like a local vari-
able, is of a certain type, and only data of this type can be sent through this
channel. They are directed: channels are unidirectional. If bidirectional com-
munications are needed, two channels of opposite directions must be created
between processes. They have a period which is the same as the period of the
cell at the start of the channel. They are static: this means that processes con-
nected at the other end of a channel can’t change during execution, and that
channels can’t be created nor destroyed at runtime. Processes are also static,
they can’t be created nor destroyed at runtime.

In the case of complex cells, there is a special type of connection allowed,
called a shunt which is useful when the complex cell is only a structural cell, i.e.
has no body, or when some of the internal cells need to pass data to the exterior
of the complex directly.

Channels do not necessarily connect only one process to another single pro-
cess, they may connect many processes together. Thus three kinds of channels
may be declared in a program: 1-1 channels, 1-n channels, and n-1 channels in
which case an operator can be attached to the channel to reduce n values into a
single one.

One of the goals of ParCeL-2 and one of its main features is to provide a
topology description language in order to be able to describe easily, elegantly
and concisely complex topologies. Such topology description languages have been
developed, see [4, 5], but neither of them permits to construct topologies with
all the features of ParCeL-2 channels.
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3 The ParCeL-2 Syntax

The declaration of a type of cells consists of three main parts: an interface, a
body or behaviour, and a topology.

3.1 Interface Declarations

In the interface part of a cell type, one can put type declarations, constant dec-
larations and channel declarations. Type and constant declarations are written
according to the syntax of the language chosen for the body of the cell type.

An out channel is always declared the same way, whether it will be connected
as a 1-1, 1-n or n-1 channel:

OUT <data_type> <channel_name>

An in channel can be declared in three ways according to the chosen kind of
utilisation, respectively 1-1 or 1-n, n-1 mailbox , and n-1 with reduction.

IN <data_type> <channel_name> [= <init_value>]

IN(mbox) <data_type> <channel_name> [= <init_value>]

IN(reduce, <operator>) <data_type> <channel_name> [= <init_value>]

The import <cell_type> statement permits to reuse cell code.

3.2 Body Declarations

In the body part of a cell type, anything that can be written in the chosen
programming language can be written. With the exception that some keywords
are reserved by ParCeL-2. That code will be executed at each superstep.

3.3 Topology Declarations

This is in that part of a cell type that internal cells are instantiated and connected
according to the topology desired by the programmer. This is what differentiates
elementary cells from complex cells. Complex cells embed several instances of
other types of cells, which are called internal cells, and the topology describes
how these instances are connected together and with the embedding cell. The
topology description language is currently still under development. Work is un-
derway to provide construction operators like the cartesian product of two graphs
and the joining of two sub-topologies, like in Candela [6]. The language will be
shown through two examples which illustrate a highly regular and a highly ir-
regular topology. The cell types used are supposed to be declared somewhere
else.

ring(n) of TA

{

aux = array(1..n) of TA;

for i in 1..n
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connect(aux[i].out1,aux[(i mod n) + 1].in1);

connect(aux[i].out2,aux[(i mod n) + 1].in2);

connect(aux[(i mod n) + 1].out3, aux[i].in3);

end for;

}

ring(3) of TA;

A = new T1; B = new T2; C = new T3;

connect(A.out1,B.in1); connect(B.out1,C.in1); connect(C.out1,A.in1);

connect(A.g,g); connect(h,B.h); shunt(C.e,c); shunt(d,e.f);

4 Conclusion and Future Work

A programming language particularly well suited to the design of massively
parallel fine grained applications has been presented. Complex computations
using cellular automata, partial differential equations, finite element methods,
systolic arrays or even static neural networks can benefit much from such a
language, notably in portability and readability.

A first version of the runtime environment has been implemented and used
to run a program implementing the game of life with a grid of 1000× 1000 cells
on a Fast Ethernet network of 333 MHz Sun Ultra 10 workstations using MPI
as a communication library. For 50 iterations, the best sequential program took
3.3 s. The parallel version was slower, but scaled quite well, from 22.5 s to 3.89
s, using 1 to 16 processors, which is very satisfying considering that our runtime
environment is not optimized at all yet. Now its behaviour must be studied with
real world applications like wave propagation [7] for example.

Work on a full compiler remains to be done. It exists only in parts at the
moment.
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