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Abstract. We consider a broadcasting problem in the n-dimensional
k-ary even torus in the shouting communication mode, i.e. any node of
a network can inform all its neighbours in one time step. In addition,
during any time step a number of links of the network can be faulty.
Moreover the faults are dynamic. The problem is to determine the mini-
mum broadcasting time if at most 2n−1 faults are allowed in any step. In
[3], it was shown that the broadcasting time is at most diameter+O(1),
provided that k is limited by a polynomial of n. In our paper we drop
this additional assumption and prove that the broadcasting can be al-
ways done in time diameter +2. The bound is the best possible.

1 Introduction

Broadcasting is the standard communication problem in interconnection net-
works when a node has to send a message to all other nodes. There are many
applications of the broadcasting problem in parallel and distributed computing
[6,8,9]. Recently, a lot of attention has been paid to fault-tolerant dissemination
of information in networks [10]. In this paper we consider the shouting com-
munication mode in which any node can inform all its neighbours in one time
step. In addition, we assume that during any time step a number of links of the
network can be faulty. This model was introduced by Santoro and Widmayer
[11]. The problem is to determine the minimum broadcasting time if at most
f faults are allowed in any time step, where f stands for the edge connectivity
minus 1 of the network. For the hypercube, the problem was studied in [3,7,10]
and completely solved in [5]. For the n-dimensional general torus, Chlebus, Diks
and Pelc [2] proved an upper bound on the brodcasting time O(diameter). De
Marco and Rescigno [4] showed for the n-dimensional k-ary even torus that the
broadcasting time is at most diameter+O(1), provided that k is limited by a
polynomial of n. In our paper we drop this additional assumption and prove
that the broadcasting can be always done in time diameter +2. The bound is
the best possible.

Our method previously used in [5] is related to the isoperimetric problem in
graphs and can be applied to other networks.
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2 Model and Basic Facts

Let Cn,k be a network of processors connected as the n-dimensional k-ary torus
defined as the cartesian product of n cycles Ck, for k even. The network Cn,k

has kn nodes, is regular of degree 2n, with edge connectivity 2n−1. Its diameter
equals nk/2. The links are bidirectional. The computation is synchronous. In
one time step a node is able to send its message to all its neighbours. This is
called the shouting mode. In each time step at most 2n− 1 links are faulty, i.e.,
the message transmitted along the faulty link is not delivered. The faults are
dynamic in the sense that the set of faulty links can change during the execution
of the broadcast. Initially, a node of Cn,k knows a message. This message needs
to be sent to all other nodes. Our problem is to determine the minimum time to
broadcast the message in the torus Cn,k, provided that the faults are distributed
in the worst possible manner.

The vertices of Cn,k are {−k/2,−k/2 + 1, ..., k/2 − 1}, and two vertices u
and v are adjacent if |u − v| (mod k) = 1. The vertices of Cn,k are n-tuples
(x1, x2, ..., xn), where −k/2 ≤ xi ≤ k/2 − 1, for i = 1, 2, ..., n. Define o =
(0, 0, ..., 0). Let d(u, v) be the distance between u and v in Cn,k. Denote S(r) =
{v ∈ Cn,k|d(v,o) = r} and V (r) = {v ∈ Tn,k|d(v,o) ≤ r} = ∪r

i=0S(r). Clearly,
|S(r)| is the number of integer solutions of the equation |x1|+ |x2|+ ...+ |xn| = r,
where −k/2 ≤ xr ≤ k/2 − 1. Since k is even we have |S(r)| = |S(nk/2 − r)|,
which implies |V (r)|+ |V (nk/2− r− 1)| = kn. Moreover, |S(0)| = 1, |S(1)| = 2n
and |S(2)| = 2n2, for k ≥ 6.

Let A be a subset of vertices of Cn,k. Let ∂(A) denote the set of all vertices
in distance at most 1 from A in Cn,k. Bollobás and Leader [1] proved:

Lemma 1. Let Cn,k be the n-dimensional k-ary torus with k even, and let A
be a nonempty subset of vertices of Cn,k. If |A| = |V (r)|+ α|S(r + 1)|, for some
r and 0 ≤ α < 1, then |∂(A)| ≥ |V (r + 1)| + α|S(r + 2)|.

3 Optimal Upper Bound on the Broadcasting Time

In this Section we use Lemma 1 to bound the broadcasting time. First we state
a technical lemma, proof of which will appear in the full version.

Lemma 2. Denote

X = 1 − 3
n
−

�nk
4 �∑

r=3

4n

|S(r)| .

The value X is nonnegative for k ≥ 6 and n ≥ k + 4 or k ≥ n ≥ 10.

Theorem 1. Assume that k ≥ 6 and n ≥ k + 4 or k ≥ n ≥ 10. The minimum
broadcasting time T in the n-dimensional k-ary torus, for k even, with 2n − 1
dynamic link faults satisfies T ≤ nk/2 + 2. The bound is the best possible.
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Proof. The broadcasting scheme is simple. Initially, the node o contains the
message to be disseminated. In each time step each node sends the message to all
its neighbours. The analysis follows. By Am we will denote suitable sets of nodes
which know the message after the m-th time step. Observe that the number of
nodes that know the message after the m-th step is at least |∂(Am−1)|−(2n−1).
Clearly, there exist sets A0 and A1 and A2 s.t. |A0| = 1, |A1| = 2 and |A2| =
1 + 2n = |V (1)|. According to Lemma 1 |∂(A2)| ≥ V (2)|.

Because of the 2n− 1 faulty links, we have

|∂(A2)| − (2n − 1) ≥ 2n2 + 2 = |V (1)| + α3|S(2)|,

where α3 = 1 − 1/n. Define A3 to be a subset of nodes that know the message
after the 3-rd step and satisfies |A3| = |V (1)| + α3|S(2)|. Similarly, |∂(A3)| ≥
|V (2)| + α3|S(3)|.

Because of the 2n− 1 faulty links, we have

|∂(A3)| − (2n − 1) = |V (2)| + α3|S(3)| − (2n − 1) ≥ |V (2)| + α4|S(3)|,

where α4 = α3− 2n
|S(3)| . Define A4 to be a subset of nodes that know the message

after the 4-th step and satisfies |A4| = |V (2)| + α4|S(3|.
We prove by induction that for 4 ≤ m ≤ nk

2 − 1

|Am| = |V (m − 2)| + αm|S(m − 1)|,

where
αm = 1 − 1

n
− 2n

|S(3)| −
2n

|S(4)| − ... − 2n

|S(m − 1)| .

Assume the claim holds for some 4 ≤ m − 1 ≤ nk
2 − 2, i.e.

|Am−1| = |V (m − 3)| + αm−1|S(m − 2)|,

where
αm−1 = 1 − 1

n
− 2n

|S(3)| −
2n

|S(4)| − ... − 2n

|S(m − 2)| .

Lemma 1 implies

|∂(Am−1)| − (2n − 1) = |V (m − 2)| + αm−1|S(m − 1)| − (2n − 1)
≥ |V (m − 2)| + αm|S(m − 1)|,

where αm = αm−1 − 2n
|S(m−1)| . Define Am to be a subset of nodes that know the

message after the m-th step and satisfies |Am| = |V (m − 2)| + αm|S(m − 1)|.
Then

αm = 1 − 1
n
−

m−1∑

i=3

2n

|S(i)| .

Now we use a dual argument. By Bm we will denote suitable subsets of
nodes, which do not know the message after the m-th step. Assume that after
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the (nk/2 + 2)-nd step there exists at least one node which does not know the
message. Observe that the number of nodes that do not know the message after
the (m−1)-st step is at least |∂(Bm)|− (2n−1). Clearly there exist sets Bnk

2 +2,
Bnk

2 +1 and Bnk
2

such that |Bnk
2 +2| = 1, |Bnk

2 +1| = 2 and |Bnk
2
| = 1 + 2n.

Similarly as for A3 we determine |Bnk
2 −1| = 2n2 + 2.

Now compute

|Ank
2 −1| + |Bnk

2 −1| = |V (
nk

2
− 3)| + (1 − 1

n
−

nk
2 −2∑

r=3

2n

|S(r)| )|S(
nk

2
− 2)|+ 2n2 +2

≥ kn + 1 + 2n2(1 − 3
n
−

�nk
4 �∑

r=3

4n

|S(r)| ).

By Lemma 2 the expression in the brackets is positive which implies a con-
tradiction.

Finally, we show that there is a distribution of faults in each step which forces
the brodcasting time nk/2 + 2. Consider vertices u, v such that d(u, v) = nk/2.
Let u′ (v′) be a neighbor of u (v). Initially, let u′ knows the message. In the
first step we place faults on all edges adjacent to u′, except for u′u. From now
on we place faults on all edges adjacent to v′, except for v′v. After nk/2 + 1
steps, the message reaches the vertex v and one additional step is necessary to
complete the broadcasting. 	


References

1. Bollobás, B., Leader, I., An isoperimetric inequality on the discrete torus, SIAM
J. on Discrete Mathematics 3 (1990), 32-37.

2. Chlebus, B., Diks, K., Pelc, A., Broadcasting in synchronous networks with dy-
namic faults, Networks 27 (1996), 309-318.

3. De Marco, G., Vaccaro, U., Broadcasting in hypercubes and star graphs with dy-
namic faults, Information Processing Letters 66 (1998), 321-326.

4. De Marco, G., Rescigno, A.A., Tighter bounds on broadcasting in torus networks
in presence of dynamic faults, Parallel Processing Letters, to appear.

5. Dobrev, S., Vrt’o, I., Optimal broadcasting in hypercubes with dynamic faults,
Information Processing Letters 71 (1999), 81-85.

6. Fraigniaud, P., Lazard, E., Methods and problems of communication in usual net-
works, Discrete Applied Mathematics 53 (1994), 79-133.

7. Fraigniaud, P., Peyrat, C., Broadcasting in a hypercube when some calls fail, In-
formation Processing Letters 39 (1991), 115-119.

8. Hedetniemi, S.M., Hedetniemi, S.T., and Liestman, A., A survey of gossiping and
broadcasting in communication networks, Networks 18 (1986), 319-349.

9. Hromkovic, J., Klasing, R., Monien, B., Paine, R., Dissemination of information in
interconnection networks (broadcasting and gossiping), in: Combinatorial Network
Theory, (D.-Z. Du, D. F. Hsu, eds.), Kluwer Academic Publishers, 1995, 125-212.

10. Pelc, A., Fault tolerant broadcasting an gossiping in communication networks,
Networks 26 (1996), 143-156.

11. Santoro, N., Widmayer, P., Distributed function evaluation in the presence of trans-
mission faults, in: SIGAL’90, LNCS 450, Springer Verlag, Berlin, 1990, 358-369.


	Introduction
	Model and Basic Facts
	Optimal Upper Bound on the Broadcasting Time

