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Abstract. We present an approach for the efficient parallel solution
of convection diffusion equations. Based on iterative nested dissection
techniques [1] we extended these existing iterative algorithms to a solver
based on nested dissection with incomplete elimination of the unknowns.
Our elimination strategy is derived from physical properties of the con-
vection diffusion equation, but is independent of the actual discretized
operator. The resulting algorithm has a memory requirement that grows
linearly with the number of unknowns. This also holds for the com-
putational cost of the setup of the nested dissection structure and the
individual relaxation cycles. We present numerical examples that indi-
cate that the number of iterations needed to solve a convection diffusion
equation grows only slightly with the number of unknowns, but is widely
independent of the type and strength of the convection field.

1 Introduction

We are searching for an efficient parallel solver for the linear systems of equations
arising from the discretization of the convection diffusion equation

−�u+ a(x, y) · ∇u = f. (1)

In this paper, we focus on standard finite difference or finite element discretiza-
tions on rectangular Cartesian grids resulting in the standard five or nine point
discretization stencils.
To obtain a truly efficient solver for convection diffusion equations one has

to overcome three main problems. The performance of the solver should be
independent of the convection field a(x, y). The solver should be able to treat
arbitrary geometries of the computational domain with equal efficiency. Finally,
it should be possible to produce efficient parallel implementations of the solver
to take optimal advantage of high performance computers.
Solvers based on geometric multigrid methods are usually quite easy to paral-

lelize due to their structured coarse grids. On the negative side they often have
difficulties in treating complicated geometries. Moreover, they often require a
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special treatment of curved or circular flow fields, which sometimes seems to
impair the parallelization properties.
Algebraic multigrid (AMG) methods are usually very robust with respect to
the strength or type of the convection or even the geometry. As AMG chooses
its coarse grids according to the operator and the geometry, it often produces
excellent convergence results. On the other hand, the automatic grid genera-
tion often makes it difficult to produce efficient parallel implementations of the
solvers. This is especially true for the construction of the different coarse grids
itself, because the most commonly used strategy [5] for the coarse grid selection
is an inherently sequential process.
Our goal is therefore to find a fast (i.e. with multigrid or multigrid-like per-

formance) method that is easy to parallelize and allows the treatment of an
arbitrary geometry of the computational domain. We base our approach on pre-
vious work by Hüttl [1] and Ebner [2], whose algorithms combine ideas from
domain decomposition and nested dissection techniques to iterative methods
based on recursive substructuring of the computational domain.
After giving a short comprehension of these techniques in section 2, we will, in

section 3, present our extension of these approaches by an incomplete elimination
of the most significant couplings in the system matrices. Finally, in section 4 we
will show some numerical examples that indicate the promising potential of our
approach.

2 The Nested Dissection Approach

2.1 Nested Dissection as a Direct Solver

The nested dissection method was introduced by George [4] as a direct solver for
the sparse linear systems of equations resulting from the discretization of PDEs
with finite elements. It it based on the recursive substructuring of the compu-
tational domain by which it minimizes the fill-in that usually occurs during the
solution process. Throughout this paper we will divide the nested dissection al-
gorithm into three passes: the recursive substructuring, the static condensation,
and the solution.

Pass 1: Recursive Substructuring

In the first (top-down) pass the computational domain is recursively divided
into two or more subdomains that are connected via a separator. As shown in
figure 1, we will use a separation by alternate bisection throughout this paper.
Compared to substructuring in four (or even more) subdomains the alternate
bisection produces linear systems of equations with a slightly smaller number of
unknowns, which gives advantages in parallelization.
On each subdomain, we classify the unknowns into the set I of the inner

unknowns and the set E of the outer unknowns. The inner unknowns are those
unknowns on the separator that do not belong to the separator of a parent



A Fast Solver for Convection Diffusion Equations 797

Fig. 1. Recursive substructuring by alternate bisection

domain. The outer unknowns lie on the border of the subdomain and are exactly
those unknowns that will become separator unknowns on a parent domain. The
other unknowns inside the subdomain can be ignored, as their couplings with
inner and outer unknowns are eliminated by the static condensation (see pass 2)
on the lower levels. Figure 1 illustrates this classification by painting the inner
unknowns as white circles and the outer unknowns as black circles.

Pass 2: Static Condensation

The static condensation pass is a bottom-up process and computes the local
systems of equations for each subdomain. On the finest level — i.e. when the
subdomain has only 2 × 2 or 3 × 3 unknowns and is not further divided — the
system of equations can be taken directly from the discretization. On the higher
levels the system is computed from the local systems of the two subdomains.
The first step is to assemble and renumber the system matrix:

V T

(
K1 0
0 K2

)
V =:

(
KEE KEI
KIE KII

)
. (2)

The operator V combines the system matricesK1 andK2 that are taken from
the two subdomains. The unknowns on the separator belong to both subdomains,
thus the corresponding matrix lines are simply added up. The renumbering is
such that the outer and inner unknowns form separate matrix blocks KEE and
KII to enable the following block elimination.
In this second step the couplings between the inner and the outer unknowns

are eliminated by computing the Schur complement(
Id −KEIK−1

II
0 Id

) (
KEE KEI
KIE KII

) (
Id 0

−K−1
II KIE Id

)
=

(
K̃EE 0
0 KII

)
(3)

where K̃EE = KEE − KEI · K−1
II · KIE .

Of course, the right-hand sides have to be treated accordingly.

Pass 3: Solution

The solution itself is again a top-down process. Starting with the separator
of the whole computational domain, the values of the separator unknowns are
computed recursively from the local system of equations on each subdomain.
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2.2 Iterative Versions of the Nested Dissection Method

In the case of a two-dimensional PDE using standard discretization with a five-
or nine-point stencil, computing the direct solution of the resulting linear system
of equations (with N = n × n unknowns) needs O(N

3
2 ) operations and requires

O(N logN) memory [4]. While one can sometimes put up with the O(N
3
2 ) op-

eration count and the resulting increased computing time, shortness of memory
often inhibits simulations altogether as the required resolution exceeds the mem-
ory capacity. However, the nested dissection method is often used in industrial
codes for reason of reliability and robustness. For Poisson type equations, Hüttl
[1] and Ebner [2] introduced iterative versions of the nested dissection method
that have a memory requirement that grows only linearly with the number of
unknowns.
The main differences between an iterative and a direct solver occur in the

condensation and the solution pass. While the assembly part of the condensation
pass mainly stays the same, the elimination of the separator couplings is left out
entirely or at least greatly reduced in an iterative solver. The single top-down
solution pass is replaced by a series of iteration cycles. Each of those cycles
consists of a bottom-up pass that transports the current residual, like the right-
hand side in the condensation pass, from the finest level subdomains to the
higher levels. The second part of the iteration cycle is the actual solution, where
Gauss-Seidel- or Jacobi-relaxation is used for the computation of the separator
unknowns. Figure 2 illustrates the complete sequence of the different passes
during the iterative nested dissection.

... more iterations ...

solution

distribution
of residual

relaxation

recursive static condensationsubstructuring with elimination

direct solver

iterative solver

Fig. 2. The different passes of the iterative nested dissection algorithm

To get an acceptable speed of convergence, the systems of equations are
preconditioned, for example by means of hierarchical bases [6]. The resulting
algorithms reduce the number of operations to O(N logN) and the memory
requirements back to O(N). The convergence factor of such an iterative nested
dissection method can be further improved by eliminating at least some of the
couplings between the hierarchically highest unknowns in the local systems of
equations [2]. Figure 3 shows the general structure of the resulting algorithm,
which will be the basis for the algorithm introduced in section 3.
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Pass 2: static condensation (set-up phase)

(S1) K′ = V T
(

K1 0
0 K2

)
V assemble system matrix from subdomains

(S2) K̄ = HT K′H hierarchical transformation
(S3) K = L−1K̄R−1 partial elimination of the separator couplings, the

elimination matrices L and R have to be stored

Pass 3: iteration cycle (bottom-up part)

(U1) r′ = V T
(

r1
r2

)
assemble local residual from subdomains

(U2) r̄ = HT r′ hierarchical transformation
(U3) r = L−1r̄ right-hand side of elimination

Pass 3: iteration cycle (top-down part)

(D1) û
[it]
S = ωdiag(K)−1r relaxation step (here: weighted Jacobi)

(D2) ū = R−1û[it] revert elimination
(D3) u = Hū hierarchical transformation

(D4)
(

u1
u2

)
= V T u distribute solution to subdomains

Fig. 3. Iterative Nested Dissection Algorithm: steps (S3), (U3) and (D2) are
only needed if partial elimination is used

2.3 Parallel, Iterative Nested Dissection

The parallelization of iterative nested dissection algorithms like the one described
in figure 3 was analysed in depth by Hüttl [1] and Ebner [3]. Figure 4 shows a
typical distribution of the subdomains to different processors. Obviously, the tree
structure of the subdomains and the simple bottom-up/top-down structure of
the several computational cycles enable the parallel processing of all subdomains
that are on the same level. However, the different levels have to be executed
sequentially.
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Fig. 4. Distribution of subdomains to 16 processors
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The computations on each subdomain are usually not parallelized, so the
size of these sequential subproblems, which is mainly determined by the size of
the separator, should be kept small. We already mentioned that, in this con-
text, the alternate bisection used in the recursive substructuring pass gives some
advantage over other substructuring approaches. When using Jacobi relaxation
for solution, the memory requirement on each subdomain is only linearly depen-
dent on the number of unknowns on the separator. Therefore, these methods are
particularly well suited for architectures with distributed memory.
Compared to other types of solvers (geometric multigrid, AMG, etc.), one

should also emphasize that all three passes of the algorithm have equally good
parallelization properties.

3 Nested Dissection with Incomplete Elimination

While the algorithms discussed in the previous section give good results for the
solution of diffusion type equations, this no longer holds when they are applied to
convection diffusion equations. In this section, we want to propose an approach
which extends the existing iterative algorithms, such that convection diffusion
equations can be treated efficiently as well.
When solving simple diffusion type equations, the elimination of the cou-

plings between inner and outer unknowns can well be left out entirely, yet the
convergence rates can be improved by eliminating just a small, fixed number
of only the strongest couplings. For example, it is sufficient to eliminate the
couplings between the unknown in the middle of the separator and those four
unknowns that lie on the corners of the subdomain. However, for the convection
diffusion case, eliminating a fixed number of couplings on each subdomain is no
longer sufficient to achieve fast convergence.
In general, we can expect that the more couplings we eliminate the better

the convergence rates will become, because finally, when all couplings between
inner and outer unknowns are eliminated, the algorithm becomes a direct nested
dissection solver again, and ”converges” in one step. Of course we pay for this
rapid convergence with the O(N

3
2 ) computing time for the eliminations and

O(N logN) memory requirement due to the generated fill-in.
We therefore have to look for a compromise between eliminating enough cou-

plings to achieve good convergence rates and keeping the number of eliminations
small enough to maintain the O(N) complexity with respect to computing time
and memory requirement. A suitable heuristics for choosing the ”correct” num-
ber of eliminated1 unknowns can be found by analysing the underlying physical
effects. Figure 5 shows a certain subdomain where a heat source on the left bor-
der is transported via a constant convection field towards the domain separator.
Due to diffusion the former peak will extend over several mesh size steps after
it has been transported to the separator. It is clear that using only one point on
the separator is not enough to resolve the resulting heat profile (left picture).
1 to ”eliminate” an unknown in this context means that all couplings between ”elimi-
nated” unknowns are eliminated.
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H

h

Fig. 5. Comparison of different elimination strategies: only the couplings be-
tween the black nodes are eliminated

Therefore, eliminating only the couplings between the black nodes of the left
picture would not be sufficient to achieve good convergence. However, as we can
see in the right picture, it is not necessary to eliminate all separator nodes like
it is done in nested dissection.
The question is now how to choose the distance h between two eliminated

nodes. From the underlying physics it is known that, for convection diffusion
equations, the streamlines of the transported heat have a parabolic profile.
Therefore, if the typical distance H between the unknowns grows by a factor
of four, we can expect the heat profile to become twice as wide. Thus we can
also double the distance h between the eliminated nodes. In other words, we
choose h ∝ √

H and the number of eliminated separator unknowns proportional
to the square root of the total number of unknowns on the separator. In our
algorithm, we implement this square root dependency by doubling the number
of eliminated separator unknowns after every four bisection steps. This strategy
is illustrated in figure 6.
The overall algorithm remains the same as in figure 3, but now the elimination

matrices L and R no longer have only a small, fixed number of non-diagonal
entries. If we have a subdomain with m separator unknowns, we eliminate the
couplings between O(

√
m) inner unknowns and O(

√
m) outer unknowns which

produces O(m) entries in L and R. As a result of these extra eliminations, the

Fig. 6. Bisection with incomplete elimination, only the couplings between the
grey nodes are eliminated
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fill-in created in the system matrix K is now much bigger compared to the
algorithms of section 2.2. Therefore, one can no longer afford to store the entire
system matrix K for each subdomain as this would result in an O(N logN)
memory requirement. However, if we choose the (weighted) Jacobi-method for
relaxation, we only have to store the main diagonal of K as we can compute the
residual separately (see steps U1-U3 of the algorithm in figure 3). This puts both
the memory requirement and the number of operations needed for the set up
of the system matrices back to O(N). Of course the Jacobi-relaxation gives less
satisfying convergence factors than the Gauss-Seidel-relaxation, but, as we will
show in the next section, it is still possible to achieve reasonable performance.

4 Numerical Results

We tested our algorithm on the three different benchmark problems outlined
in figure 7. Problem (a) indicates a flow with constant convection a(x, y) = a,
problem (b) an entering flow that contains a 180 degree curve of the flow, and
finally problem (c) a circular flow problem. Each problem was discretized on
a square using standard second order finite difference discretization with a five
point stencil.
As the elimination points are chosen independently of the flow field it is clear

that the computation time and the memory used are independent of the type of
the test problem. Figure 8 indicates that both computation time and memory
requirement rise linearly with the number of unknowns. This can also be deduced
by theoretical means.
Table 1 shows the convergence rates for test problem (c), but nearly identical

results are obtained for test problems (a) and (b). Table 2 shows the average con-
vergence rates for test problem (c) if the algorithm is used as a preconditioner for
the BiCGStab method [7]. For the Poisson equation it is known that precondi-
tioning with hierarchical bases leads to a logarithmic increase of the convergence
rates, which corresponds well with the behaviour we observe in tables 1 and 2.
We can see that the convergence rates are largely independent on the strength
of convection as long as a certain ratio between convection strength and mesh

(a) straight convection (b) bent pipe convection (c) circular convection

Fig. 7. Convection fields of the three test problems
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solution

128s

setup

O(N)

64x64

2.0s

8.0s

32s

32 128x128x32 x 512512x256256

4M

16M

O(N)

1M

memory

x64 64

256M

64M

32 128x128x32 x 512512x256256

Costs for setup and complete solution Memory requirement

Fig. 8. Computation time and memory requirement

size is not exceeded. For stronger convection the heuristics of our elimination
strategy no longer holds and convergence begins to break down.

a = 0 a = 1 a = 2 a = 4 a = 8 a = 16 a = 32 a = 64 a=128 a=256

32×32 0.635 0.635 0.636 0.637 0.644 0.661 0.743 — — —
64×64 0.700 0.700 0.700 0.699 0.697 0.693 0.694 0.753 — —
128×128 0.721 0.722 0.722 0.722 0.724 0.734 0.756 0.823 0.853 —
256×256 0.746 0.746 0.746 0.746 0.746 0.746 0.744 0.757 0.818 0.848
512×512 0.783 0.783 0.783 0.783 0.783 0.783 0.784 0.795 0.859 div

Table 1. Convergence rates for test problem c (circular convection), a denotes
the strength of the convection. (Jacobi-relaxation with ω = 2

3 )

a = 0 a = 1 a = 2 a = 4 a = 8 a = 16 a = 32 a = 64 a=128 a=256

32×32 0.079 0.083 0.085 0.084 0.083 0.127 0.147 0.210 0.315 0.467
64×64 0.151 0.153 0.154 0.155 0.156 0.153 0.161 0.227 0.401 0.404
128×128 0.156 0.156 0.157 0.157 0.159 0.175 0.216 0.351 0.433 0.545
256×256 0.208 0.208 0.207 0.205 0.197 0.214 0.221 0.238 0.357 0.462
512×512 0.226 0.226 0.226 0.227 0.227 0.229 0.231 0.271 0.376 0.463

Table 2. Average convergence rates for test problem c (circular convection)
using preconditioned BiCGStab and upwind discretization

A parallel implementation of our iterative nested dissection code was realized
using MPI as message passing protocol. The distribution of the subdomains to
the processors was done as was shown in figure 4. Figure 9 illustrates speedup
and parallel efficiency of the parallel implementation for a problem with 512×512
unknowns on a cluster of SUN Ultra 60 workstations.
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Fig. 9. Speedup and parallel efficiency on a cluster of SUN Ultra 60Workstations

5 Present and Future Work

We are currently working on two topics which are still missing in the presented
algorithm to become a suitable solver for practical convection type problems.
The first topic is the treatment of complicated computational domains and of
inner boundaries and obstacles, the other one is the removal of the O(log n)
dependency in the convergence rates and to make them independent of the res-
olution of the mesh.
It seems that both topics can be successfully treated if we replace the hierar-

chical basis preconditioning by the usage of generating systems which turns the
algorithm into a multigrid type method (see Griebel [8]). First numerical exper-
iments indicate that the convergence rates seem to indeed become independent
of mesh size, geometry and strength of convection (as long as the diffusion still
dominates the convection on the finest mesh).
The efficient treatment of strongly convection dominated flow leads our list

of future work. In the case of strong convection our elimination strategy is no
longer appropriate as it depends on the existence of a certain amount of real
diffusion. However, an efficient elimination strategy should be achievable either
by eliminating couplings that are aligned with the direction of the flow or by
choosing the eliminated couplings in an algebraic manner which leads to an
AMG like method with fixed coarse grid selection.
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1. Hüttl, R., Schneider, M.: Parallel Adaptive Numerical Simulation. Institut für In-
formatik, TU München, SFB-Bericht 342/01/94 A (1994)

2. Ebner, R.: Funktionale Programmierkonzepte für die verteilte numerische Simula-
tion. PhD thesis, TU München (1999)

3. Ebner, R., Zenger, C.: A distributed functional framework for recursive finite ele-
ment simulation. Parallel Computing 25 (1999) 813-826

4. George, A.: Nested Dissection of a Regular Finite Element Mesh. SIAM Journal on
Numerical Analysis 10 (1973)



A Fast Solver for Convection Diffusion Equations 805
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