Solving Discrete-Time Periodic Riccati Equations on a Cluster*

Peter Benner ${ }^{1}$, Rafael Mayo ${ }^{2}$, Enrique S. Quintana-Ortí ${ }^{2}$, and Vicente Hernández ${ }^{3}$
1 Zentrum für Technomathematik, Fachbereich 3/Mathematik und Informatik, Universität Bremen, D-28334 Bremen, Germany; benner@math.uni-bremen.de
2 Departamento de Informática, Universidad Jaume I, 12080-Castellón, Spain;
\{mayo,quintana\}@inf.uji.es
${ }^{3}$ Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, 46071-Valencia, Spain;
vhernand@dsic.upv.es

Abstract

This paper analyzes the performance of a parallel solver for discrete-time periodic Riccati equations based on a sequence of orthogonal reordering transformations of the monodromy matrices associated with the equations. A coarse-grain parallel algorithm is investigated on a Myrinet cluster.

Key words: Discrete-time periodic Riccati equations, periodic linear control systems, parallel algorithms, multicomputers, cluster computing.

1 Introduction

Consider the discrete-time periodic Riccati equation (DPRE)

$$
\begin{equation*}
X_{k}=Q_{k}+A_{k}^{T} X_{k+1} A_{k}-A_{k}^{T} X_{k+1} B_{k}\left(R_{k}+B_{k}^{T} X_{k+1} B_{k}\right)^{-1} B_{k}^{T} X_{k+1} A_{k} \tag{1}
\end{equation*}
$$

where $A_{k} \in \mathbb{R}^{n \times n}, B_{k} \in \mathbb{R}^{n \times m}, C_{k} \in \mathbb{R}^{r \times n}, Q_{k} \in \mathbb{R}^{n \times n}, R_{k} \in \mathbb{R}^{m \times m}$, and p is the period of the system, i.e., $A_{k+p}=A_{k}, B_{k+p}=B_{k}, C_{k+p}=C_{k}, Q_{k+p}=$ Q_{k}, and $R_{k+p}=R_{k}$. Under mild conditions, the periodic symmetric positive semidefinite solution $X_{k}=X_{k+p} \in \mathbb{R}^{n \times n}$ of (11) is unique 3]. DPREs arise, e.g., in the solution of the periodic linear-quadratic optimal control problem, model reduction of periodic linear systems, etc. [3].

Consider now the periodic symplectic matrix pencil, associated with the DPRE (1),

$$
L_{k}-\lambda M_{k}=\left[\begin{array}{cc}
A_{k} & 0 \tag{2}\\
-Q_{k} & I_{n}
\end{array}\right]-\lambda\left[\begin{array}{cc}
I_{n} & B_{k} R_{k}^{-1} B_{k}^{T} \\
0 & A_{k}^{T}
\end{array}\right] \equiv L_{k+p}-\lambda M_{k+p}
$$

[^0]where I_{n} denotes the identity matrix of order n. If all the A_{k} are invertible, the solution of the DPRE is given by the d-stable invariant subspace of the periodic monodromy matrices [5|8]
\[

$$
\begin{equation*}
\Pi_{k}=M_{k+p-1}^{-1} L_{k+p-1} \cdots M_{k}^{-1} L_{k}, \quad \Pi_{k}=\Pi_{k+p} \tag{3}
\end{equation*}
$$

\]

Note that the monodromy relation still holds if (some of) the A_{k} are singular and the algorithm presented here can still be applied in this case [315]. A numerically sound DPRE solver relies on an extension of the generalized Schur vectors method [5]8. However, the parallel implementation of this QR-like algorithm renders an efficiency and scalability far from those of traditional matrix factorizations 4].

In this paper we follow a different approach, described in [2], for the solution of DPREs based on a reliable swapping of the matrix products in (3). In section 2 we briefly review the "swapping" method for solving DPREs and present a coarse-grain DPRE solver. A medium-grain parallel DPRE solver was investigated in [9]. In section 3 we report the performance of our approach on a cluster of Intel Pentium-II processors.

2 Parallel Solution of DPREs

In [2] an algorithm is introduced for solving DPREs without explicitly forming the monodromy matrices. The approach relies on the following lemma.

Lemma. Consider $Z, Y \in \mathbb{R}^{n \times n}$, with Y invertible, and let

$$
\left[\begin{array}{ll}
Q_{11} & Q_{12} \tag{4}\\
Q_{21} & Q_{22}
\end{array}\right]\left[\begin{array}{c}
Y \\
-Z
\end{array}\right]=\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

be a $Q R$ factorization of $\left[Y^{T},-Z^{T}\right]^{T}$; then $Q_{22}^{-1} Q_{21}=Z Y^{-1}$.
By $(Y, Z) \leftarrow \operatorname{swap}(Y, Z)$ we denote the application of the lemma to the matrix pair (Y, Z), where Y and Z are overwritten by Q_{22} and Q_{21}, respectively.

Applying the swapping procedure to (3), we obtain reordered monodromy matrices of the form

$$
\begin{equation*}
\Pi_{k}=\hat{M}_{k}^{-1} \hat{L}_{k}=\left(\bar{M}_{k} \cdots \bar{M}_{k+p-1}\right)^{-1}\left(\bar{L}_{k+p-1} \cdots \bar{L}_{k}\right) \tag{5}
\end{equation*}
$$

without computing any explicit inverse. The solution of the corresponding DPRE is then computed by solving the discrete-time algebraic Riccati equation (DARE) associated with the corresponding matrix pair $\hat{M}_{k}^{-1} \hat{L}_{k}$ 10].

The algorithm can be stated as follows 2]:

```
Input: p matrix pairs ( L , , Mk ), k=0,1,\ldots,p-1
Output: Solution of the p DPREs associated with the matrix pairs
for }k=0,1,\ldots,p-
    Set }\mp@subsup{\hat{L}}{k}{}=\mp@subsup{L}{k}{},\mp@subsup{\hat{M}}{(k+1)\operatorname{mod}p}{}=\mp@subsup{M}{k}{
end
for t=1,2,\ldots,p-1
```

```
    for \(k=0,1, \ldots, p-1\)
    \(\left(L_{(k+t) \bmod p}, M_{k}\right) \leftarrow \operatorname{swap}\left(L_{(k+t) \bmod p}, M_{k}\right)\)
    \(\hat{L}_{k} \leftarrow L_{(k+t) \bmod p \hat{L}_{k}}\)
    \(\hat{M}_{(k+t+1) \bmod p} \leftarrow \hat{M}_{(k+t+1) \bmod p} M_{k}\)
    end
end
for \(k=0,1, \ldots, p-1\)
    Solve the DARE associated with \(\left(\hat{L}_{k}, \hat{M}_{k}\right)\)
end
```

The procedure is only composed of QR factorizations and matrix products. The computational cost of the reordering algorithm is $\mathcal{O}\left(p^{2} n^{3}\right)$ flops (floatingpoint arithmetic operations) and $\mathcal{O}\left(p n^{2}\right)$ for workspace. The cost of the solution of the p DAREs at the final stage is $\mathcal{O}\left(p n^{3}\right)$ flops and $\mathcal{O}\left(p n^{2}\right)$ for workspace.

Consider a parallel distributed-memory architecture, composed of n_{p} processors, $P_{0}, P_{1}, \ldots, P_{n_{p}-1}$, and, for simplicity, assume that $p=n_{p}$. A coarse-grain parallel algorithm can be stated as follows:

```
Input: \(p\) matrix pairs \(\left(L_{k}, M_{k}\right), k=0,1, \ldots, p-1\)
Output: Solution of the \(p\) DPREs associated with the matrix pairs
for \(k=0,1, \ldots, p-1\) in parallel
    Assign \(\left(L_{k}, M_{k}\right)\) to processor \(P_{k}\)
    Set \(\hat{L}_{k}=L_{k}, \hat{M}_{(k+1) \bmod p}=M_{k}\)
    Send \(L_{k}\) to \(P_{(k+p-1) \bmod p}\)
    Receive \(L_{(k+1) \bmod p}\) from \(P_{(k+1) \bmod p}\)
end
for \(t=1,2, \ldots, p-1\)
    for \(k=0,1, \ldots, p-1\) in parallel
        \(\left(L_{(k+t) \bmod p}, M_{k}\right) \leftarrow \operatorname{swap}\left(L_{(k+t) \bmod p}, M_{k}\right)\)
        Send \(\hat{M}_{(k+t) \bmod p}\) to \(P_{(k+p-1) \bmod p}\)
        \(\hat{L}_{k} \leftarrow L_{(k+t)} \bmod p \hat{L}_{k}\)
        Receive \(\hat{M}_{(k+t+1) \bmod p}\) from \(P_{(k+1) \bmod p}\)
        Send \(L_{(k+t) \bmod p}\) to \(P_{(k+p-1) \bmod p}\)
        \(\hat{M}_{(k+t+1) \bmod p} \leftarrow \hat{M}_{(k+t+1) \bmod p} M_{k}\)
        Receive \(L_{(k+t+1) \bmod p}\) from \(P_{(k+1) \bmod p}\)
    end
end
for \(k=0,1, \ldots, p-1\) in parallel
    Solve the DARE associated with \(\left(\hat{L}_{k}, \hat{M}_{k}\right)\)
end
```

This parallel algorithm only requires efficient serial kernels for the QR factorization and the matrix product, like those available in LAPACK and BLAS [1], and a serial DARE solver based, e.g., on the matrix disk function [2]. Moreover, the algorithm presents a highly regular and local communication pattern as, at each iteration of the outer loop t, the only communications neccesary are the left circular shifts of L_{k} and \hat{M}_{k}. Computation and communication are overlapped in the algorithm, and the computational load in the algorithm is perfectly balanced.

In case $p>n_{p}$, we can assign the matrix pairs $\left(L_{k}, M_{k}\right)$ cyclically to the processors, and proceed in the same manner.

3 Experimental Results

All the experiments were performed on a cluster of Intel Pentium-II processors connected via a Myrinet switch, using IEEE double precision floating-point arithmetic $\left(\epsilon \approx 2.2 \times 10^{-16}\right)$. BLAS and MPI implementations specially tuned for this architecture were employed 7]. Performance experiments with routine DGEMM achieved 200 Mflops (millions of flops per second) on one processor.

Figure $\mathbb{1}$ evaluates the efficiency of our coarse-grain parallel algorithm for $n=100$ and 200 , and $n_{p}=p=2,4, \ldots, 10$ processors. We obtain efficiencies higher than 1 due to the better management of the memory achieved in the parallel algorithms, which have to deal with a smaller number of matrices. In this figure we also report the scalability of the parallel algorithm. For this purpose, we evaluate the Mflops per processor, with $n^{2} p / n_{p}, p=n_{p}$, fixed at 200. As the figure shows, the scalability is close to optimal.

Fig. 1. Efficiency (left) and scalability (right) of the parallel algorithm for $n=100$ (solid line) and 200 (dotted line).

References

1. E. Anderson et al. LAPACK Users' Guide. SIAM, Philadelphia, PA, 1994.
2. P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. Dissertation, Fak. f. Mathematik, TU Chem-nitz-Zwickau, Chemnitz, FRG, 1997.
3. S. Bittanti, P. Colaneri, and G. De Nicolao. The periodic Riccati equation. In S. Bittanti, A.J. Laub, and J.C. Willems, editors, The Riccati Equation, pp. 127162. Springer-Verlag, Berlin, 1991.
4. L. S. Blackford et al. ScaLAPACK Users' Guide. SIAM, Philadelphia, PA, 1997.
5. A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition; algorithms and applications. In Proc. SPIE Conference, 1770, pp. 31-42, 1992.
6. G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, 1989.
7. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, 1994.
8. J.J. Hench and A.J. Laub. Numerical solution of the discrete-time periodic Riccati equation. IEEE Trans. Automat. Control, 39:1197-1210, 1994.
9. R. Mayo, E.S. Quintana-Ortí, E. Arias, and V. Hernández. Parallel Solvers for Discrete-time Periodic Riccati Equations. Lecture Notes in Computer Science. Springer-Verlag, 2000. To appear.
10. V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.

[^0]: * Supported by the Consellería de Cultura, Educación y Ciencia de la Generalidad Valenciana GV99-59-1-14, the DAAD Programme Acciones Integradas HispanoAlemanas, and the Fundació Caixa-Castelló Bancaixa.

