
A New Home-Based Software DSM Protocol for

SMP Clusters�

Weiwu Hu, Fuxin Zhang, and Haiming Liu

Institute of Computing Technology
Chinese Academy of Sciences, Beijing 100080

hww@water.chpc.ict.ac.cn

Abstract. This paper introduces an SMP protocol for the home-based
software DSM system JIAJIA. In the protocol, intra-node processes in
an SMP node share their home pages through hardware coherent sharing
so as to take the full advantage of the home effect of home-based software
DSMs. In contrast, cached remote pages of a process are not shared by
its intra-node partners to avoid cache page conflict within an SMP. Be-
sides, JIAJIA also implements the shared memory communication among
processes within the same SMP node to accelerate intra-node communi-
cation. Performance evaluation with some well accepted benchmarks and
real applications in a cluster of four two-processor nodes shows that the
SMP protocol of JIAJIA reduces remote accesses, diffs, and consequently
message amounts in all of the ten benchmarks and as a result obtains
noticeable performance improvement in seven.

1 Introduction

With the wide spread of symmetric multiprocessor (SMP) systems, cluster of
SMPs has been emerging as an attractive parallel processing platform to pro-
vide high performance with certain connectivity and affordable costs. Given the
convenient shared address programming model of SMPs, it is natural to extend
this convenience to the SMP clusters with shared virtual memory. The shared
virtual memory has the obvious advantages over the message passing alternative
on SMP clusters in that it can take the advantage of the efficient hardware-based
shared memory within an SMP. In a software DSM on cluster of SMPs, the SMP
hardware transparently provides shared memory at the cache line granularity for
intra-node sharing, while the software protocol is responsible for providing shared
memory at the page granularity for inter-node sharing.

Previous software DSMs on SMP clusters include the softFLASH system[3]
which implements a single-writer protocol for sequential consistency, the Shasta
system[12] which performs coherence through code instrumentation at cache-line
granularity, the Cashmere-2L[13] which is based on the DEC Memory Channel

� The work of this paper is supported by National Natural Science Foundation of
China (Grant No. 69703002) and National High Technology (863) Program (Grant
No. 863-306-ZD01-02-2).

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1132–1142, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A New Home-Based Software DSM Protocol for SMP Clusters 1133

network interface and network, the HLRC-SMP[11] which is an implementation
of a lazy, home-based, multiple-writer protocol across SMP nodes and which
uses the Virtual Memory Mapped Communication (VMMC-2) library for the
Myrinet network, and the modified version of TreadMarks[7] which uses POSIX
threads instead of processes to implement parallelism within a multiprocessor.

This paper introduces design and implementation of a new software DSM
protocol for SMP clusters. The protocol is designed and implemented on the
home-based software DSM system JIAJIA[4] and hence has a similar goal to the
HLRC-SMP protocol. The main difference between HLRC-SMP and the SMP
protocol of JIAJIA is that processes in an SMP share both home and cached
pages in HLRC-SMP, while only home pages are shared by intra-node processes
in JIAJIA. Sharing home pages among intra-node processes in SMP clusters
helps to take the full advantage of the home effect of home-based software DSMs,
i.e., the ability to dispense with page faults for references made by the home node
of a given page. Though sharing cached pages is helpful for all processes within
a node to benefit from a page fetch performed by one, it also causes cache page
conflict such as when a process is writing a cached page, another process in the
same node may covers this page due to a page fetch.

Another optimization JIAJIA makes for SMP clusters is the optimization
of intra-node communication. With this optimization, processes within an SMP
node communicate through shared memory.

The effect of the SMP protocol is evaluated on a Myrinet cluster of four two-
processor Ultra-2 nodes with ten benchmarks, include Water, Barnes, Ocean,
and LU from SPLASH2, MG and 3DFFT from NAS Parallel Benchmarks, SOR,
and TSP from TreadMarks benchmarks, and two real applications EM3D for
magnetic field computation and IAP18 for climate simulation. Evaluation results
show that the SMP optimization achieves a speedup of 4% − 5% in LU, SOR,
and EM3D, about 10% in MG and 3DFFT, and more than 20% in Ocean and
IAP18.

The rest of this paper is organized as follows. The following Section 2 briefly
introduces the JIAJIA software DSM system. Section 3 illustrates the SMP
protocol of JIAJIA. Section 4 presents experiment results and analysis. The
conclusion of this paper is drawn in Section 5.

2 The JIAJIA Software DSM System

In JIAJIA, each shared page has a home node and homes of shared pages are
distributed across all nodes. References to home pages hit locally, references to
non-home pages cause these pages to be fetched from their home and cached
locally. A cached page may be in one of three states: Invalid (INV), Read-Only
(RO), and Read-Write (RW). When the number of locally cached pages is larger
than the maximum number allowed, some aged cache pages must be replaced to
its home to make room for the new page. This allows JIAJIA to support shared
memory that is larger than physical memory of one machine.

1134 Weiwu Hu, Fuxin Zhang, and Haiming Liu

JIAJIA implements the scope memory consistency model. Multiple writer
technique is employed to reduce false sharing. In JIAJIA, the coherence of cached
pages is maintained through requiring the lock-releasing (or barrier arriving)
processor to send to the lock write notices about modified pages in the associated
critical section, and the lock-acquiring (or barrier leaving) processor to invalidate
cached pages that are notified as obsolete by the associated write-notices in the
lock. This protocol maintains coherence through write notices kept on the lock
and consequently eliminates the requirement of directory.

The following optimizations[4,6] are made to the protocol.
Single-Writer Detection. In the optimization, if a page is modified only

by its home processor during a synchronization interval, then it is unnecessary to
send the associated write notice to the lock manager at the end of the interval.
If a page is modified only by one remote processor during an interval, then
the processor who makes the modification need not invalidate the page on next
acquire or barrier.

Incarnation Number[8] Technique. With this optimization, each lock
is associated with an incarnation number which is incremented when the lock
is transferred. A processor records the current incarnation number of a lock on
an acquire of the lock. When the processor acquires the lock again, it tells the
lock manager its current incarnation number of the lock. With this knowledge,
the lock manager knows which write notices have been sent to the acquiring
processor on previous lock grants and excludes them from write notices sent
back to the acquiring processor at this time.

Lazy Home Page Write Detection. Normally, home pages are write-
protected at the beginning of a synchronization interval so that writes to home
pages can be detected through page faults. The lazy home page write detection
delays home page write-protecting until the page is first fetched in the interval
so that home pages that are not cached by remote processors do not need to be
write-protected.

Write Vector Technique. The write vector optimization is motivated by
the idea of fetching diffs only on a page fault in homeless protocols. It avoids
fetching the whole page on a page fault through dividing a page into blocks and
fetches only those blocks that are dirty with respect to the faulting processor
on a page fault. A write vector table is maintained for each shared page in its
home to record for each processor which block(s) has been modified since the
processor fetched the page last time.

Home Migration. The home migration optimization adaptively migrates
home of a page to the processor most frequently writes to the page, to reduce diff
overhead at the end of an interval because write to home pages does not produces
twin and diff in home-based protocol. In the home migration scheme, pages that
are written by only one processor between two barriers are recognized by the
barrier manager and their homes are migrated to the single writing processor.
Migration information is piggybacked on barrier messages and no additional
communication is required for the migration.

A New Home-Based Software DSM Protocol for SMP Clusters 1135

home

cache

��
��
��
��

home

cache

��
��
��
��

P1 P2 Pn−1 Pn· · ·

· · ·

· · ·

Interconnection Network

(a) HLRC-SMP

home

cache cache

��
��
��
��

home

cache cache

��
��
��
��

P1 P2 Pn−1 Pn· · ·
· · ·

· · ·

Interconnection Network

(b) JIAJIA-SMP

Fig. 1. Memory Organization of HLRC-SMP and JIAJIA-SMP

3 SMP Protocol for JIAJIA

3.1 Design Alternatives

Processors within an SMP can share data either through threads or through
processes. The thread model provides an intuitive and efficient method of sharing
data within an SMP. However, threads may cause some unexpected side effects.
First, all threads within an SMP implicitly share all global variables, which
makes it difficult to provide a uniform sharing memory between threads within
a node and threads in different nodes. Second, all threads within an SMP have
the same view of shared data, which means if a thread decides to invalidate a
shared page, the page is invalidated for other threads as well.

The alternative is to use processes within an SMP node to share memory.
One approach is to use shmget() and shmat() system calls. The major disadvan-
tage of this approach is that both the number of shared segments and segment
size are limited by the system, preventing it from being used by JIAJIA which
can support a large shared memory. Besides, the system overhead of shmget()
increases linearly with the number of segments[2].

Another and more efficient approach of sharing memory among processes
with an SMP is to rely on virtual memory management and the mmap() system
call (anonymous mapping with MAP SHARED parameter). JIAJIA adopts this ap-
proach after comparing the portability, programmability, ability to support large
memory, and implementation simplicity of all candidate alternatives. The disad-
vantage of this approach is that shared pages should be mapped before processes
are forked in an SMP node. To meet this requirement, JIAJIA reserves a shared
space before processes are forked in an SMP node at the initialization stage.

1136 Weiwu Hu, Fuxin Zhang, and Haiming Liu

3.2 SMP Protocol

Figure 1 shows the memory organization of HLRC-SMP and SMP protocol of
JIAJIA. As can be seen from Figure 1, the main difference between HLRC-SMP
and the SMP protocol of JIAJIA is that processes in an SMP share both home
and cached pages in HLRC-SMP, while only home pages are shared by processes
in an SMP in JIAJIA.

Home-based software DSMs benefit from the home effect, the ability to dis-
pense with page faults for references made by the home node of a given page.
In SMP clusters, there are several processes running on an SMP node, each pro-
cess is the home of part of the total shared pages. Sharing home pages among
processes within a node combine their home pages together so that each process
in the node “sees” a larger home.

Sharing cached pages within an SMP seems not so attractive to JIAJIA.
Though with shared cache a processor may benefit from a remote page fetch
carried out by another processor in the same SMP node, shared cache pages
cause sharing violation among processors within the same SMP. For example,
when a process fetches a page from its home, it has to ensure that no other
processes in the same node are currently writing to the page, otherwise the in-
coming page may overwrite these writes. Besides, to support shared space larger
than the physical memory of a machine, a cached page is dynamically mapped
and unmapped to the faulting address when the page is cached and flushed by
a process in JIAJIA. The dynamic mapping and unmapping of cached pages
violates the requirement that pages physically shared by intra-node processes
through mmap() should be mapped before intra-node processes are forked.

The decision of shared home and separated cache for intra-node processes
greatly simplifies the SMP protocol of JIAJIA. Each processor in an SMP main-
tains cache coherence as if in cluster of single-processor nodes. Sharing home
pages among intra-node processes is very simple and requires least modification
to JIAJIA. Though all processes share their home pages, each process has its
separate view (such as protect state) of a given home page and operates on the
page as if it is the unique home host of the page. To service remote page fetch
and diff request, one process is appointed as the real home host of a given page
and a page fetch or diff request is always sent to the real home host of the
faulting page. Real home hosts of shared pages in an SMP node are distributed
across all processes within the node to avoid bottleneck problem. The process
that regards a page as its home page, but does not service remote request about
the page, are called co-home host of the page.

Though the SMP protocol of JIAJIA is simplified in the absence of some
intra-node processes cache sharing related complexity, non-trivial issues still arise
when coordinating with some optimization methods of JIAJIA.

In the lazy home page write detection, the home page write-protecting that
are performed at the beginning of an interval is delayed until the page is first
fetched in the interval so that home pages that are not cached by remote pro-
cessors do not need to be write-protected. In the SMP protocol, a page fetch
request is only sent to the real home host of the page, co-home hosts do not

A New Home-Based Software DSM Protocol for SMP Clusters 1137

know when the page is first fetched at an interval. Therefor, the lazy home page
write detection technique is applied only to the real home host of a given page,
and the co-home hosts of a page write-protect the page at the beginning of each
interval as normal. With the observation that only the process that modifies
a page needs to detect the write, the real home host of a given page can be
dynamically shifted to the process that write the page most frequently.

In the write vector technique, a home page is divided into blocks and a
write vector table is maintained for each shared page in its home to record for
each processor which block(s) has been modified since the processor fetched the
page last time, so that only modified blocks are sent back when the processor
requires the page. In the normal protocol, updates by remote processors to a
page are recorded in the write vector table when diffs are applied, and updates
by the home node are recorded with the twin mechanism. In the SMP protocl,
the modifications made by the co-home hosts of a page should also be known
by the real home host. JIAJIA solves this problem through making the write
vector table of any given page shared among all processes within a node, so that
modifications to the write vector table made by co-home hosts are always visible
to the real home host.

The home migration technique also causes problem to the SMP protocol of
JIAJIA. As has been mentioned, the mmap() mechanism JIAJIA uses to share
physical memory among intra-node processes requires that shared pages are
mapped before intra-node processes are forked. In contrast, the home migration
algorithm of JIAJIA maps and unmaps pages dynamically during runtime. Com-
promise has to be made here that if the home of a shared page is migrated from
one node to another, then the advantage of sharing home page among intra-node
processes is given up for this page. The new home host is the real home host of
the page, no co-home host exists for this page.

3.3 Intra-node Communication

Another optimization JIAJIA makes for SMP clusters is the optimization of
intra-node communication. In the old version of JIAJIA which regards proces-
sors of an SMP as separate nodes, UDP protocol is used for communication
between two intra-node processes. With the SMP communication support, pro-
cesses within an SMP node communicate through shared memory.

To support shared memory intra-node communication, JIAJIA allocates a
shared communication buffer for each pair of intra-node processes. When a pro-
cess wants to send a message to another process within the same node, the
sending process first copies the message to the associated shared buffer. It then
sends a SIGIO signal to the receiving process through kill() system call. On
receiving the SIGIO signal, the receiving process directly reads the message from
the shared communication buffer and then sets a tag in the buffer to indicate
that the message has been read out. The sending process proceeds on observing
this receiving tag.

To keep the simplicity of implementation, the current version of JIAJIA does
not include some other SMP-related optimizations such as intra-node synchro-

1138 Weiwu Hu, Fuxin Zhang, and Haiming Liu

Table 1. Characteristics and Sequential Run time of Benchmarks

Appl. Size Mem. Barrs Locks Seq. Time(seconds)

Water 1728 mole. 0.5MB 70 1040 491.99

Barnes 16384 bodies 1.6MB 28 64 321.83

Ocean 514 ∗ 514 60MB 858 1568 54.88

LU 2048 ∗ 2048 32MB 128 0 133.45

SOR 2048 ∗ 2048 16MB 200 0 89.44

TSP -f20 -r15 0.8MB 0 1167 216.70

MG 256 ∗ 256 ∗ 256 443MB 592 0 398.56∗

3DFFT 128 ∗ 128 ∗ 128 96MB 12 0 74.05

EM3D 120 ∗ 60 ∗ 416 160MB 20 0 101.46

IAP18 144 ∗ 91 ∗ 18 20MB 5400 0 1994.95

∗: Estimated from 128 × 128× 128 MG sequential time (49.82 seconds).
Sequential time of 256 × 256 × 256 MG is unavailable due to memory
size limitation.

Table 2. Runtime Statistics of Parallel Execution

Appl. Msg. amt.(MB) Get pages Diffs
JIA JIAsmp JIA JIAsmp JIA JIAsmp

Water 36 29 3420 2870 1897 1373

Barnes 81 65 9076 7408 510 353

Ocean 891 563 107073 67733 1294 1132

LU 25 18 12072 8292 0 0

SOR 12 5.3 2823 1216 0 0

TSP 7.4 6.3 4965 4237 3236 2780

MG 553 260 32508 18025 43192 17016

3DFFT 149 129 17976 15408 56 48

EM3D 2.4 1.1 1200 528 990 420

IAP18 2943 1355 276643 136474 131136 49920

nization and locating fault pages in the caches of intra-node processes on page
faults.

4 Performance Evaluation

The evaluation is done in four Ultra-2 nodes connected by a Myrinet. Each node
has two 200MHz Ultra-sparc processor and 256MB memory.

The benchmarks include Water, Barnes, Ocean and LU from SPLASH2[14],
MG and 3DFFT from NAS Parallel Benchmarks[1], SOR and TSP from Tread-
Marks benchmarks[10], and two real applications EM3D for magnetic field com-
putation and IAP18 for climate simulation[5]. Table 1 gives characteristics and
sequential run time of these benchmarks.

A New Home-Based Software DSM Protocol for SMP Clusters 1139

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Execution Time(%)

smp smp smp smp smp smp smp smp smp smp

Water Barnes LU Ocean SOR TSP MG 3DFFT EM3D IAP18

67.54 51.16 24.46 63.90 13.98 35.16 105.30 22.71 14.25 572.36

Comp.

SEGV

Syn.

Server

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
....
.
....
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.
..
..
.

..

..

.
..
..
.

..

..

..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....
.
..
....
.
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
......
...

.........

......

...

..

..

.
..
..
..
..
.
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.....
.....
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
.
..
..
..
.
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2. Parallel Execution Time Breakdown

Each benchmark is run under JIAJIA both with (JIAsmp) and without (JIA)
SMP optimization. The four nodes of two-processor SMPs are configured as eight
separate hosts in JIA, and as four SMPs in JIAsmp.

Table 2 gives some statistics of the parallel execution. Message amount, re-
mote get page request count, and diff count are listed in Table 2 for each run of
each benchmark. Figure 2 shows parallel execution time results of the execution.
For each benchmark, the parallel execution time of JIA rides on the top of the
corresponding bar, and the parallel execution time of JIAsmp is represented as
percentages of the parallel execution time of JIA. In Figure 2, the execution time
of each parallel run is broken down into four parts: page fault (SIGSEGV service)
time, synchronization time, remote request (SIGIO) service time, and computa-
tion time. The first three parts of time are collected at runtime as the overhead
of the execution, and the computation time is calculated as the difference of the
total execution time and the total overhead.

It can be seen from Table 2 and Figure 2 that, all of the ten benchmarks have
less remote accesses, diffs, and consequently message amounts in JIAsmp than
in JIA and seven of them achieve noticeable speedups with the SMP protocol.

Figure 2 shows that JIAsmp achieves significant speedup over JIA in Ocean
(26.0%), MG (8.9%), 3DFFT (12.9%), and IAP18 (20.3%). The speedup of
Ocean turns from negative in JIA to positive in JIAsmp. The common prop-
erty of these four benchmarks is that their parallel speedup are not high. The
eight-processor speedup of JIA is negative in Ocean, and is less than four in MG,
3DFFT, and IAP18. Therefore there is large room for performance improvement.
Besides, the absolute number of remote accesses, diffs, and consequently message
amounts reduced by the SMP protocol is great in Ocean, MG, and IAP18. Table
2 shows that JIAsmp causes 300MB less message amounts than JIA in Ocean

1140 Weiwu Hu, Fuxin Zhang, and Haiming Liu

and MG, and 1.6GB less message amounts than JIA in IAP18. As a result of
the great reduction of page faults, both the SIGSEGV time and server time are
significantly reduced, as can be observed in Figure 2. The synchronization time
of Ocean, MG, and IAP18 are also reduced due to the reduction of the num-
ber of diffs (diffs are generated at synchronization points). In FFT, though the
message amount reduced by the SMP protocol is not as significant as the above
three benchmarks, JIAsmp still reduces SIGSEGV time significantly. It can also
be seen from Figure 2 that a great part of performance gains of JIAsmp over
JIA in FFT is caused by the reduction of computation time in JIAsmp. This fact
implies that FFT has better utilization of processor pipeline, cache, and TLB in
JIAsmp than in JIA.

Figure 2 also shows that LU, SOR, and EM3D obtain moderate performance
benefit (around 5%) from the SMP protocol. It can be seen from Table 2 that,
though JIAsmp has only 43%, 44%, and 69% remote accesses of that required
by JIA in SOR, EM3D, and LU, the absolute message amounts reduced are
not significant. Besides, the performance of these three benchmarks is already
high in JIA (the eight-processor speedup is 5.46 in LU, 6.4 in SOR, and 7.12
in EM3D) and the room for performance improvement is not large. Again, the
execution time breakdown in Figure 2 shows that in LU, SOR, and EM3D,
the performance gains of JIAsmp over JIA is mainly caused by the reduction
of SIGSEGV time and server time as a result of remote accesses reduction.
In EM3D, the synchronization time is also reduced in JIAsmp because JIAsmp

generates much less diffs than JIA.
In Water, Barnes, and TSP, though the number of remote accesses and diffs

is reduced with the SMP protocol, both the reduction range and the absolute
message amounts reduced are not large. Besides, in these three benchmarks, per-
formance is already high in JIA (the eight-processor speedups is 7.28 in Water,
6.29 in Barnes, and 6.16 in TSP) and the bottleneck for further performance
improvement does not lie in the communication. Rather, synchronization is the
major obstacle for further performance improvement in these three benchmarks.
It can be seen from Table 1 and Figure 2 that lock is the major synchroniza-
tion mechanism and synchronization overhead constitutes the major overhead in
these three benchmarks. This implies that the lock waiting time dominates the
overhead and (with the high bandwidth Myrinet) the moderate remote accesses
reduction caused by JIAsmp has little influence on the performance of Water,
Barnes, and TSP.

5 Conclusion and Future Work

This paper introduces the SMP protocol for the JIAJIA software DSM system.
In the protocol, processes in the same SMP node keep their separate caches but
combine their home pages together so that each process in the node “sees” a
larger home.

Evaluation results show that compared to the JIAJIA without SMP opti-
mization, the SMP protocol achieves significant speedups in seven out of ten

A New Home-Based Software DSM Protocol for SMP Clusters 1141

benchmarks. Quantitatively, the SMP protocol achieves a speedup of 4% − 5%
in LU, SOR, and EM3D, about 10% in MG and 3DFFT, and more than 20%
in Ocean and IAP18. Water, Barnes, and TSP do not benefit noticeably from
the SMP protocol. It is expected that the SMP protocol of JIAJIA can perform
better if there are more processors (e.g., four) within an SMP node.

It can also be learned from the above performance evaluation that communi-
cation bandwidth is critical to the performance of software DSMs such as JIA-
JIA. In the evaluation, the high bandwidth Myrinet makes JIAJIA not sensitive
to the moderate reduction of remote accesses in Water, Barnes, and TSP. Com-
pared to our previous evaluation results[4,6] on clusters connected by 100Mbps
Ethernet, higher speedups are obtained in the cluster connected by Myrinet.

Our recent work about JIAJIA include further improving the coherence pro-
tocol of JIAJIA, supporting JIAJIA with faster communication mechanism such
as special remote access hardware, implementing fault tolerance mechanism such
as checkpoint in JIAJIA, building a pre-compiler to convert OpenMP programs
to the API of JIAJIA, and porting more real applications on JIAJIA. Further
information about JIAJIA is available at www.ict.ac.cn/chpc/index.html.

References

1. D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS Parallel Benchmarks”,
Technical Report 103863, NASA, Jul. 1993.

2. S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets,
“Cashmere-VLM: Remote Memory Paging for Software Distributed Shared Mem-
ory”, in Proc. of the 13th Int’l Parallel Processing Sym., pp. 153–159, April. 1999.

3. A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy, “SoftFLASH: Analyzing
the Performance of Clustered Distributed Virtual Shared Memory”, in Proc. of the
996 Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems, Oct. 1996.

4. W. Hu, W. Shi, and Z. Tang, “Reducing System Overhead in Home-Based Software
DSMs”, in Proc. of the 13th Int’l Parallel Processing Symp., pp. 167–173, Apr. 1999.

5. W. Hu, F. Zhang, L. Ren, W. Shi, and Z. Tang, “Running Real Applications on
Software DSMs”, in Proc. of the 2000 Int’l Conf. on High Performance Computing
in the Asia-Pacific Region, May 2000.

6. W. Hu, “Reducing Message Overheads in Home-Based Software DSMs”, in Proc.
of the 1st Workshop on Software Distributed Shared Memory, pp. 7–11. June 1999.

7. Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel, “OpenMP for Networks of SMPs”, in
Proc. of the 13th Int’l Parallel Processing Symp., pp. 302–310. Apr., 1999.

8. L. Iftode, “Home-based Shared Virtual Memory”, Ph. D. Thesis, Princeton Uni-
versity, Aug. 1998.

9. P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “TreadMarks Distributed
Shared Memory on Standard Workstations and Operating Systems”, in Proc. of
the 1994 Winter Usenix Conf., pp. 115–131, Jan. 1994.

10. H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “Quantifying the Performance
Differences Between PVM and TreadMarks”, Journal of Parallel and Distributed
Computing, Vol. 43, No. 2, pp. 65–78, Jun. 1997.

1142 Weiwu Hu, Fuxin Zhang, and Haiming Liu

11. R. Samanta, A. Bilas, L. Iftode, and J. Singh, “Home-based SVM Protocols for
SMP Clusters: Design and Performance”, in Proc. of the 4th Int’l Symp. on High
Performance Computer Architecture, Feb., 1998.

12. D. Scales, K. Gharachorloo, and A. Aggarwal, “Fine-grain Software Distributed
Shared Memory on SMP Clusters”, in Proc. of the 4th Int’l Symp. on High Per-
formance Computer Architecture, pp. 125–136, Feb., 1998.

13. R. Stets et al., “Cashmere-2L: Software Coherent Shared Memory on a Clustered
Remote-Write Network”, in Proc. of the 1997 ACM Symp. on Operating Systems
Principles, pp. 170–183, Oct. 1997.

14. S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations”, in Proc. of ISCA’95, pp.
24–36, 1995.

	Introduction
	The JIAJIA Software DSM System
	SMP Protocol for JIAJIA
	Design Alternatives
	SMP Protocol
	Intra-node Communication

	Performance Evaluation
	Conclusion and Future Work

