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Abstract. Instruction-level parallelism of stack codes like Java is severely
limited by accessing the operand stack sequentially. To resolve this problem in
Java processor design, our earlier works have presented stack operations folding
to reduce the number of push/pop operations in between the operand stack and
the local variable. In those studies, Java bytecodes are classified into three
major POC types. Statistical data indicates that the 4-foldable strategy of the
POC folding model can eliminate 86% of push/pop operations. In this research
note, we propose an Enhanced POC (EPOC) folding model to eliminate more
than 99% of push/pop operations with an instruction buffer size of 8 bytes and
the same 4-foldable strategy. The average issued instructions per cycle for a
single pipelined architecture is further enhanced from 1.70 to 1.87.

1 Introduction

Internet has become the most feasible means of accessing information and performing
electronic transactions. Java [1] is the most popular language used over the Internet
owing to its portability, compact code size, object-oriented, multi-threaded nature,
and write-once-run-anywhere characteristics.

The performance of the stack-based Java Virtual Machine (JVM) [2, 3] is limited
by true data dependency. A means of avoiding such a limitation, i.e. stack operations
folding, was proposed by Sun Microelectronics [4, 5, 6, 7] with folding capabilities of
up to 2 and 4 bytecode. While executing, pre-defined and pre-stored folding patterns
are compared with bytecodes in instruction stream sequentially. Consequently, we
call this kind of folding as fixed-folding-pattern matching. Other researchers [8, 9, 10]
have also proposed the folding method of this fixed-matching type.

In our earlier study, we proposed a dynamic-folding-pattern matching named POC
folding model [11]. All bytecode instructions are classified into three major POC
(Producer, Operator, and Consumer) types. Table 1 lists the POC types and the ‘O’
type is further divided into four sub-types according to their execution behavior.
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Table 1. POC Instruction Types

POC Description Occurrence
P An operation that pushes constant or loads variable from LV to OS 47.14%
Or  An operation that will be executed in execution units 10.87%
Op  An operation that conditionally branches or jumps to target address 11.54%
Oc  An operation that will be executed in micro-ROM or trap 22.19%
Ot An operation that will force the folding check to be terminated 3.96%
C  An operation that pops the value from OS and stores it into LV 4.29%

In the POC folding model, foldability check is performed by examining each pair
of consecutive instructions. By applying the POC folding rules, the two consecutive
bytecode instructions may be combined into a new POC type, which is used in further
foldability check with the following bytecode instructions. Consequently, the POC
folding model is quite different from the fixed-matching one because there is no
fixed-instruction-pattern. The POC folding rules can be represented as a state diagram
shown in Fig. 1. If the Ps are not consumed immediately by O or C type instructions,
they will be issued sequentially.

Start Folding Rule
Check

nd Folding Rule
Check

Fig. 1. Folding Rules for POC Model

2 Enhanced POC Folding Model

The main improvement of the EPOC model over the POC model is the capability of
folding the discontinuous Ps. As shown in Fig. 2, the P Counting state will record
how much Ps are there before the O or C type instructions. If there is no O or C type
instruction in the instruction buffer, the Ps will be issued sequentially to the execution
unit like the POC does. The C Counting state will check whether the preceding state
is Og state or P Counting state. If the preceding state is O, C Counting state will fold
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the Cs into Og. If it is P Counting state, then Ps are folded into Cs according to the
number of Cs. Otherwise, if the C type instruction is the first instruction in instruction
buffer, the EPOC issues the C sequentially.

Fig. 2. Folding Rules for EPOC Folding Model

3  Performance Comparison of Various Folding Models

In Fig. 3, the average percentages of eliminated P + C type instructions for different
foldability are shown. Note that the picoJava-II has the foldability of four according
to the released specification. We duplicate the picoJava-II’s performance results to
each column for comparison only. The issued instructions per cycle (IIPC) for a
single pipelined picoJava-II architecture for each model is shown in Fig. 4.
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Fig. 3. Average Percentages of Eliminated P + C Type Instructions
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Fig. 4. Issued Instructions per Cycle for Each Folding Model
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4 Conclusion

In this research note, we have proposed the EPOC folding model based on the
previously proposed POC folding model. The dynamic-folding-pattern matching of
POC and EPOC overrides the fixed-folding-pattern matching used in picoJava-II with
the folding ratio of 39% and 61%, respectively.

The performance enhancement from POC to EPOC folding model benefits mainly
from the foldability of discontinuous P type instructions, which results 85.5% and
99.0%.folding ratio using the 4-foldable strategy, respectively. That is, 44% and
50.9% program codes are folded, respectively.

The hardware implementation of the recursive EPOC folding model is integrated
into decoding stage using parallel priority encoders to generate the source and
destination fields of the FBI in constant delay time (non-recursive). Extra circuits
must be added to maintain the instruction buffer after folding. For a superscalar Java
processor of our current research, the EPOC folding model is integrated with the stack
reorder buffer. Furthermore, the source-ready FBIs can be issued in parallel to exploit
higher ILP.
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