
Pajé: An Extensible Environment for Visualizing
Multi-threaded Programs Executions

Jacques Chassin de Kergommeaux1 and Benhur de Oliveira Stein2

1 ID-IMAG, ENSIMAG - antenne de Montbonnot, ZIRST, 51, avenue Jean Kuntzmann, 38330
MONTBONNOT SAINT MARTIN, France.

Jacques.Chassin-de-Kergommeaux@imag.fr
http://www-apache.imag.fr/∼chassin

2 Departamento de Eletrônica e Computação,
Universidade Federal de Santa Maria, Brazil.

benhur@inf.UFSM.br
http://www.inf.ufsm.br/∼benhur

Abstract. Pajé is an interactive visualization tool for displaying the execution
of parallel applications where a (potentially) large number of communicating
threads of various life-times execute on each node of a distributed memory par-
allel system. The main novelty of Pajé is an original combination of three of the
most desirable properties of visualization tools for parallel programs: extensibil-
ity, interactivity and scalability. This article mainly focuses on the extensibility
property of Pajé, ability to easily add new functionalities to the tool. Pajé was
designed as a data-flow graph of modular components to ease the replacement of
existing modules or the implementation of new ones. In addition the genericity
of Pajé allows application programmers to tailor the visualization to their needs,
by simply adding tracing orders to the programs being traced.
Keywords: performance debugging, visualization, MPI, pthread, parallel pro-
gramming.

1 Introduction

The Pajé visualization tool was designed to allow programmers to visualize the execu-
tions of parallel programs using a potentially large number of communicating threads
(lightweight processes) evolving dynamically. The visualization of the executions is an
essential tool to help tuning applications using such a parallel programming model.

Visualizing a large number of threads raises a number of problems such as coping
with the lack of space available on the screen to visualize them and understanding such
a complex display. The graphical displays of most existing visualization tools for par-
allel programs [8, 9, 10, 11, 14, 15, 16] show the activity of a fixed number of nodes
and inter-nodes communications; it is only possible to represent the activity of a single
thread of control on each of the nodes. Some tools were designed to display multi-
threaded programs [7, 17]. However, they support a programming model involving a
single level of parallelism within a node, this node being in general a shared-memory
multiprocessor. Our programs execute on several nodes: within the same node, threads
communicate using synchronization primitives; however, threads executing on different
nodes communicate by message passing.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 133–140, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

134 Jacques Chassin de Kergommeaux and Benhur de Oliveira Stein

The most innovative feature of Pajé is to combine the characteristics of interactiv-
ity and scalability with extensibility. In contrast with passive visualization tools [8, 14]
where parallel program entities — communications, changes in processor states, etc. —
are displayed as soon as produced and cannot be interrogated, it is possible to inspect
all the objects displayed in the current screen and to move back in time, displaying past
objects again. Scalability is the ability to cope with a large number of threads. Exten-
sibility is an important characteristic of visualization tools to cope with the evolution
of parallel programming interfaces and visualization techniques. Extensibility gives the
possibility to extend the environment with new functionalities: processing of new types
of traces, adding new graphical displays, visualizing new programming models, etc.

The interactivity and scalability characteristics of Pajé were described elsewhere
[2, 4]. This article focuses on the extensibility characteristics: modular design easing
the addition of new modules, semantics independent modules which allow them to be
used in a large variety of contexts and especially genericity of the simulator component
of Pajé which gives to application programmers the ability to define what they want to
visualize and how it must be done.

The main functionalities of Pajé are summarized in the next section. The following
section describes the extensibility of Pajé before the conclusion.

2 Outline of Pajé

Pajé was originally designed to ease performance debugging of ATHAPASCAN pro-
grams by visualizing their executions and because no existing visualization tool could
be used to visualize such multi-threaded programs.

2.1 ATHAPASCAN: A Thread-Based Parallel Programming Model

Combining threads and communications is increasingly used to program irregular ap-
plications, mask communications or I/O latencies, avoid communication deadlocks, ex-
ploit shared-memory parallelism and implement remote memory accesses [5, 6]. The
ATHAPASCAN [1] programming model was designed for parallel hardware systems
composed of shared-memory multi-processor nodes connected by a communication
network. Inter-nodes parallelism is exploited by a fixed number of system-level pro-
cesses while inner parallelism, within each of the nodes, is implemented by a network
of communicating threads evolving dynamically. The main functionalities of ATHA-
PASCAN are dynamic local or remote thread creation and termination, sharing of mem-
ory space between the threads of the same node which can synchronize using locks or
semaphores, and blocking or non-blocking message-passing communications between
non local threads, using ports. Combining the main functionalities of MPI [13] with
those of pthread compliant libraries, ATHAPASCAN can be seen as a “thread aware”
implementation of MPI.

2.2 Tracing of Parallel Programs

Execution traces are collected during an execution of the observed application, using an
instrumented version of the ATHAPASCAN library. A non-intrusive, statistical method

Pajé: An Extensible Environment for Visualizing Multi-threaded Programs Executions 135

bact.BPRF.5.nn2.trace — ~/Pajex/Traces

 36441.757

Thread State Semaphore State Link

Event Activity State Communication

36400 36500 36600 36700 36800 36900 37000 37100

1

2

0

4,3

ms

Statistics

Node Activity

Pie Chart

Values

Percent

Node 3

27.6%

3 active threads

22.6%

1 active thread

49.7%

2 active threads

Node 4

42.3%

3 active threads

43.4%

2 active threads

14.3%
1 active thread

0.084325 sSelection duration:

Event

a0ReceiveBuffer
Reuse

Thread Identification
Node: 1

Thread: (1,8)

Service: Unknown

Time: 37.166104

File:
Line:

takakaw.c
View

434

Other values
SourceNode: 4

Port: 0.522

Tag: 1

Buffer: 2045ddc4

Request: 2045dde4

SerialNo: 24

Inspection
window

Selection of
entity types

Time scale
selection

Cursor
time

Communication

Node
identification

Thread

Statistics
window

Space-time
window

Fig. 1. Visualization of an ATHAPASCAN program execution
Blocked thread states are represented in clear color; runnable states in a dark color. The smaller window shows
the inspection of an event.

is used to estimate a precise global time reference [12]. The events are stored in local
event buffers, which are flushed when full to local event files. Recorded events may
contain source code information in order to implement source code click-back — from
visualization to source code — and click-forward — from source code to visualization
— in Pajé.

2.3 Visualization of Threads in Pajé

The visualization of the activity of multi-threaded nodes is mainly performed in a dia-
gram combining in a single representation the states and communications of each thread
(see figure 1) . The horizontal axis represents time while threads are displayed along the
vertical axis, grouped by node. The space allocated to each node of the parallel system
is dynamically adjusted to the number of threads being executed on this node. Commu-
nications are represented by arrows while the states of threads are displayed by rectan-
gles. Colors are used to indicate either the type of a communication, or the activity of a
thread.

The states of semaphores and locks are represented like the states of threads: each
possible state is associated with a color, and a rectangle of this color is shown in a
position corresponding to the period of time when the semaphore was in this state. Each
lock is associated with a color, and a rectangle of this color is drawn close to the thread
that holds it. Moving the mouse pointer over the representation of a blocked thread
state highlights the corresponding semaphore state, allowing an immediate recognition.
Similarly, all threads blocked in a semaphore are highlighted when the pointer is moved
over the corresponding state of the semaphore.

In addition, Pajé offers many possible interactions to programmers: displayed ob-
jects can be inspected to obtain all the information available for them (see inspection

136 Jacques Chassin de Kergommeaux and Benhur de Oliveira Stein

window in figure 1), identify related objects or check the corresponding source code.
Selecting a line in the source code browser highlights the events that have been gener-
ated by this line.

Progress of the simulation is entirely driven by user-controlled time displacements:
at any time during a simulation, it is possible to move forward or backward in time.
Memory usage is kept to acceptable levels by a mechanism of checkpointing the internal
state of the simulator and re-simulating when needed.

It is not possible to represent simultaneously all the information that can be deduced
from the execution traces. Pajé offers several filtering and zooming functionalities to
help programmers cope with this large amount of information to give users a simplified,
abstract view of the data. Figure 1 exemplifies one of the filtering facilities provided by
Pajé where the top most line represents the number of active threads of a group of two
nodes (nodes 3 and 4) and a pie graph the CPU activity in the time slice selected in the
space-time diagram (see [2, 3] for more details).

3 Extensibility

Extensibility is a key property of a visualization tool. The main reason is that a visu-
alization tool being a very complex piece of software, costly to implement, its lifetime
ought to be as long as possible. This will be possible only if the tool can cope with the
evolutions of parallel programming models and of the visualization techniques, since
both domains are evolving rapidly. Several characteristics of Pajé were designed to pro-
vide a high degree of extensibility: modular architecture, flexibility of the visualization
modules and genericity of the simulation module.

3.1 Modular Architecture

To favor extensibility, the architecture of Pajé is a data flow graph of software modules
or components. It is therefore possible to add a new visualization component or adapt
to a change of trace format by changing the trace reader component without changing
the remaining of the environment. This architectural choice was inspired by Pablo [14],
although the graph of Pajé is not purely data-flow for interactivity reasons: it also in-
cludes control-flow information, generated by the visualization modules to process user
interactions and trigger the flow of data in the graph (see [2, 3] for more details).

3.2 Flexibility of Visualization Modules

The Pajé visualization components do not depend on specific parallel programming
models. Prior to any visualization they receive as input the description of the types
of the objects to be visualized as well as the relations between these objects and the
way these objects ought to be visualized (see figure 2). The only constraints are the
hierarchical nature of the type relations between the visualized objects and the ability to
place each of these objects on the time-scale of the visualization. The hierarchical type
description is used by the visualization components to query objects from the preceding
components in the graph.

Pajé: An Extensible Environment for Visualizing Multi-threaded Programs Executions 137

Execution

Nodes

Events States

Communications

N1

N2

N1

N2

t1

t2

t1

t2

Execution

Nodes

Events States

Communications

Threads

Fig. 2. Use of a simple type hierarchy
The type hierarchy on the left-hand side of the figure defines the type hierarchical relations between the objects
to be visualized and how these objects should be represented: communications as arrows, thread events as
triangles and thread states as rectangles. The right-hand side shows the changes necessary to the hierarchy in
order to represent threads.

This type description can be changed to adapt to a new programming model (see
section 3.3) or during a visualization, to change the visual representation of an object
upon request from the user. This feature is also used by the filtering components when
they are dynamically inserted in the data-flow graph of Pajé — for example between
the simulation and visualization components to zoom from a detailed visualization and
obtain a more global view of the program execution (see [2, 3] for more details).

The type hierarchies used in Pajé are trees whose leaves are called entities and inter-
mediate nodes containers. Entities are elementary objects such as events, thread states
or communications. Containers are higher level objects, including entities or lower level
containers (see figure 2). For example: all events occurring in thread 1 of node 0 belong
to the container “thread-1-of-node-0”.

3.3 Genericity of Pajé

The modular structure of Pajé as well as the fact that filter and visualization compo-
nents are independent of any programming model makes it “easy” for tool developers
to add a new component or extend an existing one. These characteristics alone would
not be sufficient to use Pajé to visualize various programming models if the simulation
component were dependent on the programming model: visualizing a new program-
ming model would then require to develop a new simulation component, which is still
an important programming effort, reserved to experienced tool developers.

On the contrary, the generic property of Pajé allows application programmers to
define what they would like to visualize and how the visualized objects should be rep-
resented by Pajé. Instead of being computed by a simulation component, designed for
a specific programming model such as ATHAPASCAN, the type hierarchy of the visual-
ized objects (see section 3.2) can be defined by the application programmer, by inserting
several definitions and commands in the application program to be traced and visual-
ized. These definitions and commands are collected by the tracer (see section 2.2) so
that they can be passed to the Pajé simulation component. The simulator uses these

138 Jacques Chassin de Kergommeaux and Benhur de Oliveira Stein

Table 1. Containers and entities types definitions and creation

Type definition Creation of entities
pajeDefineUserContainerType pajeCreateUserContainer

pajeDestroyUserContainer

pajeDefineUserEventType pajeUserEvent
pajeDefineUserStateType pajeSetUserState

pajePushUserState
pajePopUserState

pajeDefineUserLinkType pajeStartUserLink
pajeEndUserLink

pajeDefineUserVariableType pajeSetUserVariable
pajeAddUserVariable

definitions to build a new data type tree relating the objects to be displayed, this tree
being passed to the following modules of the data flow graph: filters and visualization
components.

New Data Types Definition. One function call is available to create new types of
containers while four can be used to create new types of entities which can be events,
states, links and variables. An “event” is an entity representing an instantaneous action.
“States” of interest are those of containers. A “link” represents some form of connection
between a source and a destination container. A “variable” stores the temporal evolution
of the successive values of a data associated with a container. Table 1 contains the
function calls that can be used to define new types of containers and entities. The right-
hand part of figure 2 shows the effect of adding the “threads” container to the left-hand
part.

Data Generation. Several functions can be used to create containers and entities whose
types are defined using the primitives of the left column of table 1. Functions of the right
column of table 1 are used to create events, states (and embedded states using Push and
Pop), links — each link being created by one source and one destination calls — and
change the values of variables.

In the example of figure 3, a new event is generated for each change of computation
phase. This event is interpreted by the Pajé simulator component to generate the corre-
sponding container state. For example the following call indicates that the computation
is entering in a “Local computation” phase:

pajeSetUserState (phase_state, node, local_phase, "");

The second parameter indicates the container of the state (the “node” whose computa-
tion has just been changed). The last parameter is a comment that can be visualized by
Pajé. The example program of figure 3 includes the definitions and creations of entities
“Computation phase”, allowing the visual representation of an ATHAPASCAN program
execution to be extended to represent the phases of the computation. Figure 4 shows a
space-time diagram visualizing the execution of this example program with the defini-
tion of the new entities.

Pajé: An Extensible Environment for Visualizing Multi-threaded Programs Executions 139

unsigned phase_state, init_phase, local_phase, global_phase;
phase_state = pajeDefineUserStateType(A0_NODE, "Computation phase");
init_phase = pajeNewUserEntityValue(phase_state, "Initialization");
local_phase = pajeNewUserEntityValue(phase_state, "Local computation");
global_phase = pajeNewUserEntityValue(phase_state,"Global computation");

pajeSetUserState (phase_state, node, init_phase, "");
initialization();
while (!converge) {

pajeSetUserState (phase_state, node, local_phase, "");
local_computation();
send (local_data);
receive (remote_data);
pajeSetUserState (phase_state, node, global_phase, "");
global_computation();

}

Fig. 3. Simplified algorithm of the example program
Added tracing primitives are shown in bold face.

user-32x32-2procs.trace — ~/Pajex/Traces

 4227.909

Thread State Mutex Thread State Semaphore State Activity State Communication

Event Mutex State Computation phase Link

4220 4230 4240 4250 4260 4270 4280 4290 4300 4310

0

1

2

ms

Filters

By type

Select All Unselect All

■ Global computation

■ Local computation

■ Initialization

Computation phase

Added
Computation phases

Fig. 4. Visualization of the example program

4 Conclusion

Pajé provides solutions to interactively visualize the execution of parallel applications
using a varying number of threads communicating by shared memory within each node
and by message passing between different nodes. The most original feature of the tool is
its unique combination of extensibility, interactivity and scalability properties. Extensi-
bility means that the tool was defined to allow tool developers to add new functionalities
or extend existing ones without having to change the rest of the tool. In addition, it is
possible to application programmers using the tool to define what they wish to visualize
and how this should be represented. To our knowledge such a generic feature was not
present in any previous visualization tool for parallel programs executions.

140 Jacques Chassin de Kergommeaux and Benhur de Oliveira Stein

References

[1] J. Briat, I. Ginzburg, M. Pasin, and B. Plateau. Athapascan runtime: efficiency for irregular
problems. In C. Lengauer et al., editors, EURO-PAR’97 Parallel Processing, volume 1300
of LNCS, pages 591–600. Springer, Aug. 1997.

[2] J. Chassin de Kergommeaux and B. d. O. Stein. Pajé, an extensible and
interactive and scalable environment for visualizing parallel program execu-
tions. Rapport de Recherche RR-3919, INRIA Rhone-Alpes, april 2000.
http://www.inria.fr/RRRT/publications-fra.html.

[3] B. de Oliveira Stein. Visualisation interactive et extensible de programmes parallèles à
base de processus légers. PhD thesis, Université Joseph Fourier, Grenoble, 1999. In French.
http://www-mediatheque.imag.fr.

[4] B. de Oliveira Stein and J. Chassin de Kergommeaux. Interactive visualisation environment
of multi-threaded parallel programs. In Parallel Computing: Fundamentals, Applications
and New Directions, pages 311–318. Elsevier, 1998.

[5] T. Fahringer, M. Haines, and P. Mehrotra. On the utility of threads for data parallel pro-
gramming. In Conf. proc. of the 9th Int. Conference on Supercomputing, Barcelona, Spain,
1995, pages 51–59. ACM Press, New York, NY 10036, USA, 1995.

[6] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating multithreading
and communication. Journal of Parallel and Distributed Computing, 37(1):70–82, Aug.
1996.

[7] K. Hammond, H. Loidl, and A. Partridge. Visualising granularity in parallel programs: A
graphical winnowing system for haskell. In A. P. W. Bohm and J. T. Feo, editors, High
Performance Functional Computing, pages 208–221, Apr. 1995.

[8] M. T. Heath. Visualizing the performance of parallel programs. IEEE Software, 8(4):29–39,
1991.

[9] V. Herrarte and E. Lusk. Studying parallel program behavior with upshot, 1992.
http://www.mcs.anl.gov/home/lusk/upshot/upshotman/upshot.html.

[10] D. Kranzlmueller, R. Koppler, S. Grabner, and C. Holzner. Parallel program visualization
with MUCH. In L. Boeszoermenyi, editor, Third International ACPC Conference, volume
1127 of Lecture Notes in Computer Science, pages 148–160. Springer Verlag, Sept. 1996.

[11] W. Krotz-Vogel and H.-C. Hoppe. The PALLAS portable parallel programming environ-
ment. In Sec. Int. Euro-Par Conference, volume 1124 of Lecture Notes in Computer Sci-
ence, pages 899–906, Lyon, France, 1996. Springer Verlag.

[12] É. Maillet and C. Tron. On Efficiently Implementing Global Time for Performance Evalua-
tion on Multiprocessor Systems. Journal of Parallel and Distributed Computing, 28:84–93,
July 1995.

[13] MPI Forum. MPI: a message-passing interface standard. Technical report, University of
Tennessee, Knoxville, USA, 1995.

[14] D. A. Reed et al. Scalable Performance Analysis: The Pablo Performance Analysis Envi-
ronment. In A. Skjellum, editor, Proceedings of the Scalable Parallel Libraries Conference,
pages 104–113. IEEE Computer Society, 1993.

[15] B. Topol, J. T. Stasko, and V. Sunderam. The dual timestamping methodology for vi-
sualizing distributed applications. Technical Report GIT-CC-95-21, Georgia Institute of
Technology. College of Computing, May 1995.

[16] C. E. Wu and H. Franke. UTE User’s Guide for IBM SP Systems, 1995.
http://www.research.ibm.com/people/w/wu/uteug.ps.Z.

[17] Q. A. Zhao and J. T. Stasko. Visualizing the execution of threads-based parallel programs.
Technical Report GIT-GVU-95-01, Georgia Institute of Technology, 1995.

http://www.inria.fr/RRRT/publications-fra.html

	Introduction
	Outline of Paj'e
	textsc {Athadiscretionary {-}{}{}pasdiscretionary {-}{}{}can}xspace : A Thread-Based Parallel Programming Model
	Tracing of Parallel Programs
	Visualization of Threads in Paj'e

	Extensibility
	Modular Architecture
	Flexibility of Visualization Modules
	Genericity of Paj'e

	Conclusion

