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Abstract. Decoupled access/execute architectures seek to maximize per-
formance by dividing a given program into two separate instruction
streams and executing the streams on independent cooperating proces-
sors. The instruction streams consist of those instructions involved in
generating memory accesses (the Access stream) and those that consume
the data (the Execute stream). If the processor running the access stream
is able to get ahead of the execute stream, then dynamic pre-loading of
operands will occur and the penalty due to long latency operations (such
as memory accesses) will be reduced or eliminated.
Although these architectures have been around for many years, the per-
formance analyses performed have been incomplete for want of a com-
piler. Very little has been published on how to construct a compiler for
such an architecture. In this paper we describe the partitioning method
employed in Daecomp, a compiler for decoupled access/execute proces-
sors.

1 Introduction

Program execution can be viewed as a two-part process — the moving of data
to and from memory and the performing of some operation on that data. Con-
ceptually, these two steps can be represented by two cooperating processes, the
memory access process and the computation (or execute) process.

A decoupled architecture seeks to achieve high performance by running these
two processes on separate cooperating processors, allowing out-of-order execu-
tion between the two instruction streams. The processors both traverse the same
dynamic flow graph, though not necessarily at the same pace. To allow the pro-
cessors to execute different portions of the graph, architecturally visible queues
are employed to buffer information produced by one process for consumption by
the other. If the access process can run sufficiently ahead of the execute process
on this flow graph then it will dynamically preload the operands consumed by
the execute process and hide the latency of memory access operations. If this oc-
curs it is said that access process has slipped with respect to the execute process,
or that slip has been achieved.

The execution of the two processes on separate processors provides a sim-
ple mechanism for supporting limited out-of-order execution, and the ability to
issue more than one instruction per cycle. Because of its simplicity and poten-
tial ability to tolerate long memory latencies, there is a continuing interest in
decoupled architectures [8, 9, 10, 3, 12]. In particular, decoupled architectures
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may be of great interest in the growing field of power-conscious processor design
because the simplified method of exploiting ILP does not require many of the
large, power-hungry circuits needed by superscalar designs.

While decoupled processing has existed in various incarnations for years [7,
10, 1, 9] there has been very little published on the compilation techniques neces-
sary. The most fundamental compilation issue is how the instructions/operations
will be allocated or assigned to the access and execute processors. This process
is referred to as the partitioning of the code. In the rest of this paper we describe
the partitioning scheme employed by Daecomp, an ANSI-C compiler we devel-
oped to allow for a more complete analysis of decoupled processing. An example
of actual compiler output will be shown, as will some simulation results obtained
using Daecomp-produced code.

2 Background

Despite the appearance of decoupled architectures in the literature for many
years, very little information is available regarding the techniques necessary for
a decoupled compiler. At least two functioning decoupled compilers exist that
we are aware of, but both were for commercial products (the ZS-1 [7] and the
ACRI-1 [9]) and therefore details of the compiler construction have not been
published.

The research most closely related to the work we are presenting here was per-
formed by Topham et al. [8] in which they investigate source-code level transfor-
mations that can be made for the ACRI-1 with the goal of reducing the frequency
of AP-EP synchronization. Our work focuses on the lower-level partitioning task
performed by the compiler.

3 Processor Model

The two cooperating instruction streams produced by a decoupled compiler will
execute on two separate processing elements, which communicate in a message
passing manner via architecturally visible queues. A block diagram of the target
architecture is shown in Figure 1. Memory addresses are sent to memory via
the Load and Store Address Queues (LAQ,SAQ), and memory operands are
received or sent via the Load and Store Data Queues (LDQ,SDQ). In addition
to the LAQ-LDQ and SAQ-SDQ queue pairs, each processor in this model has
a complete set of alternate memory queues. These queues allow the processor to
perform loads and stores on its own behalf (self-loads and self-stores). There are
also Copy Queues (to allow data transfer between the processors) and Branch
Queues (to provide control flow synchronization).

Use of these queues allows instructions from the two instruction streams to
slip with respect to one other, providing dynamic scheduling and out-of-order
issue capabilities without requiring the architectural complexity of a superscalar
processors instruction window. Decoupling seeks to tolerate memory latency via
this dynamic scheduling, in particular via the early issue of memory operations.
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Fig. 1. Decoupled Access/Execute Processor - Conceptual Diagram

4 The Compiler

Daecomp is based on cbend, a multi-threaded compiler for the Concurro archi-
tecture produced by Bernard K. Gunther. The multi-threaded aspects of cbend
were stripped out and the code specific to decoupled compiling was added. In
addition, cbend’s register allocator and code emission routines underwent mod-
ifications, primarily to deal with the use of queues.

Aside from partitioning the code, perhaps the biggest challenge encountered
during compiler construction was handling function calls efficiently and correctly.
Since the compiler is responsible for parameter set-up on the stack and/or in the
parameter registers (each processor has its own register file), one major design
decision is whether each processor will have a private copy of the run-time stack
or if a single stack will be shared.

The decision impacts how function calls are managed, requiring different
protocols for parameter passing and different considerations for local (i.e., stack-
based) variable management. Passing parameters to a function under a single
shared stack model is simpler than under a private stack model, but since the
stack based variables are a shared resource there are a variety of potential perfor-
mance ramifications. For performance reasons a dual-stack model was initially
explored — unfortunately it proved to have a fatal flaw related to passing point-
ers to pointers so the partitioning technique detailed here assumes a single,
shared run-time stack.

5 Code Partitioning

The task of the compiler is to partition a directed acyclic graph into two sepa-
rate, cooperating, decoupled instruction streams based on def-use information.
The graph consists of nodes, which represent the instructions/operations to be
performed, and edges, which convey the dependencies between nodes. The goal is
to produce a partitioning that reasonably balances the processor workload and
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makes it possible for the two instruction streams to slip with respect to each
other.

In the partitioning technique employed by Daecomp, each operation is as-
signed to a processor based on the class of operation (e.g., address generation,
function parameter set-up, etc.) to which it belongs.

To start the marking process operations like loads and stores are designated
as anchors. Anchor nodes are either sinks or sources of expressions. Sink nodes
represent operations (e.g., stores) upon which no other operation directly de-
pends, while source nodes represent operations which do not depend directly on
any other operation (e.g., dequeuing a data value). Once the anchors are identi-
fied, the graph is again traversed, this time assigning (or marking1) instructions
which depend on an anchor (or on which an anchor depends) to the same pro-
cessor as the anchor. Interprocessor data dependencies are handled by inserting
copy instructions from one processor to the other where necessary.

Once the partitioning (detailed below) is completed the compiler has created
two graphs, one for each processor. Register allocation and code emission are
performed on each graph resulting in the decoupled object code file. The five-
step partitioning process will now be detailed.

Step 1: Anchor Return Value Usage
To minimize inter-processor copies it is desirable to anchor a function’s return

value calculation on the processor which is going to use the value. Unfortunately,
a function may be called from several different locations within the program (or
programs, in the case of a library routine) and the return value may be needed
on different processors depending upon the calling location. Additionally, it is
unlikely the compiler will have any information regarding the caller(s) of the
function that it is compiling.

Therefore, it must be determined a priori which is the return value processor.
The node which puts the return value into the return value register is marked
for the return value processor and serves as an anchor. The compiler currently
requires all return values to reside on the EP2.

Step 2: Split Loads and Stores
The splitting of memory accesses into address and data portions lies at the

heart of decoupled processing. Load operations are split into two parts: the
operation that enqueues the load address onto the load queue, and the operation
that dequeues the loaded data from the load data queue. Stores are similarly split
into the operation which enqueues the store address and the operation which
enqueues the store data.

1 A node which is marked has been assigned to a processor. A node which has not yet
been assigned to a processor is unmarked.

2 In the future, the compiler will be modified to handle return values more intelligently.
For a function which does not return a pointer it will assume that the value computed
is needed by the EP and thus the EP will be the return value processor. Pointer
valued functions are most likely computing a value related to an address calculation,
so the AP will be the return value processor if the return value is a pointer.
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UNIPROCESSOR ⇒ ACCESS PROCESSOR EXECUTE PROCESSOR
load rA, rB, 8 add LAQ, rB, 8 move rA, LDQ
store rX, rY, 8 add SAQ, rX, 8 move SDQ, rY

As indicated in the above example, the node which enqueues the load or store
address is assigned to the AP and the node which enqueues or dequeues the data
is marked for the EP; these nodes serve as anchors. For the load operation, the
node for the instruction which dequeues from the LDQ is a source node and
the node which enqueues the load address on the LAQ is a sink. For the store
operation, both the node for the instruction which enqueues the address on the
SDQ and the node which enqueues the data on the SDQ are sinks.

It is important to note that while the processors may be identical, the EP
cannot be allowed to enqueue addresses for data which the AP can access (e.g.,
global data or data on the AP’s stack), because there is the potential for the
violation of RAW, WAR, or WAW dependencies. So functionally speaking such
reverse decoupled loads and stores are not permitted. In the shared stack model
these restrictions result in the EP not be being permitted to use its alternate
memory queues.

Step 3: Propagate Load/Store Processor Markings
Propagation of markings entails starting at each of the anchors operations

and traversing the (sub)graph rooted at that anchor, assigning all unmarked
data-dependent nodes in the graph to the same processor as the anchor. The
propagation occurs in two directions, down from a sink and up from a source.
When propagating the markings down from a sink, the marking propagates down
through its children to all of its descendants. When propagating the marking
up from a source, the marking propagates up through its parents to all of its
ancestors.

If during the traversal a node is encountered that is marked for the other pro-
cessor, a copy is necessary in order to communicate the value from one processor
to the other. In the below example of an AP-to-EP copy, AP line 2 enqueues the
value on the copy queue, and EP line 1 dequeues the value from the copy queue.

ACCESS PROCESSOR EXECUTE PROCESSOR
1: add rA, rB, 8 sub rY, CPQ, rX
2: move CPQ, rA

The compiler attempts to avoid EP-to-AP copy operations as they intro-
duce slip-reducing dependencies. The fact that a copy is required means that
the value is needed by both processors and thus the computing expression is a
common sub-expression (CSE). If the CSE is inexpensive to compute, common
sub-expression replication may be employed (in which both processors perform
the calculation of the sub-expression). If the CSE is too expensive to replicate,
but cheap enough that moving it to the AP would not lead to grossly unbalanced
code, it is moved to the AP (it is stolen) and an AP-to-EP copy is inserted. Allow-
ing the AP to steal the sub-expression eliminates the need for the slip-reducing
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EP-to-AP copy. If this common sub-expression stealing would result in code bal-
ancing problems, or is otherwise infeasible, an EP-to-AP copy is inserted. The
compiler makes these decisions by estimating the computation cost of the sub-
expression and comparing it to threshold values3. Copies related to load and
store operations may also be eliminated by converting standard decoupled loads
or stores into self-loads or self-stores on the access processor.

If an EP-to-AP copy is unavoidable, the compiler performs code scheduling
in order to minimize the impact of the copy. The EP’s enqueuing operation is
placed as early as possible in its instruction stream, and the AP’s dequeuing
operation is placed as late as possible in its instruction stream. This technique
is used extensively with function parameters.

Step 4: Branch Splitting
After marking propagation, conditional branch operations are split into their

two cooperating counterparts, the external branch operation and the branch from
queue operation. An external branch is a conventional branch which also writes
the branch decision (taken/not taken) to the processor’s outgoing branch queue,
while a branch from queue (bfq) is a conditional branch that is taken or not
based on the value at the head of the processor’s incoming branch queue. This
mechanism allows the processors to traverse the flow graph in identical fashion
by easily synchronizing control flow decisions. In the below example the x in the
brxnz indicates an external branch.

UNIPROCESSOR ⇒ ACCESS PROCESSOR EXECUTE PROCESSOR
cmpne rC, rA, rB cmpne rC, rA, rB
brnz rC, @L1 brxnz rC, @L1 bfq @L1

This splitting is only performed on conditional branches. Unconditional flow
control operations (e.g., jumps, function calls) are simply duplicated on each of
the processors and do not need to be split.

The compiler must determine which processor is to receive each of the two
branch operation components. There are several issues to be considered when
making this decision — for example, if the bfq is put on the AP then a slip
reducing AP-on-EP dependency is introduced. In order to avoid such dependen-
cies, the compiler makes every attempt to put the comparison and the external
branch on the AP and the bfq on the EP. Forcing the comparison to be on the
AP may, however, significantly impact code balance between the AP and EP. For
example, functions which approximate solutions to equations often iterate until
two successive approximations are within a pre-specified limit. In this case the
EP is the natural choice to perform the value computations, and moving these
computations to the AP would leave the EP with little or nothing to do, nega-
tively impacting performance. Therefore, the compiler takes into account both
existing processor markings and the cost of the sub-expression which performs
the comparison when determining the branch assignments.
3 If an AP to EP copy is required then the only consideration is code expansion due

to the copy operations. In this case replication of the CSE is employed only if the
CSE consists of a small number of low-latency instructions.
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Step 5: Propagate All Markings
At this point in the process the entire graph has been traversed and node

markings have been propagated to the ancestors and descendants of the anchor
nodes. The final step is to traverse the graph once more with node markings be-
ing propagated from all nodes. As described previously, copies are inserted where
necessary and common sub-expressions may be replicated. The propagation con-
tinues as long as it results in changes to the graph (by copy insertion, processor
markings, or common sub-expression replication). Once this process terminates
there are no unmarked nodes and the two graphs have been extracted.

6 Example Compiler Output

This section presents the compiler output for a simple source file which computes
the sum of a sequence of integers (shown in left-most column of Figure 2). This
program was chosen because it includes examples of decoupled loads and stores,
self loads and stores, copies, external branches, and branch from queue opera-
tions. Figure 2 also shows the decoupled access/execute code generated by the
compiler. The labels of the form @FSxx are stack frame sizes and are simply used
to make adjustments to the stack pointer (r30). r1 is the return value register.
A single parameter register was used in order to illustrate parameter passing
both in a register and on the stack. Relevant assembly language explanations
are given in Table 1.

Opcode Description

mvfq dest, queue Move from queue: dest = value at head of queue

brnz src1, label Branch not zero: if(src1){PC = label}
brxnz src1, label Branch external not zero: if(src1){PC = label}, send results

of branch to branch queue

bfq label Branch from queue: if(value on branch queue){PC = label}

Table 1. Selected Assembly Language Opcodes

Looking at Figure 2 one can see an example of a standard decoupled load on
line 14 on the AP (AP.14) and line 21 on the EP (EP.21). AP.2 and EP.3 are the
two halves of a standard decoupled store. An example of a slip-reducing copy
is on lines EP.1 and AP.11; this particular copy is used to send the parameter
passed in register 2 on the EP to the AP. Note that the slip reducing effect is
mitigated by placing the producer operation before the SDQ accesses (EP.3 -
EP.5) which save temporary registers for the EP, and the consumer operation
after the corresponding SAQ, ASAQ, and ASDQ accesses (AP.2-AP.10) which
assist the EP in saving its temporaries, and save the AP temporaries. EP.21
and EP.22 set up the first parameter to sum() in r2. AP.32 and EP.20 store the
second parameter to sum() on the stack. AP.18 is an external branch and EP.10
is the corresponding branch from queue operation.
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int sol;

int sum(int a, int b)

{
int i, sum = 0;
for (i = a; i <= b; i++)

sum += i;
return sum;

}

void main(void)

{
int a = 1, b = 100;

sol = sum(a,b);
return;

}

1 sum: addc r30, r30, @FSaf

2 addc SAQ, r30, -56
3 addc SAQ, r30, -52
4 addc SAQ, r30, -48

5 addc ASAQ, r30, -44
6 mvut ASDQ, r5

7 addc ASAQ, r30, -40
8 mvut ASDQ, r4

9 addc ASAQ, r30, -36
10 mvut ASDQ, r3
11 mvut r2, CPQ

12 addc ALAQ, r30, b-@FSaf
13 mvfq r3, ALDQ

14 mvut r4, r2
15 br @L5
16 @L3: addc r4, r4, 1

17 @L5: cmpw r23, r3, r4, LT
18 brxnz r23, @L4

19 br @L3
20 @L4: addc LAQ, r30, -56

21 addc LAQ, r30, -52
22 addc LAQ, r30, -48
23 addc ALAQ, r30, -44

24 addc ALAQ, r30, -40
25 addc ALAQ, r30, -36

26 mvfq r5, ALDQ
27 mvfq r4, ALDQ
28 mvfq r3, ALDQ

29 subc r30, r30, @FSaf
30 ret

31 main: addc r30, r30, @FScm

32 addc SAQ, r30, 0-16
33 call sum
34 addc SAQ, 0, sol

35 subc r30, r30, @FScm
36 halt

1 sum: mvut CPQ, r2

2 addc r30, r30, @FSaf
3 mvut SDQ, r5
4 mvut SDQ, r4

5 mvut SDQ, r3
6 addi r5, 0, 0

7 mvut r4, r2
8 br @L5

9 @L3: addc r4, r4, 1
10 @L5: bfq @L4
11 addw r5, r5, r4

12 br @L3
13 @L4: mvut r1, r5

14 mvfq r5, LDQ
15 mvfq r4, LDQ
16 mvfq r3, LDQ

17 subc r30, r30, @FSaf
18 ret

19 main: addc r30, r30, @FScm

20 addi SDQ, 0, 100
21 addi r3, 0, 1
22 mvut r2, r3

23 call sum
24 mvut SDQ, r1

25 subc r30, r30, @FScm
26 halt

Source Code Access Processor Execute Processor

Fig. 2. Source and Assembly Code for Compilation Example

7 Results

The book Numerical Recipes in C contains a wide variety of algorithms, eight
of which were selected as a representative sample [5]. These benchmarks have
between 82 and 163 lines of source code which result in actual instructions in
the executable (i.e., no comments or variable declarations are counted).

The decoupled simulator (Decsim) is written in C and accepts a simple object
code format containing tuples of <OPCODE OP1 OP2 OP3>. The simulator mod-
els individual processors that are simple, single-issue, in-order execution, RISC
style processors. They employ a five-stage pipeline with hardware interlocks and
data forwarding. Each processor has 32 registers and assumes a perfect instruc-
tion cache. Infinite depth queues are used to make the results independent of
any queue resource constraints. The memory latency of 18 cycles for the first
word and 2 cycles for each subsequent word in a memory line/block was selected
based on current memory technology. Decsim can operate in either a decoupled
or uniprocessor mode. The uniprocessor mode does not use queues, instead re-
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lying on standard load and store operations to communicate with memory. In
the uniprocessor mode a data cache is employed; no data cache is used in the
decoupled mode.

Figure 3 shows the speed-up achieved by running the benchmarks on the two-
processor decoupled architecture vs. a uniprocessor architecture with an 8K-byte
cache4 at memory latency of 20 cycles. With the 20 cycle memory the average
speed-up is only 1.06, with four of the benchmarks actually running slower on
decoupled processor. In all four of poor performing benchmarks the AP spends
over 50% of its cycles stalled on either an empty branch or copy queue. As a
basis for comparison the original fourteen Livermore Loops were compiled and
simulated showing considerable speed-up (2.05 on average) corroborating the
results from the previous studies of decoupling using these benchmarks [11, 2].

Intuitively, a speed-up of less than 1.0 seems unlikely since the decoupled
processor enjoys a 2:1 advantage in raw processor resources. However, poor de-
coupled performance can occur if the decoupled processor is unable to achieve
slip and the AP experiences the full memory latency on each memory access,
while good uniprocessor performance can result if the cache hit rate is high. If
these two events occur for the same benchmark the decoupled processor would
run significantly slower than the uniprocessor. Investigation into the run-time
behavior indicates that the poor performance is attributable to control depen-
dencies and copy operations significantly limiting the slip — research is ongoing
on techniques to address these issues. Daecomp was used to perform many other
experiments, the results of which are available in [6].
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Fig. 3. Speed-Up Comparison with 20 Cycle Memory Latency — NRC

4 If a typical cache size were used with the benchmarks in question, the cache would
like suffer only compulsory/first reference misses, and conflict and capacity misses
would likely not be an issue. Therefore, a small cache was used in order to keep it on
scale with the working sets of the benchmarks. The cache selected resulted in overall
hit rate of 97%.
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8 Conclusion

To fully evaluate any architecture a compiler is needed, for this reason the de-
coupled access/execute compiler Daecomp was constructed. The primary role
of a a decoupled compiler is to partition the instructions into two cooperat-
ing instruction streams. Daecomp implements a five-step partitioning process
to identify the access and execute instruction streams. The results of some of
these studies performed with Daecomp confirmed published result obtained us-
ing small, hand-compiled benchmarks [11, 1, 4, 2]. However, using larger, more
varied benchmarks revealed that many of these earlier conclusions were erro-
neous, underscoring the importance of constructing a compiler. Further work
is planned to determine if the architectural model can be modified to permit
speculative execution, or to employ data caches.
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