

A Callgraph-Based Search Strategy
for Automated Performance Diagnosis1

Abstract. We introduce a new technique for automated performance diagno-
sis, using the program’s callgraph. We discuss our implementation of this di-
agnosis technique in the Paradyn Performance Consultant. Our implementa-
tion includes the new search strategy and new dynamic instrumentation to re-
solve pointer-based dynamic call sites at run-time. We compare the
effectiveness of our new technique to the previous version of the Perform-
ance Consultant for several sequential and parallel applications. Our results
show that the new search method performs its search while inserting dramat-
ically less instrumentation into the application, resulting in reduced applica-
tion perturbation and consequently a higher degree of diagnosis accuracy.

1 Introduction

Automating any part of the performance tuning cycle is a valuable activity, especially
where intrinsically complex and non-deterministic distributed programs are concerned.
Our previous research has developed techniques to automate the location of perform-
ance bottlenecks [4,9], and other tools can even make suggestions as to how to fix the
program to improve its performance [3,8,10]. The Performance Consultant (PC) in the
Paradyn Parallel Performance Tools has been used for several years to help automate
the location of bottlenecks. The basic interface is a one-button approach to performance
instrumentation and diagnosis. Novice programmers immediately get useful results that
help them identify performance-critical activities in their program. Watching the Per-
formance Consultant in operation also acts as a simple tutorial in strategies for locating
bottlenecks. Expert programmers use the Performance Consultant as a head start in di-
agnosis. While it may not find some of the more obscure problems, it saves the pro-
grammer time in locating the many common ones.

Harold W. Cain Barton P. Miller Brian J.N. Wylie
{cain,bart,wylie}@cs.wisc.edu
http://www.cs.wisc.edu/paradyn

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685, U.S.A.
A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 108-122, 2000.
© Springer-Verlag Berlin Heidelberg 2000

An important attribute of the Performance Consultant is that it uses dynamic instru-
mentation [5,11] to only instrument the part of the program in which it is currently in-

1. This work is supported in part by Department of Energy Grant DE-FG02-93ER25176,
Lawrence Livermore National Lab grant B504964, NSF grants CDA-9623632 and EIA-
9870684, and DARPA contract N66001-97-C-8532. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 109

terested. When instrumentation is no longer needed, it is removed. Insertion and remov-
al of instrumentation occur while the program is running unmodified executables. In-
strumentation can include simple counts (such as function calls or bytes of I/O or
communication), process and elapsed times, and blocking times (I/O and synchroniza-
tion).

While the Performance Consultant has shown itself to be useful in practice, there
are several limitations that can reduce its effectiveness when operating on complex ap-
plication programs (with many functions and modules). These limitations manifest
themselves when the PC is trying to isolate a bottleneck to a particular function in an
application’s code. The original PC organized code into a static hierarchy of modules
and functions within modules. An automated search based on such a tree is a poor way
to direct a search for bottlenecks, for several reasons: (1) when there is a large number
of modules, it is difficult to know which ones to examine first, (2) instrumenting mod-
ules is expensive, and (3) once a bottleneck is isolated to a module, if there is a large
number of functions within a module, it is difficult to know which ones to examine first.

In this paper, we describe how to avoid these limitations by basing the search on the
application’s callgraph. The contributions of this paper include an automated perfor-
mance diagnostic strategy based on the application’s callgraph, new instrumentation
techniques to discover callgraph edges in the presence of function pointers, and a dem-
onstration of the effectiveness of these new techniques. Along with the callgraph-based
search, we are able to use a less expensive form of timing primitive, reducing run-time
overhead.

The original PC was designed to automate the steps that an experienced program-
mer would naturally perform when trying to locate performance-critical parts of an ap-
plication program. Our callgraph enhancements to the PC further this theme. The gen-
eral idea is that isolating a problem to a part of the code starts with consideration of the
main program function and if it is found to be critical, consideration passes to each of
the functions it calls directly; for any of those found critical, investigation continues
with the functions that they in turn call. Along with the consideration of called func-
tions, the caller must also be further assessed to determine whether or not it is a bottle-
neck in isolation. This repeats down each exigent branch of the callgraph until all of the
critical functions are found.

The callgraph-directed Performance Consultant is now the default for the Paradyn
Parallel Performance tools (as of release 3.0). Our experience with this new PC has been
uniformly positive; it is both faster and generates significantly less instrumentation
overhead. As a result, applications that previously were not suitable for automated di-

agnosis can now be effectively diagnosed.

The next section describes Paradyn’s Performance Consultant in its original form,
and later Section 4 describes the new search strategy based on the application program’s
callgraph. The callgraph-based search needs to be able to instrument and resolve func-
tion pointers, and this mechanism is presented in Section 3. We have compared the ef-
fectiveness of the new callgraph-based PC to the original version on several serial and
parallel applications, and the experiments and results are described in Section 5.

110 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

2 Some Paradyn Basics

Paradyn [9] is an application profiler that uses dynamic instrumentation [5,6,11] to in-
sert and delete measurement instrumentation as a program runs. Run-time selection of
instrumentation results in a relatively small amount of data compared to static (compile
or link time) selection. In this section, we review some basics of Paradyn instrumenta-
tion, then discuss the Performance Consultant and its original limitations when trying
to isolate a bottleneck to particular parts of a program’s code.

2.1 Exclusive vs. Inclusive Timing Metrics
Paradyn supports two types of timing metrics, exclusive and inclusive. Exclusive met-
rics measure the performance of functions in isolation. For example, exclusive CPU
time for function foo is only the time spent in that function itself, excluding its callees.
Inclusive metrics measure the behavior of a function while it is active on the stack. For
example, inclusive time for a function foo is the time spent in foo, including its
callees. Timing metrics can measure process or elapsed (wall) time, and can be based
on CPU time or I/O, synchronization, or memory blocking time.

Paradyn inserts instrumentation into the application to make these measurements.
For exclusive time (see Figure 1a), instrumentation is inserted to start the timer at the
function’s entry and stop it at the exit(s). To include only the time spent in this function,

(a) Exclusive Time (b) Inclusive Time

Figure 1 Timing instrumentation for function foo.

foo()
{

stopTimer(t)

startTimer(t)

}

bar();

car();
stopTimer(t)

stopTimer(t)

startTimer(t)

startTimer(t)

foo()
{startTimer(t)

}

bar();

car();

stopTimer(t)

we also stop the timer before each function call site and restart it after returning from
the call. Instrumentation for inclusive time is simpler; we only need to start and stop the
timer at function entry and exit (see Figure 1b). This simpler instrumentation also gen-
erates less run-time overhead. A start/stop pair of timer calls takes 56.5 µs on a SGI Or-
igin. The savings become more significant in functions that contain many call sites.

2.2 The Performance Consultant
Paradyn’s Performance Consultant (PC) [4,7] dynamically instruments a program with
timer start and stop primitives to automate bottleneck detection during program execu-

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 111

tion. The PC starts searching for bottlenecks by issuing instrumentation requests to col-
lect data for a set of pre-defined performance hypotheses for the whole program. Each
hypothesis is based on a continuously measured value computed by one or more Para-
dyn metrics, and a fixed threshold. For example, the PC starts its search by measuring
total time spent in computation, synchronization, and I/O waiting, and compares these
values to predefined thresholds. Instances where the measured value for the hypothesis
exceeds the threshold are defined as bottlenecks. The full collection of hypotheses is or-
ganized as a tree, where hypotheses lower in the tree identify more specific problems
than those higher up.

We represent a program as a collection of discrete program resources. Resources
include the program code (e.g., modules and functions), machine nodes, application
processes and threads, synchronization objects, data structures, and data files. Each
group of resources provides a distinct view of the application. We organize the program
resources into trees called resource hierarchies, the root node of each hierarchy labeled
with the hierarchy’s name. As we move down from the root node, each level of the hi-
erarchy represents a finer-grained description of the program. A resource name is
formed by concatenating the labels along the unique path within the resource hierarchy
from the root to the node representing the resource. For example, the resource name that
represents function verifyA (shaded) in Figure 2 is < /Code/testutil.C/verifyA>.

For a particular performance measurement, we may wish to isolate the measure-
ment to specific parts of a program. For example, we may be interested in measuring I/
O blocking time as the total for one entire execution, or as the total for a single function.

Figure 2 Three Sample Resource Hierarchies: Code, Machine, and SyncObject.

vect::addel

verifyB

verifyA

printstatus

mainmain.C

testutil.C

vect.C
vect::findel

vect::print

CPU_1

CPU_2

CPU_3

CPU_4

Code Machine SyncObject
Semaphore

SpinLock

Barrier

Message
A focus constrains our view of the program to a selected part. Selecting the root node
of a resource hierarchy represents the unconstrained view, the whole program. Select-
ing any other node narrows the view to include only those leaf nodes that are immediate
descendents of the selected node. For example, the shaded nodes in Figur e2 represent
the constraint: code function verifyA running on any CPU in the machine, which is
labeled with the focus: < /Code/testutil.C/verifyA, /Machine >.

Each node in a PC search represents instrumentation and data collection for a
(hypothesis : focus) pair. If a node tests true, meaning a bottleneck has been found, the

112 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

Performance Consultant tries to determine more specific information about the bottle-
neck. It considers two types of search expansion: a more specific hypothesis and a more
specific focus. A child focus is defined as any focus obtained by moving down along a
single edge in one of the resource hierarchies. Determining the children of a focus by
this method is referred to as refinement. If a pair (h : f) tests false, testing stops and the
node is not refined. The PC refines all true nodes to as specific a focus as possible, and
only these foci are used as roots for refinement to more specific hypothesis construc-
tions (to avoid undesirable exponential search expansion).

Each (hypothesis : focus) pair is represented as a node of a directed acyclic graph
called the Search History Graph (SHG). The root node of the SHG represents the pair
(TopLevelHypothesis : WholeProgram), and its child nodes represent the refinements
chosen as described above. An example Paradyn SHG display is shown in Figur e3.

2.3 Original Paradyn: Searching the Code Hierarchy
The search strategy originally used by the Performance Consultant was based on the
module/function structure of the application. When the PC wanted to refine a bottleneck
to a particular part of the application code, it first tried to isolate the bottleneck to par-
ticular modules (.o/.so/.obj/.dll file). If the metric value for the module is above
the threshold, then the PC tries to isolate the bottleneck to particular functions within
the module.

This strategy has several drawbacks for large programs.

1. Programs often have many modules; and modules often have hundreds of functions.
When the PC starts to instrument modules, it cannot instrument all of them effi-
ciently at the same time and has no information on how to choose which ones to
instrument first; the order of instrumentation essentially becomes random. As a re-
sult, many functions are needlessly instrumented. Many of the functions in each
module may never be called, and therefore do not need to be instrumented. By using
the callgraph, the new PC operates well for any size of program.

2. To isolate a bottleneck to a particular module or function, the PC uses exclusive
metrics. As mentioned in Section 2.1, these metrics require extra instrumentation
code at each call site in the instrumented functions. The new PC is able to use the
cheaper inclusive metrics.

3. The original PC search strategy was based on the notion that coarse-grain instru-
mentation was less expensive than fine-grained instrumentation. For code hierarchy
searches, this means that instrumentation to determine the total time in a module
should be cheaper than determining the time in each individual function. Unfortu-

nately, the cost of instrumenting a module is the same as instrumenting all the func-
tions in that module. The only difference is that we have one timer for the entire
module instead of one for each function.

This effect could be reduced for module instrumentation by not stopping and start-
ing timers at call sites that call functions inside the same module. While this tech-
nique is possible, it provides such a small benefit, it was not worth the complexity.
Use of the callgraph in the new PC avoids using the code hierarchy.

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 113

Figure 3 The Original Performance Consultant with a Bottleneck Search in Progress.
The three items immediately below TopLevelHypothesis have been added as a result
of refining the hypothesis. ExcessiveSyncWaitingTime and ExcessiveIOBlocking-
Time have tested false, as indicated by node color (pink or light grey), and CPUbound
(blue or dark grey) has tested true and been expanded by refinement. Code hierarchy

module nodes bubba.c, channel.c, anneal.c, outchan.c, and random.c all tested
false, whereas modules graph.c and partition.c and Machine nodes grilled and brie

tested true and were refined. Only function p_makeMG in module partition.c was sub-
sequently found to have surpassed the bottleneck hypothesis threshold, and the final

stage of the search is considering whether this function is exigent on each Machine node
individually. (Already evaluated nodes with names rendered in black no longer contain
active instrumentation, while instrumented white-text nodes continue to be evaluated.)

114 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

3 Dynamic Function Call Instrumentation

Our search strategy is dependent on the completeness of the callgraph used to direct the
search. If all caller-callee relationships are not included in this graph, then our search
strategy will suffer from blind spots where this information is missing. Paradyn’s stan-
dard start-up operation includes parsing the executable file in memory (dynamically
linked libraries are parsed as they are loaded). Parsing the executable requires identify-
ing the entry and exits of each function (which is trickier than it would appear [6]) and
the location of each function call site. We classify call sites as static or dynamic. Static
sites are those whose destination we can determine from inspection of the code. Dynam-
ic call sites are those whose destination is calculated at run-time. While most call sites
are static, there is still a non-trivial number of dynamic sites. Common sources of dy-
namic call sites are function pointers and C++ virtual functions.

Our new instrumentation resolves the address of the callee at dynamic call sites by
inserting instrumentation at these sites. This instrumentation computes the appropriate
callee address from the register contents and the offsets specified in the call instruction.
New call destination addresses are reported to the Paradyn front-end, which then
updates its callgraph and notifies the PC. When the PC learns of a new callee, it incor-
porates the callee in its search. We first discuss the instrumentation of the call site, then
discuss how the information gathered from the call site is used.

3.1 Call Site Instrumentation Code
The Paradyn daemon includes a code generator to dynamically generate machine-spe-
cific instrumentation code. As illustrated in Figure 4, instrumentation code is inserted

foo:

Relocated
Instruction(s)

Trampoline
Base

Restore Regs

Trampoline(s)
Mini

StopTimer(t)

Program
Application

Save Regs

CallFlag++

Calculate Callee

(*fp)(a,b,c);

Figure 4 Simplified Control Flow from Application to Instrumentation Code.
A dynamic call instruction in function foo is replaced with branch instructions to the base
trampoline. The base trampoline saves the application’s registers and branches to a se-
ries of mini trampolines that each contain different instrumentation primitives. The final

mini trampoline returns to the base trampoline, which restores the application’s registers,
emulates the relocated dynamic call instruction, and returns control to the application.

Address

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 115

into the application by replacing an instruction with a branch to a code snippet called
the base-trampoline. The base-trampoline saves and restores the application’s state be-
fore and after executing instrumentation code. The instrumentation code for a specific
primitive (e.g. a timing primitive) is contained in a mini-trampoline.

Dynamic call instructions are characterized by the destination address residing in a
register or (sometimes on the x86) a memory location. The dynamic call resolution in-
strumentation code duplicates the address calculation of these call instructions. This
code usually reads the contents of a register. This reading is slightly complicated, since
(because we are instrumenting a call instruction) there are two levels of registers saved:
the caller-saved registers as well as those saved by the base trampoline. The original
contents of the register have been stored on the stack and may have been overwritten.
To access these saved registers, we added a new code generator primitive (abstract syn-
tax tree operand type). We have currently implemented dynamic call site determination
for the MIPS, SPARC, and x86, with Power2 and Alpha forthcoming.

A few examples of the address calculations are shown in Table 1. We show an ex-
ample of the type of instruction that would be used at a dynamic call site, and mini-tram-
poline code that would retrieve the saved register or memory value and calculate the
callee’s address.

3.2 Control Flow for Dynamic Call Site Instrumentation
To instrument a dynamic call site, the application is paused, instrumentation inserted,

Table 1: Dynamic callee address calculation.

Instruction
Set

Call Instruction
Mini-Trampoline

Address Calculation
Explanation

MIPS jalr $t9 ld $t0, 48($sp) Load $t9 from stack.

x86 call [%edi] mov %eax,-160(%ebp)
mov %ecx,[%eax]

Load %edi from stack.
Load function address
from memory location
pointed to by %eax.

SPARC jmpl %l0,%o7 ld [%fp+20],%l0
add %l0,%i7,%l3

Load %l0 from stack.
%o7 becomes %i7 in
new register window.
and the application resumed. The call site instrumentation is inserted on demand, i.e.,
only when the caller function becomes relevant to the bottleneck search. For example,
if function foo contains a dynamic call site, this site is not instrumented until the PC
identifies foo as a bottleneck, at which point we need to know all of the callees of foo.
By instrumenting these sites on demand, we minimize the amount of instrumentation in
the application. The flow of control for these steps is shown as steps 1 and 2 in Figure 5.

The call site instrumentation detects the first time that a callee is called from that
site. When a callee is first called from a site, the instrumentation code notifies the Para-
dyn daemon (step A in Figur e5), which notifies the PC in the Paradyn front-end (step

116 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

B). The new caller-callee edge is added to the callgraph and, if desired, instrumentation
can be inserted in the newly discovered callee (steps C and D).

We do not want to incur this communication and instrumentation cost each time that
a dynamic call site is executed. Fortunately, most call sites only call a few different
functions, so we keep a small table of callee addresses for each dynamic call site. Each
time that a dynamic call site is executed and a callee determined, we check this table to
see if it is a previously known caller-callee pair. If the pair has been previously seen, we
bypass the steps A-D.

Once the Paradyn daemon has notified the Performance Consultant of a new dy-
namic caller-callee relationship, the PC can take advantage of this information. If the
dynamic caller has been previously determined a bottleneck, then the callee must be in-
strumented to determine if it is also a bottleneck. A possible optimization to this se-
quence is for the Paradyn daemon to instrument the dynamic callee as soon as it is dis-
covered, thus reducing the added delay of conveying this information to the Paradyn
front-end and waiting for the front-end to issue an instrumentation request for the callee.
However, this optimization would require knowledge by the Paradyn daemon of the
type of instrumentation timing primitive desired for this callee, and would also limit the
generality of our technique for dynamic callee determination.

4 Callgraph-Based Searching

Figure 5 Control Flow between Performance Consultant and Application.
(1) PC issues dynamic call-site instrumentation request for function foo. (2) Daemon in-
struments dynamic call sites in foo. (A) Application executes call instruction and when
a new callee is found, runtime library notifies daemon. (B) Daemon notifies PC of new
callee bar for function foo. (C) PC requests inclusive timing metric for function bar.

(D) Daemon inserts timing instrumentation for bar.

Paradyn Front-End Paradyn Daemon Application

Performance
Consultant

main()
fp=bar;

foo()

(*fp)();

bar()
{

1. 2.

A.B.

C.
D.

Code

}

{

}

. . .Generator/
Splicer

Notifier
Runtime
Library

We have modified the Performance Consultant’s code hierarchy search strategy to di-
rect its search using the application’s callgraph. The remainder of the search hierarchies
(such as Machine and SyncObject) are still searched using the structure of their hierar-
chy; the new technique is only used when isolating the search to a part of the Code hi-
erarchy.

When the PC starts refining a potential bottleneck to a specific part of the code, it
starts at the top of the program graph, at the program entry function for each distinct

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 117

executable involved in the computation. These functions are instrumented to collect an
inclusive metric. For example, if the current candidate bottleneck were CPUbound, the
function would be instrumented with the CPU time inclusive metric. The timer associ-
ated with this metric runs whenever the program is running and this function was on the
stack (presumably, the entire time that the application is running in this case).

If the metric value for the main program function is above the threshold, the PC
uses the callgraph to identify all the functions called from it, and each is similarly in-
strumented with the same inclusive metric. In the callgraph-based search, if a function’s
sustained metric value is found to be below the threshold, we stop the search for that
branch of the callgraph (i.e., we do not expand the search to include the function’s chil-
dren). If the function’s sustained metric value is above the threshold, the search contin-
ues by instrumenting the functions that it calls. The search in the callgraph continues in
this manner until all possible branches have been exhausted either because the accumu-
lated metric value was too small or we reached the leaves of the callgraph.

Activating instrumentation for functions currently executing, and therefore found
on the callstack, requires careful handling to ensure that the program and instrumenta-
tion (e.g., active timers and flags) remain in a consistent state. Special retroactive in-
strumentation needs to be immediately executed to set the instrumentation context for
any partially-executed and now instrumented function, prior to continuing program ex-
ecution. Timers are started immediately for already executing functions, and conse-
quently produce measurements earlier than waiting for the function to exit (and be re-
moved from the callstack) before instrumenting it normally.

The callgraph forms a natural organizational structure for three reasons. First, a
search strategy based on the callgraph better represents the process that an experienced
programmer might use to find bottlenecks in a program. The callgraph describes the
overall control flow of the program, following a path that is intuitive to the programmer.
We do not instrument a function unless it is a reasonable candidate to be a bottleneck:
its calling functions are currently be considered a bottleneck. Second, using the
callgraph scales well to large programs. At each step of the search, we are addressing
individual functions (and function sizes are typically not proportional to the overall
code size). The total number of modules and functions do not effect the strategy. Third,
the callgraph-based search naturally uses inclusive time metrics, which are (often sig-
nificantly) less costly in a dynamic instrumentation system than their exclusive time
counterparts.

An example of the callgraph-based Paradyn SHG display at the end of a compre-
hensive bottleneck search is shown in Figure 6.
While there are many advantages to using this callgraph-based search method, it has
a few disadvantages. One drawback is that this search method has the potential to miss
a bottleneck when a single resource-intensive function is called by numerous parent
functions, yet none of its parents meet the threshold to be considered a bottleneck. For
example, an application may spend 80% of its time executing a single function, but if
that function has many parents, none of which are above the bottleneck threshold, our
search strategy will fail to find the bottleneck function. To handle this situation, it is
worth considering that the exigent functions are more than likely to be found on the

118 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

stack whenever Paradyn is activating or modifying instrumentation (or if it were to pe-

Figure 6 The Callgraph-based Performance Consultant after Search Completion.
This snapshot shows the Performance Consultant upon completion of a search with the
OM3 application when run on 6 Pentium II Xeon nodes of a Linux cluster. For clarity, all
hypothesis nodes which tested false are hidden, leaving only paths which led to the dis-
covery of a bottleneck. This view of the search graph illustrates the path that the Perform-
ance Consultant followed through the callgraph to locate the bottleneck functions. Six

functions, all called from the time_step routine, have been found to be above the spec-
ified threshold to be considered CPU bottlenecks, both in aggregation and on each of the
6 cluster nodes. The wrap_q, wrap_qz and wrap_q3 functions have also been deter-

mined to be synchronization bottlenecks when using MPI communicator 91 and message
tag 0.

riodically ‘sample’ the state of the callstack). A record kept of these ‘‘callstack sam-
ples’’ therefore forms an appropriate basis of candidate functions for explicit consider-
ation, if not previously encountered, during or on completion of the callgraph-based
search.

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 119

5 Experimental Results

We performed several experiments to evaluate the effectiveness of our new search
method relative to the original version of the Performance Consultant. We use three cri-
teria for our evaluation: the accuracy, speed, and efficiency with which the PC performs
its search. The accuracy of the search is determined by comparing those bottlenecks re-
ported by the Performance Consultant to the set of bottlenecks considered true applica-
tion bottlenecks. The speed of a search is measured by the amount of time required for
each PC to perform its search. The efficiency of a search is measured by the amount of
instrumentation used to conduct a bottleneck search; we favor a search strategy that in-
serts less instrumentation into the application. We describe our experimental set-up and
then present results from our experiments.

5.1 Experimental Setup
We used three sequential applications, a multithreaded application and two parallel ap-
plication for these experiments. The sequential applications include the SPEC95 bench-
marks fpppp (a Fortran application that performs multi-electron derivatives) and go (a
C program that plays the game of Go against itself), as well as Draco (a Fortran hydro-
dynamic simulation of inertial confinement fusion, written by the laser fusion groups at
the University of Rochester and University of Wisconsin). The sequential applications
were run on a dual-processor SGI Origin under IRIX 6.5. The matrix application is
based on the Solaris threads package and was run on an UltraSPARC Solaris 2.6 uni-
processor. The parallel application ssTwod solves the 2-D Poisson problem using MPI
on four nodes of an IBM SP/2 (this is the same application used in a previous PC
study[7]). The parallel application OM3 is a free-surface, z-coordinate general circula-
tion ocean model, written using MPI by members of the Space Science and Engineering
Center at the University of Wisconsin. OM3 was run on eight nodes of a 24-node SGI
Origin under IRIX 6.5. Some characteristics of these applications that affect the Perfor-
mance Consultant search space are detailed in Table 2. (All system libraries are explic-
itly excluded from this accounting and the subsequent searches.)

Table 2: Application search space characteristics.

Application
(Language)

Lines of
code

Number of
modules

Number of
functions

Number of
dynamic call sites

Draco (F90) 61,788 232 256 5

go (C) 26,139 18 376 1
fpppp (F77) 2,784 39 39 0

matrix (C/Sthreads) 194 1 5 0

ssTwod (F77/MPI) 767 7 9 0

OM3 (C/MPI) 2,673 1 28 3

120 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

We ran each application program under two conditions: first, with the original PC,
and then with the new callgraph-based PC. In each case, we timed the run from the start
of the search until the PC had no more alternatives to evaluate. For each run, we saved
the complete history of the performance search (using the Paradyn export facility) and
recorded the time at which the PC found each bottleneck.

A 5% threshold was used for CPU bottlenecks and 12% threshold for synchroniza-
tion waiting time bottlenecks. For the sequential applications, we verified the set of ap-
plication bottlenecks using the prof profiling tool. For the parallel applications, we used
Paradyn manual profiling along with both versions of the Performance Consultant to
determine their bottlenecks.

5.2 Results
We ran both the original and modified versions of the Performance Consultant for each
of the applications, measuring the time required to locate all of the bottlenecks. Each
experiment is a single execution and search. For OM3, the SGI Origin was not dedicat-
ed to our use, but also not heavily loaded during the experiments. In some cases, the
original version of the PC was unable to locate all of an application’s bottlenecks due
to the perturbation caused by the larger amount of instrumentation it requires. Tabl e3
shows the number of bottlenecks found by each version of the PC, and the time required
to complete each search. As we can see, the size of an application has a significant im-
pact on the performance of the original PC. For the small fpppp benchmark and matrix
application, the original version of the PC locates the application’s bottlenecks a little
faster than the callgraph-based PC. This is because they have few functions and no com-
plex bottlenecks (being completely CPUbound programs, there are few types and com-
binations of bottlenecks). As a result, the original Performance Consultant can quickly
instrument the entire application. The new Performance Consultant, however, always
has to traverse some portion of the application’s callgraph.

Table 3: Accuracy, overhead and speed of each search method.

Bottlenecks found in
complete search

Instrumentation
mini-tramps used

Required search time
(seconds)

Application Original Callgraph Original Callgraph Original Callgraph

Draco 3 5 14,317 228 1,006 322

go 2 4 12,570 284 755 278

For the larger applications, the new search strategy’s advantages are apparent. The
callgraph-based Performance Consultant performs its search significantly faster for

fpppp 3 3 474 96 141 186

matrix 4 5 439 43 200 226

ssTwod 9 9 43,230 11,496 461 326

OM3 13 16 184,382 60,670 2,515 957

A Callgraph-Based Search Strategy for Automated Performance Diagnosis 121

each program other than fpppp and matrix. For Draco, go, and OM3, the original Per-
formance Consultant’s search not only requires more time, but due to the additional per-
turbation that it causes, it is unable to resolve some of the bottlenecks. It identifies only
three of Draco’s five bottleneck functions, two of go’s four bottlenecks, and 13 of
OM3’s 16.

We also measured the efficiency with which each version of the Performance Con-
sultant performs its search. An efficient performance tool will perform its search while
inserting a minimum amount of instrumentation into the application. Table 3 also
shows the number of mini-trampolines used by the two search methods, each of which
corresponds to the insertion of a single instrumentation primitive. The new version of
the Performance Consultant can be seen to provide a dramatic improvement in terms of
efficiency. The number of mini-trampolines used by the previous version of the PC is
more than an order of magnitude larger than used by the new PC for both go and Draco,
and also significantly larger for the other applications studied. This improvement in ef-
ficiency results in less perturbation of the application and therefore a greater degree of
accuracy in performance diagnosis.

Although the callgraph-based performance consultant identifies a greater number
of bottlenecks than the original version of the of the performance consultant, it suffers
one drawback that stems from the use of inclusive metrics. Inclusive timing metrics
collect data specific to one function and all of its callees. Because the performance data
collected is not restricted to a single function, it is difficult to evaluate a particular func-
tion in isolation and determine its exigency. For example, only 13% of those functions
determined bottlenecks by the callgraph-based performance consultant are truly bottle-
necks. The remainder are functions which have been classified bottlenecks en route to
the discovery of true application bottlenecks. One solution to this inclusive bottleneck
ambiguity is to re-evaluate all inclusive bottlenecks using exclusive metrics. Work is
currently underway within the Paradyn group to implement this inclusive bottleneck
verification.

6 Conclusions

We found the new callgraph-based bottleneck search in Paradyn’s Performance Con-
sultant, combined with dynamic call site instrumentation, to be much more efficient in
identifying bottlenecks than its predecessor. It works faster and with less instrumenta-
tion, resulting in lower perturbation of the application and consequently greater accura-
cy in performance diagnosis.

Along with its advantages, the callgraph-based search has some disadvantages that

remain to be addressed. Foremost among them are blind spots, where exigent functions
are masked in the callgraph by their multiple parent functions, none of which them-
selves meet the threshold criteria to be found a bottleneck. This circumstance appears
to be sufficiently rare that we have not encountered any instances yet in practice. It is
also necessary to consider when and how it is most appropriate for function exigency
consideration to progress from using the weak inclusive criteria to the strong exclusive
criteria that determine true bottlenecks. The exclusive ‘refinement’ of a function found
exigent using inclusive criteria can be considered as a follow-on equivalent to refine-

122 Harold W. Cain, Barton P. Miller, and Brian J.N. Wylie

ment to its children, or as a reconsideration of its own exigency using the stronger cri-
teria. Additionally, it remains to be determined how the implicit equivalence of the main
program routine and ‘Code’ (the root of the Code hierarchy) as resource specifiers can
be exploited for the most efficient searches and insightful presentation.

Acknowledgements. Matthew Cheyney implemented the initial version of the static
callgraph structure. This paper benefited from the hard work of the members of the Paradyn re-
search group. While everyone in the group influenced and helped with the results in this paper,
we would like to specially thank Andrew Bernat for his support of the AIX/SP2 measurements,
and Chris Chambreau for his support of the IRIX/MIPS measurements. We are grateful to the
Laboratory for Laser Energetics at the University of Rochester for the use of their SGI Origin sys-
tem for some of our experiments, and the various authors of the codes made available to use. Ariel
Tamches provided constructive comments on the early drafts of the paper.

References

[1] W. Williams, T. Hoel, and D. Pase, “The MPP Apprentice performance tool: Delivering
the performance of the Cray T3D”, in Programming Environments for Massively Par-
allel Distributed Systems, K.M. Decker and R.M. Rehmann, editors, Birkhäuser, 1994.

[2] A. Beguelin, J. Dongarra, A. Geist, and V.S. Sunderam, “Visualization and Debugging in
a Heterogeneous Environment”, IEEE Computer 26, 6, June 1993.

[3] H.M. Gerndt and A. Krumme, “A Rule-Based Approach for Automatic Bottleneck Detec-
tion in Programs on Shared Virtual Memory Systems”, 2nd Int’l Workshop on High-Level
Programming Models and Supportive Environments, Genève, Switzerland, April 1997.

[4] J.K. Hollingsworth and B.P. Miller, “Dynamic Control of Performance Monitoring on
Large Scale Parallel Systems”, 7th Int’l Conf. on Supercomputing, Tokyo, Japan, July
1993.

[5] J.K. Hollingsworth, B.P. Miller and J. Cargille, “Dynamic Program Instrumentation for
Scalable Performance Tools”, Scalable High Performance Computing Conf., Knoxville,
Tennessee, May 1994.

[6] J.K Hollingsworth, B.P. Miller, M.J.R. Gonçalves, O. Naìm, Z. Xu, and L. Zheng, “MDL:
A Language and Compiler for Dynamic Program Instrumentation”, 6th Int’l Conf. on Par-
allel Architectures and Compilation Techniques, San Francisco, California, Nov. 1997

[7] K.L. Karavanic and B.P. Miller, “Improving Online Performance Diagnosis by the Use of
Historical Performance Data”, SC’99, Portland, Oregon, November 1999.

[8] J. Kohn and W. Williams, “ATExpert”, Journal of Parallel and Distributed Computing 18,
205–222, June 1993.

[9] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Kara-

vanic, K. Kunchithapadam, and T. Newhall, “The Paradyn Parallel Performance Measure-
ment Tool”, IEEE Computer 28, 11, pp. 37-46, November 1995.

[10] N. Mukhopadhyay (Mukerjee), G.D. Riley, and J.R. Gurd, “FINESSE: A Prototype Feed-
back-Guided Performance Enhancement System”, 8th Euromicro Workshop on Parallel
and Distributed Processing, Rhodos, Greece, January 2000.

[11] Z. Xu, B.P. Miller, and O. Naìm, “Dynamic Instrumentation of Threaded Applications”,
7th ACM Symp. on Principles and Practice of Parallel Programming, Atlanta, Georgia,
May 1999.

	1 Introduction
	2 Some Paradyn Basics
	2.1 Exclusive vs. Inclusive Timing Metrics
	2.2 The Performance Consultant
	2.3 Original Paradyn: Searching the Code Hierarchy
	3 Dynamic Function Call Instrumentation
	3.1 Call Site Instrumentation Code
	3.2 Control Flow for Dynamic Call Site Instrumentation
	4 Callgraph-Based Searching
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results
	6 Conclusions

