Load Scheduling with Profile Information™

Gotz Lindenmaier!, Kathryn S. MCKinley?, and Olivier Temam?

! Fakultit fiir Informatik, Universitit Karlsruhe
2 Department of Computer Science, University of Massachusetts
3 Laboratoire de recherche en informatique, Universite de Paris Sud

Abstract. Within the past five years, many manufactures have added hardware
performance counters to their microprocessors to generate profile data cheaply.
We show how to use Compaq’s DCPI tool to determine load latencies which are
at a fine, instruction granularity and use them as fodder for improving instruc-
tion scheduling. We validate our heuristic for using DCPI latency data to classify
loads as hits and misses against simulation numbers. We map our classification
into the Multiflow compiler’s intermediate representation, and use a locality sen-
sitive Balanced scheduling algorithm. Our experiments illustrate that our algo-
rithm improves run times by 1% on average, but up to 10% on a Compaq Alpha.

1 Introduction

This paper explores how to use hardware performance counters to produce fine grain
latency information to improve compiler scheduling. We use this information to hide
latencies with any available instruction level parallelism (ILP). (ILP for an instruction
is the number of other instructions available to hide its latency, and the ILP of a block
or program is the average of the ILP of its instructions). We use DCPI, the performance
counters on the Alpha, and Compaq’s dcpicalc tool for translating DCPT’s statistics
into a usable form. DCPI provides a very low cost way to collect profiling informa-
tion, especially as compared with simulation, but it is not as accurate. For instance,
dcpicalc often cannot produce the reason for a load stall. We show nevertheless it is
possible to attain fine grain latency information from performance counters. We use a
heuristic to classify loads as hits and misses, and this classification matches simulation
numbers well. We are the first to use performance counters at such a fine granularity to
improve optimization decisions.

In the following, Section 2 presents related work. Section 3 describes DCPI, the
information it provides, how we can use it, and how our heuristic compares with simu-
lation numbers. Section 4 briefly describes the load sensitive scheduling algorithm we
use, and how we map the information back to the IR of the compiler. Section 5 presents
the results of our experiments on Alpha 21064 and 21164 that show execution time im-
provements are possible, but our average improvements are less than 1%. Our approach
is promising, but it needs new scheduling algorithms that take into account variable
latencies and issue width to be fully realized.

* This work is supported by EU Project 28198; NSF grants EIA-9726401, CDA-9502639, and
a CAREER Award CCR-9624209; Darpa grant 5-21425; Compaq and by LTR Esprit project
24942 MHAOTEU. Any opinions, findings, or conclusions expressed are the authors’ and not
necessarily the sponsors’.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 223-233 2000.
(© Springer-Verlag Berlin Heidelberg 2000



224 Gotz Lindenmaier, Kathryn S. MCKinley, and Olivier Temam

2 Related Work

The related work for this paper falls into three categories: performance counters and
their use, latency tolerance, and scheduling. Our contribution is to show how to use
performance counters at a fine granularity, rather than aggregate information, and how
to tolerate latency by improving scheduling decisions.

We use the hardware performance counters and monitoring on a 4-way issue Al-
pha [3}15]. Similar hardware now exists on the Itanium, Intel PentiumPro, Sun Sparc,
SGI R10K and in Shrimp, a shared-memory parallel machine [3} 9]]. The main advan-
tages of using performance counters instead of software simulation or profiling are time
and automation. Performance counters yield information at a cost of approximately 1-
2% of execution time, and do not require users to compile with and without profiling.
Continuous profiling enables recompilation after program execution to be completely
hidden from the user with later, free cycles (our system does not automate this feature).
Previous work using performance counters as a source of profile information have used
aggregate information, such as the miss rate of a subroutine or basic block [1]] and crit-
ical path profiles to sharpen constant propagation [2]]. Our work is unique in that it uses
information at the instruction level, and integrates it into a scheduler.

Previous work on using instruction level parallelism (ILP) to hide latencies for non-
blocking caches has two major differences from this work [4}, |6} (8} [LOl 12]. First, previ-
ous work uses static locality analysis which works very well for regular array accesses.
Secondly, these schedulers only differentiates between a hit or a miss. Since we use
performance counters, we can improve the schedules of pointer based codes that com-
pilers have difficulty analyzing. In addition, we obtain and use variable latencies which
further differentiates misses and enables us to concentrate ILP on the misses with the
longest observed average latencies.

3 DCPI

This section describes DCPI, dcpicalc (a Compagq tool that translates DCPI output to
a useful form), and compares DCPI results to simulation. DCPI is a runtime monitoring
tool that cheaply collects information by sampling hardware counters [3]. It saves the
collected data efficiently in a database, and runs continuously with the operating sys-
tem. Since DCPI uses sampling, it delivers profile information for the most frequently
executed instructions, which are, of course, the most interesting with respect to opti-
mization.

3.1 Information Supplied by DCPI

During monitoring, the DCPI hardware counter tracks the occurrence of a specified
event. When the counter overflows, it triggers an interrupt. The interrupt handler saves
the program counter for the instruction at the head of the issue queue. Dcpicalc
interprets the sampled data off-line to provide detailed information about, for example,
how often, long, and why instructions stall. If DCPI samples an instruction often, the
instruction spends a lot of time at the head of the issue queue, which means that it



Load Scheduling with Profile Information 225

suffers long or frequent stalls. Dcpicalc combines a static analysis of the binary with
the dynamic DCPI information to determine the reason(s) for some stalls. It assumes
all possible reasons for stalls it cannot analyze.

instruction static dynamic
stalls stalls

1 1d1 r24, -32720(gp) 1 1.0cy
2 1lda r2, -32592 (gp) 0
i
3 1dl r26, -32668(gp) 1 1.5¢cy
4 1lda gp, O0(sp) 0
b
b
d
d
d
5 cmplt zero, r26, r26 2 3.5¢cy
6 1dl1  r25, -32676(gp) 0
b
b
i ...20.0cy
i
7 cmplt r26, r25, r25 2 20.0cy
b
8 Dbis r24, r25, r25 1 1.0cy
a
9 beqg r25, 0x800£f00 1 1.0cy

Fig. 1. Example for the calculation of locality data.

The reasons for a stall are a, b, i, and d; a and b indicate stalls due to an unresolved
data dependence on the first or second operand respectively; 1 indicates an instruction
cache miss; and d indicates a data cache miss. Figure [Tl shows an example basic block
from compress, a SPEC’95 benchmark executed on an Alpha 21164 annotated by
dcpicalc. Five instructions stall; each line without an instruction indicates a half
cycle stall before the next instruction can issuell Dcpicalc determines reasons and
lengths of a and b from the static known machine implementation, and i and d from
the dynamic information. For example, instruction 3 stalls one cycle because it waits
for the integer pipeline to become available and on average an additional half cycle due
to an instruction cache miss. The average stall is very short, which also implies it stalls
infrequently. Instruction 7 stalls due to an instruction cache miss, on average 20 cycles.

3.2 Deriving Locality Information

This section shows how to translate the average load latencies from dcpicalc into
hits and misses for use in our scheduler. We derive the following six values about loads
from the dcpicalc output. Some are determined (d)ynamically, others are based on
(s)tatic features of the program.

— MissMarked (d): dcpicalc detects a cache miss for this load, i.e., the instruction
that uses this load stalls and is marked with d.

! Because more than two instructions rarely issue in parallel, the output format ignores this case.



226 Gotz Lindenmaier, Kathryn S. MCKinley, and Olivier Temam

— Stall (d): the length of a MissMarked stall.
— StatDist (s): The distance in static cycles between the load and the depending in-

struction.
— DynDist (d): The distance in dynamic cycles between the load and the depending

instruction.
— TwoLoads (s): The instruction using the data produced by a load marked with

TwoLoads depends on two loads and it is not clear which one caused the stall.
— OtherDynStalls (d): The number of other dynamic stalls between the load and the

depending instruction.

For example, instruction 1 in Figure[ll has MissMarked = false, Stall = 0, StatDist
=6, DynDist =26.0, TwoLoads = false, and OtherDynStalls = 3. Using these numbers,
we reason about the probability of a load hitting or missing, and its average dynamic
latency as follows. If a load is MissMarked, it obviously misses in the cache on some
executions. But MissMarked gives no information about how often it misses. Stall is
long if either the cache misses of this load are long, or if they are frequent. Thus, if a
load is MissMarked and Stall and StatDist are large, the probability of a miss is high.

Even when a load misses, it may not stall (MissMarked = false, Stall = 0) because
static or dynamic events may hide its latency. If StazDist is larger than the latency of
the cache, it will not stall. If SratDist does not hide a cache latency, a dynamic stall
could, in which case DynDist or OtherDynStalls are high. The DCPI information is
easier to evaluate if StatDist is small and thus dynamic latencies are exposed, i.e., the
loads are scheduled right before a dependent instruction. We generate the initial binaries
assuming a load latency of 1, to expose stalls by cache misses.

The Balanced scheduler differentiates hits and misses, and tries to put available ILP
after misses to hide a given fixed miss latency. Although we have the actual expected,
dynamic latency, the scheduler we modified cannot use it. Since the scheduler assumes
misses by default, we classify a load as a hit as follows:

~MissMarked A (StatDist <10) A (Stall =0 V DynDist < 20)

and call it the strict heuristic because it conservatively classifies a load as a kit only if
it did not cause a stall due to a cache miss, and for which it is unlikely that the latency
of a cache miss is hidden by the current schedule. It also classifies infrequently missing
loads as misses. We examined several other heuristics, but none perform as well as the
strict heuristic. For example, we call the following the generous heuristic:

(StatDist <5 A Stall < 10).

As we show below, it correctly classifies more loads as hits than the strict heuristic, but
it also missclassifies many missing loads as hits.

3.3 Validation of the Locality Information

We validated the heuristics by comparing their performance to that of a simulation using
a version of ATOM [[13]] that we modified to compute precise hit rates in the three cache
levels of the Alpha 21164. The 21164 has a split first level instruction and data cache.
The data cache is a 8 KB direct mapped cache, a unified 96 KB three-way associative



Load Scheduling with Profile Information 227

second level on chip cache, and a 4MB third level off chip cache. The latencies of the
21164’s first and second cache are 2 and 8 cycles, respectively. (The first level data
cache of the 21064 which we use later in the paper has a latency of 3 cycles and is also
8 KB, and the second level cache has a latency of at least 10 cycles.)

Figure 2| summarizes all analyzed loads in eleven SPEC’95 and the Livermore
benchmarks. The first chart in Figure 2] gives the raw number of loads that hit in the
first level cache according to the simulator as a function of how often they hit; each bar
represents the number of loads that hit x% to x+10% in the first level cache. We further
divide the 90-100% column into two columns: 90-95% and 95-100% in both figures.
Clearly, most loads hit 95-100% of the time.

The second chart in Figure Plcompares how well our heuristics find hits as compared
to the simulator. The x-axis is the same as Figure 2| Each bar is the fraction of these
loads that the heuristics actually classifies as a hit. Ideally, the heuristics would classify
as hits all of the loads that hit more than 80%, and none that hit less than 50% of the
time. However, since the conservative assumption for our scheduler is miss, we need
a heuristic that does not classify loads that mostly miss as hits. The generous heuristic
finds too many hits in loads that usually miss. The strict heuristic instead errs in the
conservative direction: it classifies as hits only about 40% of the loads that in simulation
hit 95% of the time, but it is mistaken less than 5% of the time for those loads that hit
less than 50% of the time. In absolute terms these loads are less than 1% of all loads.

4 Scheduling with Runtime Data

In this section, we show how to drive load sensitive scheduling with runtime data.
Scheduling can hide the latency of a missing load by placing other useful, indepen-
dent operations in its delay slots (behind it) in the schedule. In most programs, there
is not enough ILP to assume all loads are misses in the cache and with the issue width
of current processors increasing this problem is exacerbated. With locality information,
the scheduler can instead concentrate available ILP behind the missing loads. The ideal

2 applu, apsi, fpppp, hydro2d, mgrid, su2cor, swim, tomcatv, turb3d, wave5, and compress953.

8000 T T T T =

= T T T
== 09 F strict heuristic 4
7000 T E] 0‘8 generous heuristic -------
_§ 6000 k=
S 5000 1 &
g 4000 | b 2
2 3000 - 1 5
E}
Z 2000 | 7 E
=]
1000 T 1 2
0 JE— l—«—t—,—‘—r Lle:
0 20 40 60 80 100

Percentage Hit in First Level Cache Percentage Hit in First Level Cache

Fig. 2. Simulated number of loads and comparison of heuristics to simulation.



228 Gotz Lindenmaier, Kathryn S. MCKinley, and Olivier Temam

scheduler could differentiate between the expected latency of a miss, placing the most
ILP behind the misses with the longest latencies.

4.1 Balanced Scheduling

We use the Multiflow compiler [[7} [1 1] with the Balanced Scheduling algorithm [8} [10]],
and additional optimizations, e.g., unrolling, to generate ILP and fraces of instructions
that combine basic blocks. Below we first briefly describe Balanced scheduling and
then we present our modifications.

Balanced scheduling first creates an acyclic scheduling data dependency graph
(DAG) which represents the dependences between instructions. By default it assumes
all loads are misses. It then assigns each node (instruction) a weight which is a function
of the static latency of the instruction and the available ILP (i.e., how many other in-
structions may issue in parallel with it)E For each instruction i, the scheduler finds all
others that 1 may come after in the schedule; i is thus available as ILP to these other
instructions. The scheduler then increases the weight of each instruction after which i
can execute and hide latency. The usual list scheduling algorithm which tries to cover
all the weights then uses this new DAG [8]], where the weights reflect a combination of
the latency of the instruction and the number of instructions available to schedule with
it.

Furthermore, the Balanced scheduler deals with variable load latencies as follows.
It makes two passes. The first pass assigns ILP to hide the static latency of all non-load
instructions. (For example, the latency of the floating point multiply is known statically
and occurs on every execution.) If an instruction has sufficient weight to cover its static
latency, the scheduler does not give it any additional weight. In a second pass, the sched-
uler considers the loads, assigning them any remaining ILP. This structure guarantees
that the scheduler first spreads ILP weight to instructions with known static latencies
that occur every time the instruction executes. It then distributes ILP weight equally to
load instructions which might have additional dynamic latencies due to cache misses.
The scheduler thus balances ILP weight across all loads, treating loads uniformly based
on the assumption that they all have the same probability of missing in the cache.

4.2 Balanced Scheduling with Locality Data

The Balanced scheduler can further distinguish loads as hits or a misses, and distribute
ILP only to missing loads. The scheduler gives ILP weight only to misses after covering
all static cycles of non-loads. If ILP is available, the misses will receive more weight
than before because without the hits, there are fewer candidates to receive ILP weight.
Ideally, each miss could be assigned weight based on its average expected dynamic
latency, but to effect this change would require a completely new implementation.

3 The weight of the instruction is not a latency.



Load Scheduling with Profile Information 229

e Tl B
load iad fadd loadl load2 load3

\/ ~ |7

Fig. 3. Example: Balanced scheduling for multi issue processors.

4.3 Communicating Locality Classifications to the Scheduler

In this section, we describe how to translate our classification of hits and misses which
are relative to the assembler code into the Multiflow’s higher-level intermediate repre-
sentation (IR). Using the internal representation before the scheduling pass, we add a
unique tag to each load. After scheduling, when the compiler writes out the assembly
code, it also writes the tags and load line number to a file. The locality analysis inte-
grates these tags with the runtime information. When we recompile the program, the
compiler uses the tags to map the locality information to the internal representation.
The locality analysis compares the Multiflow assembler and the executed assembler
to find corresponding basic blocks. The assembler code output by the Multiflow is not
complete, e.g., branch instructions and nops are missing. Some blocks have no locality
data and some cannot be matched. These flaws result in no locality information for
about 25% of all blocks. When we do not have or cannot map locality information, we
classify loads as misses following the Balanced scheduler’s conservative policy.

4.4 Limitations of Experiments

A systematic problem is that register assignment is performed after scheduling, which
is true in many systems. We cannot use the locality data for spilled loads or any other
loads that are inserted after scheduling because these loads do not exist in the sched-
uler’s internal representation, and different spills are of course required for different
schedules. Unfortunately these loads are a considerable fraction of all loads. The frac-
tion of spilled loads for our benchmarks appear in the second and sixth columns of
Table [l Apsi spills 44.9% of all loads, and turb3d spills 47.7%. A scheduler that
runs after register assignment would avoid this problem, but introduces the problem that
register assignment reduces the available ILP.

The implementation of the Balanced scheduling algorithm we use is tuned for a
single issue machine. If an instruction can be placed behind an other one the other’s
weight is increased, without considering whether a cycle can be hidden at all; i.e., the
instruction could be issued in parallel with a second one placed behind that other in-
struction. Figure 3 shows two simple DAGs. In the left DAG, the floating point and the
integer add both may issue in the delay slot of the load, and the scheduler thus increases
the weight of the load by one for each add. On a single issue machine, this weighting
correctly suggests that two cycles load latency can be hidden. On the Alpha 21164, all



230 Gotz Lindenmaier, Kathryn S. MCKinley, and Olivier Temam

three instructions may issue in paralleﬂ, i.e., placing the adds in the delay slot does not
hide the latency of the load. Similarly in the DAG on the right, the Balanced scheduler
will give 1oadl a weight of 2. Here only one cycle of the latency can be hidden, be-
cause only one of the other loads can issue in parallel. The weight therefore does not
correctly represent how many cycles of latency can be hidden, but instead how many
instructions may issue behind it.

Another implementation problem is that the Balanced scheduler assumes a static
load latency of 1 cycle, whereas the machines we use have a 2 or 3 cycle load delay.
Since the scheduler covers the static latencies of non-loads first, if there is limited ILP
the static latencies of loads may not be covered (as we mentioned in Section[4.1). When
we classify some loads as hits, we exacerbate this problem because now neither pass
assigns these loads any weight. We correct this problem by increasing the weights of all
loads classified as hits to their static latency, 2 or 3 cycles, which the list scheduler will
then hide if possible. This change however breaks the paradigm of Balanced scheduling,
as weight is introduced that is not based on available ILP.

5 Experimental Results

We used the SPEC{p95 benchmarks, one SPECint95 benchmark, and the Livermore
loops in our experiments. The numbers for Livermore are for the whole benchmark
with all kernels. We first compiled the programs with Balanced scheduling, overwriting
the weights of loads with 1 to achieve a schedule where load latencies are not hidden.
We executed this program several times and monitored it with DCPI to collect data for
the locality analysis.

We then compiled each benchmark twice, once with Balanced scheduling, and a
second time with Balanced scheduling and our locality data. We ran these programs
five times on an idle machine, measured the runtimes with DCPI, and averaged the
runtimes. The standard deviation of the runs is less than the differences we report. We
used the same input in all runs and thus are reporting the upper bound on any expected
improvements. The DCPI runtime numbers correspond to numbers generated with the
operating system command time. We executed the whole experiment twice, once on
an Alpha 21064 and once on a 21164. To show the sensitivity of scheduling to the
quality of the locality data we use both the strict and the generous heuristic on the
Alpha 21164. We expect our heuristic to perform better on the dual-issue 21064 than
on the quad-issue 21164 because it needs less ILP to satisfy the issue width. The 21164
is of course more representative of modern processors.

Table[Ilshows the number of loads we were able to analyze with the strict heuristic.
The total number of loads includes only basic blocks with useful monitoring data, i.e.,
blocks that are executed several times. The first column gives the percentage of loads
inserted during or after scheduling that we cannot use. The second column gives the per-
centage of loads for which the locality data cannot be evaluated because the instruction
that uses it is not in the same block, or because the basic block could not be mapped on

4 The Alpha 21164 can issue two integer and two floating point operations at once. Loads are
integer operations with respect to this rule.



Load Scheduling with Profile Information 231

21064 21164
program _|spill/all[nodata/all[hit/all|hit/anal||spill/all nodata/all hit/all]hit/anal
applu 12.9 57.8] 13.7] 467 24.6] 465 79[ 273
apsi 29.2 279 16.6] 38.6] 449 17.5] 86 229
fpppp 214 703[ 43] 513 181 736] 14 173
hydro2d 8.2 346] 222] 389 85 33.4] 10.2] 17.6
mgrid 13.5 420] 22.4] 503[ 15.1 415] 12.5] 287
su2cor 17.2 352] 19.0 40.0] 16.9 38.1] 6.7] 148
swim 4.6 257] 21.1] 303]] 55 55 14 15
tomcaty 1.8 69.0] 63 2L7] 62 333 07] LI
turb3d 459 254] 95| 329 477 24.8] 10.4] 378
comprs.95]  16.2 14.9] 31.1] 451 163 14.4] 40.5] 585
livermore | 13.9 37.1[ 259] 529 133 40.2] 17.1] 368

Table 1. Percentage of analyzed loads 21064 and 21164

the intermediate representation. Although we use the same binaries, dcpicalc pro-
duces different results on the different architectures and thus the sets of basic blocks
may differ. The third column gives the percentage of loads the strict heuristic classifies
as hits out of all the loads. It classifies all loads not appearing in columns 1-3 as misses.
The last column gives the percentage of loads with useful locality data, i.e., those not
appearing in columns 1 and 2.

On the 21164, our classification marks very few loads as hits for swim and tom-
catv, and thus should have little effect. To address the problem that about half of
all loads have no locality data, we need different tools, although additional sampling
executions might help.

Table[2 gives relative performance numbers: Balanced scheduling with locality in-
formation divided by regular Balanced scheduling. The first two columns are for the
strict heuristic which on average slightly improves the runtime of the benchmarks. The
two columns give performance numbers for experiments on an Alpha 21064 and an
Alpha 21164. The third column gives the performance of a program optimized with
locality data produced by the generous heuristic, and executed on an Alpha 21164. On
average, scheduling with the generous heuristic degrades performance slightly.

Many blocks have the same schedule in both versions and have only 1 or 2 instruc-
tions. 18% of the blocks with more than five instructions have no locality data available
for rescheduling because the locality data could not be integrated into the compiler and
therefore have identical schedules. 56% of the blocks where locality data is available
have either no loads (other than spill loads), or all loads have been classified as misses.
The remaining 26% of blocks have useful locality data available, and a different sched-
ule. Therefore, the improvements stem from only a quarter of the program.

Although the average results are disappointing, improvements are possible. In two
cases, we improve performance by 10% (su2cor on the 21064 and f£pppp on the
21164), and these results are due to better scheduling. The significant degradations of
two programs, (compress95 on the 21064 and turb3d on the 21164), are due to
flaws in the Balanced scheduler rather than inaccuracies the locality data introduces.



232 Gotz Lindenmaier, Kathryn S. MCKinley, and Olivier Temam

program |strict heuristic| gen. heu.
21064] 21164
apsi 99.7| 100.4 99.9
fpppp 98.1 90.6| 101.1
hydro2d 100.4| 99.4| 1019
mgrid 101.2| 101.7) 104.2
su2cor 90.2| 99.6| 100.4
swim 100.2| 99.2 99.3
tomcatv 101.8| 99.6 102.9
turb3d 96.8| 106.3| 105.1
compress95| 107.6]  98.8 99.5
livermore | 100.3| 98.7 96.9

laverage | 99.6] 99.4] 101.1]

Table 2. Performance of programs scheduled with locality data.

Further investigation on procedure and block level showed that mostly secondary ef-
fects of the tools spoiled the effect of our optimization; the optimization improved the
performance of those blocks where these secondary effects played no role. Space con-
straints precludes explaining these details.

6 Conclusions

In this study, we have shown that it is possible to exploit the run-time information pro-
vided by hardware counters to tune applications. We have exploited the locality infor-
mation provided by these counters to improve instruction scheduling. As it is still diffi-
cult to determine statically whether a load hits or misses frequently, hardware counters
act as a natural complement to classic static optimizations. Because of the limitations
of the scheduler tools we used, we could not exploit all the information provided by
DCPI (miss ratio instead of latencies). We believe that our approach is promising, but
that it needs new scheduling algorithms that take in to account variable latencies and
issue width to be fully realized.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow
and context sensitive profiling. In Proceedings of the SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation, pages 85-96, Las Vegas, NV, June 1997.

[2] G. Ammons and J. R. Larus. Improving data-flow analysis with path profiles. In Proceedings
of the SIGPLAN 98 Conference on Programming Language Design and Implementation,
pages 72—-84, Montreal, Canada, June 1998.

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S. A. Leung, R. L. Sites,
M. T. Vandervoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling: Where have

all the cycles gone? ACM Transactions on Computer Systems, 15(4):357-390, November
1997.



Load Scheduling with Profile Information 233

[4] S. Carr. Combining optimization for cache and instruction-level parallelism. In The 1996 In-
ternational Conference on Parallel Architectures and Compilation Techniques, Boston, MA,
October 1996.

[5] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos. ProfileMe: Hardware
support for instruction level profiling on out-of-order processors. In Proceedings of the 30th
International Symposium on Microarchitecture, Research Triangle Park, NC, December 1997.

[6] Chen Ding, Steve Carr, and Phil Sweany. Modulo scheduling with cache reuse information.
In Proceedings of EuroPar 97, pages 1079-1083, August 1997.

[7] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. /[EEE Trans-
actions on Computers, C-30(7):478-490, July 1981.

[8] D. R. Kerns and S. Eggers. Balanced scheduling: Instruction scheduling when memory
latency is uncertain. In Proceedings of the SIGPLAN "93 Conference on Programming Lan-
guage Design and Implementation, pages 278-289, Albuquerque, NM, June 1993.

[9] C. Liao, M. Martonosi, and D. W. Clark. Performance monitoring in a myrinet-connected
shrimp cluster. In 71998 ACM Sigmetrics Symposium on Parallel and Distributed Tools, Au-
gust 1998.

[10] J. L. Lo and S. J. Eggers. Improving balanced scheduling with compiler optimizations that
increase instruction-level parallelism. In Proceedings of the SIGPLAN ’95 Conference on
Programming Language Design and Implementation, pages 151-162, San Diego, CA, June
1995.

[11] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O’Donnell, and J. C. Ruttenberg. The multiflow trace scheduling compiler. The Journal
of Supercomputing, pages 51-143, 1993.

[12] E. Jesus Sanchez and Antonio Gonzales. Cache sensitive modulo scheduling. In The 1997
International Conference on Parallel Architectures and Compilation Techniques, pages 261—
271, November 1997.

[13] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis
tools. In Proceedings of the SIGPLAN *94 Conference on Programming Language Design
and Implementation, pages 196-205, Orlando, FL, June 1994.



	Introduction
	Related Work
	DCPI
	Information Supplied by DCPI
	Deriving Locality Information
	Validation of the Locality Information

	Scheduling with Runtime Data
	Balanced Scheduling
	Balanced Scheduling with Locality Data
	Communicating Locality Classifications to the Scheduler
	Limitations of Experiments

	Experimental Results
	Conclusions

