
Solving Discrete-Time Periodic Riccati

Equations on a Cluster�

Peter Benner1, Rafael Mayo2, Enrique S. Quintana-Ort́ı2, and
Vicente Hernández3

1 Zentrum für Technomathematik, Fachbereich 3/Mathematik und Informatik,
Universität Bremen, D-28334 Bremen, Germany;

benner@math.uni-bremen.de
2 Departamento de Informática, Universidad Jaume I, 12080–Castellón, Spain;

{mayo,quintana}@inf.uji.es
3 Departamento de Sistemas Informáticos y Computación, Universidad Politécnica

de Valencia, 46071–Valencia, Spain;
vhernand@dsic.upv.es

Abstract. This paper analyzes the performance of a parallel solver for
discrete-time periodic Riccati equations based on a sequence of orthog-
onal reordering transformations of the monodromy matrices associated
with the equations. A coarse-grain parallel algorithm is investigated on
a Myrinet cluster.

Key words: Discrete-time periodic Riccati equations, periodic linear control
systems, parallel algorithms, multicomputers, cluster computing.

1 Introduction

Consider the discrete-time periodic Riccati equation (DPRE)

Xk = Qk + AT
k Xk+1Ak −AT

k Xk+1Bk(Rk + BT
k Xk+1Bk)−1BT

k Xk+1Ak, (1)

where Ak ∈ IRn×n, Bk ∈ IRn×m, Ck ∈ IRr×n, Qk ∈ IRn×n, Rk ∈ IRm×m, and p
is the period of the system, i.e., Ak+p = Ak, Bk+p = Bk, Ck+p = Ck, Qk+p =
Qk, and Rk+p = Rk. Under mild conditions, the periodic symmetric positive
semidefinite solution Xk = Xk+p ∈ IRn×n of (1) is unique [3]. DPREs arise, e.g.,
in the solution of the periodic linear-quadratic optimal control problem, model
reduction of periodic linear systems, etc. [3].

Consider now the periodic symplectic matrix pencil, associated with the
DPRE (1),

Lk − λMk =
[

Ak 0
−Qk In

]
− λ

[
In BkR−1

k BT
k

0 AT
k

]
≡ Lk+p − λMk+p, (2)

� Supported by the Conselleŕıa de Cultura, Educación y Ciencia de la Generalidad
Valenciana GV99-59-1-14, the DAAD Programme Acciones Integradas Hispano-
Alemanas, and the Fundació Caixa-Castelló Bancaixa.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 824–828, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Solving Discrete-Time Periodic Riccati Equations on a Cluster 825

where In denotes the identity matrix of order n. If all the Ak are invertible, the
solution of the DPRE is given by the d-stable invariant subspace of the periodic
monodromy matrices [5,8]

Πk = M−1
k+p−1Lk+p−1 · · ·M−1

k Lk, Πk = Πk+p. (3)

Note that the monodromy relation still holds if (some of) the Ak are singular
and the algorithm presented here can still be applied in this case [3,5,8]. A nu-
merically sound DPRE solver relies on an extension of the generalized Schur
vectors method [5,8]. However, the parallel implementation of this QR-like algo-
rithm renders an efficiency and scalability far from those of traditional matrix
factorizations [4].

In this paper we follow a different approach, described in [2], for the solution
of DPREs based on a reliable swapping of the matrix products in (3). In sec-
tion 2 we briefly review the “swapping” method for solving DPREs and present
a coarse-grain DPRE solver. A medium-grain parallel DPRE solver was investi-
gated in [9]. In section 3 we report the performance of our approach on a cluster
of Intel Pentium-II processors.

2 Parallel Solution of DPREs

In [2] an algorithm is introduced for solving DPREs without explicitly forming
the monodromy matrices. The approach relies on the following lemma.

Lemma. Consider Z, Y ∈ IRn×n, with Y invertible, and let
[
Q11 Q12

Q21 Q22

] [
Y
−Z

]
=

[
R
0

]
(4)

be a QR factorization of [Y T ,−ZT ]T ; then Q−1
22 Q21 = ZY −1.

By (Y, Z) ← swap(Y, Z) we denote the application of the lemma to the
matrix pair (Y, Z), where Y and Z are overwritten by Q22 and Q21, respectively.

Applying the swapping procedure to (3), we obtain reordered monodromy
matrices of the form

Πk = M̂−1
k L̂k = (M̄k · · · M̄k+p−1)−1(L̄k+p−1 · · · L̄k), (5)

without computing any explicit inverse. The solution of the corresponding DPRE
is then computed by solving the discrete-time algebraic Riccati equation (DARE)
associated with the corresponding matrix pair M̂−1

k L̂k [10].
The algorithm can be stated as follows [2]:

Input: p matrix pairs (Lk, Mk), k = 0, 1, . . . , p− 1
Output: Solution of the p DPREs associated with the matrix pairs

for k = 0, 1, . . . , p− 1

Set L̂k = Lk, M̂(k+1) mod p = Mk

end

for t = 1, 2, . . . , p− 1



826 Peter Benner et al.

for k = 0, 1, . . . , p− 1
(L(k+t) mod p, Mk)← swap(L(k+t) mod p, Mk)

L̂k ← L(k+t) mod pL̂k

M̂(k+t+1) mod p ← M̂(k+t+1) mod pMk

end

end

for k = 0, 1, . . . , p− 1

Solve the DARE associated with (L̂k, M̂k)
end

The procedure is only composed of QR factorizations and matrix products.
The computational cost of the reordering algorithm is O(p2n3) flops (floating-
point arithmetic operations) and O(pn2) for workspace. The cost of the solution
of the p DAREs at the final stage is O(pn3) flops and O(pn2) for workspace.

Consider a parallel distributed-memory architecture, composed of np proces-
sors, P0, P1,. . . , Pnp−1, and, for simplicity, assume that p = np. A coarse-grain
parallel algorithm can be stated as follows:

Input: p matrix pairs (Lk, Mk), k = 0, 1, . . . , p− 1
Output: Solution of the p DPREs associated with the matrix pairs

for k = 0, 1, . . . , p− 1 in parallel

Assign (Lk, Mk) to processor Pk

Set L̂k = Lk, M̂(k+1) mod p = Mk

Send Lk to P(k+p−1) mod p

Receive L(k+1) mod p from P(k+1) mod p

end

for t = 1, 2, . . . , p− 1
for k = 0, 1, . . . , p− 1 in parallel

(L(k+t) mod p, Mk)← swap(L(k+t) mod p, Mk)

Send M̂(k+t) mod p to P(k+p−1) mod p

L̂k ← L(k+t) mod pL̂k

Receive M̂(k+t+1) mod p from P(k+1) mod p

Send L(k+t) mod p to P(k+p−1) mod p

M̂(k+t+1) mod p ← M̂(k+t+1) mod pMk

Receive L(k+t+1) mod p from P(k+1) mod p

end

end

for k = 0, 1, . . . , p− 1 in parallel

Solve the DARE associated with (L̂k, M̂k)
end

This parallel algorithm only requires efficient serial kernels for the QR factor-
ization and the matrix product, like those available in LAPACK and BLAS [1],
and a serial DARE solver based, e.g., on the matrix disk function [2]. Moreover,
the algorithm presents a highly regular and local communication pattern as, at
each iteration of the outer loop t, the only communications neccesary are the left
circular shifts of Lk and M̂k. Computation and communication are overlapped in
the algorithm, and the computational load in the algorithm is perfectly balanced.



Solving Discrete-Time Periodic Riccati Equations on a Cluster 827

In case p > np, we can assign the matrix pairs (Lk, Mk) cyclically to the
processors, and proceed in the same manner.

3 Experimental Results

All the experiments were performed on a cluster of Intel Pentium-II proces-
sors connected via a Myrinet switch, using IEEE double precision floating-point
arithmetic (ε ≈ 2.2 × 10−16). BLAS and MPI implementations specially tuned
for this architecture were employed [7]. Performance experiments with routine
DGEMM achieved 200 Mflops (millions of flops per second) on one processor.

Figure 1 evaluates the efficiency of our coarse-grain parallel algorithm for
n=100 and 200, and np = p = 2, 4, . . . , 10 processors. We obtain efficiencies
higher than 1 due to the better management of the memory achieved in the
parallel algorithms, which have to deal with a smaller number of matrices. In this
figure we also report the scalability of the parallel algorithm. For this purpose,
we evaluate the Mflops per processor, with n2p/np, p = np, fixed at 200. As the
figure shows, the scalability is close to optimal.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of processors

E
ffi

ci
en

cy

0 5 10 15 20 25 30
0

50

100

150

Number of processors

M
flo

ps
 p

er
 p

ro
ce

ss
or

Fig. 1. Efficiency (left) and scalability (right) of the parallel algorithm for n=100
(solid line) and 200 (dotted line).

References

1. E. Anderson et al. LAPACK Users’ Guide. SIAM, Philadelphia, PA, 1994.

2. P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations
and Related Eigenvalue Problems. Dissertation, Fak. f. Mathematik, TU Chem-
nitz–Zwickau, Chemnitz, FRG, 1997.

3. S. Bittanti, P. Colaneri, and G. De Nicolao. The periodic Riccati equation. In
S. Bittanti, A.J. Laub, and J.C. Willems, editors, The Riccati Equation, pp. 127–
162. Springer-Verlag, Berlin, 1991.

4. L. S. Blackford et al. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.



828 Peter Benner et al.

5. A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition;
algorithms and applications. In Proc. SPIE Conference, 1770, pp. 31–42, 1992.

6. G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, 1989.

7. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, 1994.

8. J.J. Hench and A.J. Laub. Numerical solution of the discrete-time periodic Riccati
equation. IEEE Trans. Automat. Control, 39:1197–1210, 1994.

9. R. Mayo, E.S. Quintana-Ort́ı, E. Arias, and V. Hernández. Parallel Solvers for
Discrete-time Periodic Riccati Equations. Lecture Notes in Computer Science.
Springer–Verlag, 2000. To appear.

10. V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and
Numerical Solution. Number 163 in Lecture Notes in Control and Information
Sciences. Springer-Verlag, Heidelberg, July 1991.


	Introduction
	Parallel Solution of DPREs
	Experimental Results

