
Automatic Generation of Block-Recursive

Codes�

Nawaaz Ahmed and Keshav Pingali

Department of Computer Science,
Cornell University, Ithaca, NY 14853

Abstract. Block-recursive codes for dense numerical linear algebra com-
putations appear to be well-suited for execution on machines with deep
memory hierarchies because they are effectively blocked for all levels of
the hierarchy. In this paper, we describe compiler technology to translate
iterative versions of a number of numerical kernels into block-recursive
form. We also study the cache behavior and performance of these com-
piler generated block-recursive codes.

1 Introduction

Locality of reference is important for achieving good performance on modern
computers with multiple levels of memory hierarchy. Traditionally, compilers
have attempted to enhance locality of reference by tiling loop-nests for each
level of the hierarchy [4, 10, 5]. In the dense numerical linear algebra commu-
nity, there is growing interest in the use of block-recursive versions of numerical
kernels such as matrix multiply and Cholesky factorization to address the same
problem. Block-recursive algorithms partition the original problem recursively
into problems with smaller working sets until a base problem size whose working
set fits into the highest level of the memory hierarchy is reached. This recursion
has the effect of blocking the data at many different levels at the same time.
Experiments by Gustavson [8] and others have shown that these algorithms can
perform better than tiled versions of these codes.

To understand the idea behind block-recursive algorithms, consider the itera-
tive version of Cholesky factorization shown in Figure 1. It factorizes a symmetric
positive definite matrix A into the product A = L · LT where L is a lower trian-
gular matrix, overwriting A with L. A block-recursive version of the algorithm
can be obtained by sub-dividing the arrays A and L into 2× 2 blocks, as shown
in Figure 2. Here, chol(X) computes the Cholesky factorization of array X . The
recursive version factorizes the A00 block, performs a division on the A10 block,
and finally factorizes the updated A11 block. The termination condition for the
recursion can be either a single element of A (in which case a square root op-
eration is performed) or a b × b block of A which is factored by the iterative
code.
� This work was supported by NSF grants CCR-9720211, EIA-9726388, ACI-9870687,
EIA-9972853.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 368–378, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Automatic Generation of Block-Recursive Codes 369

for j = 1, n
for k = 1, j-1

for i = j, n
S1: A(i,j) -= A(i,k) * A(j,k)
S2: A(j,j) = dsqrt(A(j,j))

for i = j+1, n
S3: A(i,j) = A(i,j) / A(j,j)

Fig. 1. Cholesky Factorization

[
A00 AT

10
A10 A11

]
=

[
L00 0
L10 L11

] [
LT

00 LT
10

0 LT
11

]

=

[
L00LT

00 L00LT
10

L10LT
00 L10LT

10 + L11LT
11

]
L00 = chol(A00)

L10 = A10L
−T
00

L11 = chol(A11 − L10LT
10)

Fig. 2. Block recursive Cholesky

A block-recursive version of matrix multiplication C = AB can also be de-
rived in a similar manner. Subdividing the arrays into 2×2 blocks results in the
following block matrix formulation —

[
C00 C01
C10 C11

]
=

[
A00 A01
A10 A11

] [
B00 B01
B10 B11

]
=

[
A00B00 + A01B10 A00B01 + A01B11
A10B00 + A11B10 A10B01 + A11B11

]

Each matrix multiplication results in eight recursive matrix multiplications
on sub-blocks. The natural order of traversal of a space in this recursive manner
is called a block-recursive order and is shown in Figure 4 for a two-dimensional
space. Since there are no dependences, the eight recursive calls to matrix mul-
tiplication can be performed in any order. Another way of ordering these calls
is to make sure that one of the operands is reused between adjacent calls1. One
such ordering corresponds to traversing the sub-blocks in the gray-code order.
A gray-code order on the set of numbers (1 . . . m) arranges the numbers so that
adjacent numbers differ by exactly 1 bit in their binary representation. A gray-
code order of traversing a 2-dimensional space is shown in Figure 5. Such an
order is called space-filling since the order traces a complete path through all
the points, always moving from one point to an adjacent point. There are other
space-filling orders; some of them are described in the references [6]. Note that
lexicographic order, shown in Figure 3, is not a space-filling order.

In this paper, we describe compiler technology that can automatically convert
iterative versions of array programs into their recursive versions. In these pro-
grams, arrays are referenced by affine functions of the loop-index variables. As a
result, partitioning the iterations of a loop will result in the partitioning of data
as well. We use affine mapping functions to map all the statement instances
of the program to a space we call the program iteration space. This mapping
effectively converts the program into a perfectly-nested loop-nest in which all
statements are nested in the innermost loop. We develop legality conditions un-
der which the iteration space can be recursively divided. Code is then generated
to traverse the space in a block-recursive or space-filling manner, and when each
point in this space is visited, the statements mapped to it are executed. This
strategy effectively converts the iterative versions of codes into their recursive
1 Not more than one can be reused, in any case.

370 Nawaaz Ahmed and Keshav Pingali

1 2

7 8

9 10

15 16

5 6

13

1211

14

3 4

Fig. 3. Lexicographic

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1 2

3 4

Fig. 4. Block Recursive

1

3

9

11

1

3

2

4

4

2

16

15 14

13

8 7

65

12

10

Fig. 5. Space-Filling

ones. The mapping functions that enable this conversion can be automatically
derived when they exist. This approach does not require that the original pro-
gram be in any specific form – any sequence of perfectly or imperfectly nested
loops can be transformed in this way.

The rest of this paper is organized as follows. Section 2 gives an overview
of our approach to program transformation (details are in [2]); in particular,
in Section 2.1, we derive legality conditions for recursively traversing the pro-
gram iteration space. Section 3 describes code generation, and Section 4 presents
experimental results. Finally, Section 5 describes future work.

2 The Program-Space Formulation

A program consists of statements contained within loops. All loop bounds and
array access functions are assumed to be affine functions of surrounding loop
indices. We will use S1, S2, . . ., Sn to name the statements of the program in
syntactic order.

A dynamic instance of a statement Sk refers to a particular execution of
that statement for a given value of index variables ik of the loops surrounding
it, and is represented by Sk(ik). The execution order of these instances can be
represented by a statement iteration space of |ik| dimensions, where each dynamic
instance Sk(ik) is mapped to the point ik. For the iterative Cholesky code shown
in Figure 1, the statement iteration spaces for the three statements S1, S2 and
S3 are j1 × k1 × i1, j2, and j3 × i3 respectively. The program execution order
of a code fragment can be modeled in a similar manner by a program iteration
space, defined as follows.

1. Let P be the Cartesian product of the individual statement iteration spaces
of the statements in that program. The order in which this product is formed
is the syntactic order in which the statements appear in the program. If p is
the sum of the number of dimensions in all statement iteration spaces, then
P is p-dimensional. P is also called the product space of the program.

2. Embed all statement iteration spaces Sk into P using embedding functions
F̃k which satisfy the following constraints:
(a) Each F̃k must be one-to-one.

Automatic Generation of Block-Recursive Codes 371

(b) If the points in space P are traversed in lexicographic order, and all state-
ment instances mapped to a point are executed in original program order
when that point is visited, the program execution order is reproduced.

The program execution order can thus be modeled by the pair (P , F̃ =
{F̃1, F̃2, . . . , F̃n}). We will refer to the program execution order as the original
execution order. For the Cholesky example, the program iteration space is a 6-
dimensional space P = j1 × k1 × i1 × j2 × j3 × i3. One possible set of embedding
functions F̃ for this code is shown below –

F̃1(

[
j1
k1
i1

]
) =




j1
k1
i1
j1
j1
i1


 F̃2(

[
j2

]
) =




j2
j2
j2
j2
j2
j2


 F̃3(

[
j3
i3

]
) =




j3
j3
i3
j3
j3
i3




Note that all the six dimensions are not necessary for our Cholesky example.
Examining the mappings shows us that the last three dimensions are redundant
and the program iteration space could as well be 3-dimensional. For simplicity,
we will drop the redundant dimensions when discussing the Cholesky example.
The redundant dimensions can be eliminated in a systematic manner by retaining
only those dimensions whose mappings are linearly independent.

In a similar manner, any other execution order of the program can be rep-
resented by an appropriate pair (P ,F). Code for executing the program in this
new order can be generated as follows. We traverse the entire product space
lexicographically, and at each point of P we execute the original program with
all statements protected by guards. These guards ensure that only statement
instances mapped to the current point are executed. For the Cholesky example,
naive code which implements the execution order (P , F̃)2 is shown in Figure 6.
This naive code can be optimized by using standard polyhedral techniques [9]
to remove the redundant loops and to find the bounds of loops which are not
redundant. An optimized version of the code is shown in Figure 7. The condi-
tionals in the innermost loop can be removed by index-set splitting the outer
loops.

2.1 Traversing the Program Iteration Space

Not all execution orders (P ,F) respect the semantics of the original program. A
legal execution order must respect the dependences present in the original pro-
gram. A dependence is said to exist from instance is of statement Ss to instance
id of statement Sd if both statement instances reference the same array loca-
tion, at least one of them writes to that location, and instance is occurs before
instance id in original execution order. Since we traverse the product space lexi-
cographically, we require that the vector v = Fd(id)−Fs(is) be lexicographically
positive for every pair (is, id) between which a dependence exists. We refer to v
as the difference vector.
2 We have dropped the last three redundant dimensions for clarity.

372 Nawaaz Ahmed and Keshav Pingali

for j1 = -inf to +inf
for k1 = -inf to +inf
for i1 = -inf to +inf
for j = 1, n

for k = 1, j-1
for i = j, n

if (j1==j && k1==k && i1==i)
S1: A(i,j) -= A(i,k) * A(j,k)

if (j1==j && k1==j && i1==j)
S2: A(j,j) = dsqrt(A(j,j))

for i = j+1, n
if (j1==j && k1==j && i1==i)

S3: A(i,j) = A(i,j) / A(j,j)

Fig. 6. Naive code for Cholesky

for j1 = 1,n
for k1 = 1,j1
for i1 = j1,n

if (k1 < j1)
S1: A(i1,j1) -= A(i1,k1) * A(j1,k1)

if (k1==j1 && i1==j1)
S2: A(j,j) = dsqrt(A(j1,j1))

if (k1==j1 && i1 > j1)
S3: A(i1,j1) = A(i1,1j) / A(j1,j1)

Fig. 7. Optimized code for Cholesky

For a given embedding F , there may be many legal traversal orders of the
product space other than lexicographic order. The following traversal orders are
important in practice.

1. Any order of walking the product space represented by a unimodular trans-
formation matrix T is legal if T · v is lexicographically positive for every
difference vector v associated with the code.

2. If the entries of all difference vectors corresponding to a set of dimensions of
the product space are non-negative, then those dimensions can be blocked.
This partitions the product space into blocks with planes parallel to the axes
of the dimensions. These blocks are visited in lexicographic order. This order
of traversal for a two-dimensional product space divided into equal-sized
blocks is shown in Figure 3.
When a particular block is visited, all points within that block can be visited
in lexicographic order. Other possibilities exist. Any set of dimensions that
can be blocked can be recursively blocked. If we choose to block the program
iteration space by bisecting blocks recursively, we obtain the block-recursive
order shown in Figure 4.

3. If the entries of all difference vectors corresponding to a dimension of the
product space are zero, then that dimension can be traversed in any order.
If a set of dimensions exhibit this property, then those dimensions can not
only be blocked, but the blocks themselves do not have to be visited in a
lexicographic order. In particular, these blocks can be traversed in a space-
filling order. This principle can be applied recursively within each block, to
obtain space-filling orders of traversing the entire sub-space (Figure 5).

Given an execution order (P ,F), and the dependences in the program, it is
easy to check if the difference vectors exhibit the above properties using standard
dependence analysis [11]. If we limit our embedding functions F to be affine
functions of the loop-index variables and symbolic constants, we can determine
functions that allow us to block dimensions (and hence also recursively block
them) or to traverse a set of dimensions in a space-filling order. The condition

Automatic Generation of Block-Recursive Codes 373

that entries corresponding to a particular dimension of all difference vectors
must be non-negative (for recursive-blocking) or zero (for space-filling orders)
can be converted into a system of linear inequalities on the unknown coefficients
of F by an application of Farkas’ Lemma as discussed in [2]. If this system
has solutions, then any solution satisfying the linear inequalities would give
the required embedding functions. The embedding functions for the Cholesky
example were determined by this technology.

3 Code Generation

Consider an execution order of a program represented by the pair (P ,F). We
wish to block the program iteration space recursively, terminating when blocks
of size B × B . . . × B are reached.

Let p represent the number of dimensions in the product space. To keep the
presentation simple, we assume that redundant dimensions have been removed
and that all dimensions can be blocked. We also assume that all points in the pro-
gram iteration space that have statement instances mapped to them are positive
and that they are contained in the bounding box (1 · · ·B×2k1 , . . . , 1 · · ·B×2kp).

Code to traverse the product space recursively is shown in Figure 8. The
parameter to the procedure Recurse is the current block to be traversed, its
co-ordinates given by (lb[1]:ub[1], ..., lb[p]:ub[p]). The function Has-
Points prevents the code from recursing into blocks that have no statement
instances mapped to them. If there are points in the block and the block is not
a base block, GenerateRecursiveCalls subdivides the block into 2p sub-blocks
by bisecting each dimension and calls Recurse recursively in a lexicographic
order3. The parameter q of the procedure GenerateRecursiveCalls specifies
the dimension to be bisected. On the other hand, if the parameter to Recurse is
a base block, code for that block of the iteration space is executed in procedure
BaseBlockCode.

For the initial call to Recurse, the lower and upper bounds are set to the
bounding box.

Naive code for BaseBlockCode(lb,ub) is similar to the naive code for ex-
ecuting the entire program. Instead of traversing the entire product space, we
only need to traverse the points in the current block lexicographically, and ex-
ecute statement instances mapped to them. Redundant loops and conditionals
can be hoisted out by employing polyhedral techniques.

Blocks which contain points with statement instances mapped to them can
be identified by creating a linear system of inequalities with variables lbi, ubi cor-
responding to each entry of lb[1..p], ub[1..p] and variables xi corresponding
to each dimension of the product-space. Constraints are added to ensure that
the point (x1, x2, . . . , xp) has a statement instance mapped to it and that it
lies within the block (lb1 : ub1, . . . , lbp : ubp). From the above system, we ob-
tain the condition to be tested in HasPoints(lb,ub) by projecting out (in the
Fourier-Motzkin sense) the variables xi.
3 This must be changed appropriately if space-filling orders are required

374 Nawaaz Ahmed and Keshav Pingali

Recurse(lb[1..p], ub[1..p])
if (HasPoints(lb,ub)) then

if (∀i ub[i] == lb[i]+B-1) then
BaseBlockCode(lb)

else
GenerateRecursiveCalls(lb,ub,1)

endif
endif
end

GenerateRecursiveCalls(lb[1..p], ub[1..p], q)
if (q > p)

Recurse(lb, ub)
else
for i = 1,p

lb’[i] = lb[i]
ub’[i] = (i==q) ? (lb[i]+ub[i])/2

: ub[i]
GenerateRecursiveCalls(lb’,ub’,q+1)

for i = 1, p
lb’[i] = (i==q) ? (lb[i]+ub[i])/2 + 1

: lb[i]
ub’[i] = ub[i]

GenerateRecursiveCalls(lb’,ub’,q+1)
endif
end

Fig. 8. Recursive code generation

BaseBlockCode(lb[1..3])
for j1 = lb[1], lb[1]+B-1
for k1 = lb[2], lb[2]+B-1
for i1 = lb[3], lb[3]+B-1

for j = 1, n
for k = 1, j-1

for i = j, n
if (j1==j && k1==k && i1==i)

S1: A(i,j) -= A(i,k) * A(j,k)

if (j1==j && k1==j && i1==j)
S2: A(j,j) = dsqrt(A(j,j))

for i = j+1, n
if (j1==j && k1==j && i1==i)

S3: A(i,j) = A(i,j) / A(j,j)
end

HasPoints(lb[1..3], ub[1..3])
if (lb[1]<=n && lb[2]<=n && lb[3]<=n

&& lb[1]<=ub[3]
&& lb[2]<=ub[1]
&& lb[2]<=ub[3])
return true

else
return false

end

Fig. 9. Recursive code for
Cholesky

For our Cholesky example, the embedding functions shown in Section 2 en-
able all dimensions to be blocked. Since there are difference vectors with non-zero
entries, the program iteration space cannot be walked in a space-filling manner,
though it can be recursively blocked. The portion of the product-space that has
statement instances mapped to it is [j, k, i] : 1 ≤ k ≤ j ≤ i ≤ n. This is used to
obtain the condition in HasPoints(). Naive code for executing the code in each
block is shown in Figure 9. As mentioned earlier, the redundant loops must be
removed and the conditionals hoisted out for good performance.

4 Experimental Results

In this section, we discuss the performance of block-recursive and space-filling
codes produced using the technology described in this paper. All experiments
were run on an SGI R12K machine running at 300Mhz with a 32Kb primary-data
cache (L1), 2Mb second-level cache (L2) and 64 TLB entries.

The legality conditions discussed in Section 2.1 permit us to conclude matrix
multiply (MMM) can be blocked both recursively and in a space-filling manner.
The Cholesky code can only be blocked recursively. We generated four versions
of block-recursive code with different base block sizes (16, 32, 64, 128) for both
programs. These codes were compiled with the ”-O3 -LNO:blocking=off” option

Automatic Generation of Block-Recursive Codes 375

0.0E+00

2.0E+09

4.0E+09

6.0E+09

8.0E+09

1.0E+10

1.2E+10

1.4E+10

Lexicographic Block-recursive Space-filling

L
1

m
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

BLAS

7.3E+09

Fig. 10. MMM : L1 cache

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

Lexicographic Block-recursive Space-filling

L
2

m
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

BLAS

4.5E+07

Fig. 11. MMM : L2 cache

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

Lexicographic Block-recursive Space-filling

T
L

B
 m

is
se

s

16x16x16 32x32x32

64x64x64 128x128x128

BLAS

6E+06

Fig. 12. MMM : TLB

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

Lexicographic Block-recursive

L
1

M
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

LAPACK

8.7E+08

Fig. 13. CHOL : L1 cache

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

Lexicographic Block-recursive

L
2

m
is

se
s

16x16x16 32x32x32
64x64x64 128x128x128

LAPACK

1.8E+07

Fig. 14. CHOL : L2 cache

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

Lexicographic Block-recursive

T
L

B
 M

is
se

s

16x16x16 32x32x32
64x64x64 128x128x128

LAPACK

0.6E+07

Fig. 15. CHOL : TLB

of the SGI compiler. At this level of optimization, the SGI compiler performs
tiling for registers and software-pipelining.

For each program, we ran the recursive (and if legal, the space-filling) versions
of the code for a variety of matrix sizes. For lack of space, we only present results
for a matrix size of 4000 × 4000. Results for other matrix sizes are similar.
In the graphs, the results marked Lexicographic correspond to executing the
code in BaseBlockCode(lb) by visiting the base blocks in a lexicographic order.
For comparison, we also show results of executing vendor-supplied, hand-tuned
implementations of matrix multiply (BLAS) and Cholesky (LAPACK [3]).

Figures 10 and 13 show the number of L1 data cache misses for the two
programs. For the larger block sizes (64, 128), the data touched by a base-
block does not fit in cache (32K) and hence both the recursive and lexicographic
versions suffer the same penalty. For smaller block sizes (16, 32), the data does
fit into cache resulting in much fewer misses. Figures 11 and 14 show the L2
cache misses. The lexicographic versions for block sizes of 16 and 32 exhibit
much higher miss numbers than the corresponding recursive versions since these
block sizes are too small to fully utilize the 2M cache. In the recursive versions,
however, even the small block sizes succeed in full utilization of the cache due to
the recursive doubling effect. These recursive versions will have a similar effect
on any further levels of caches. Of the two recursive orders, the space-filling
orders show slightly better cache performance for both programs.

Figures 12 and 15 show the number of TLB misses for the two programs.
The R12K TLB has only 64 entries, hence large block sizes (more than 64) will
exhibit high miss rates in both the lexicographic and recursive cases. Small block
sizes could work well in the lexicographic case if the loop order is chosen well. In
our case, the jki order is the best order for both the programs. There are very
few TLB misses when the block size is 16 because fewer than 48 TLB entries
are required at a time for this block size. In the recursive case, the recursive

376 Nawaaz Ahmed and Keshav Pingali

MMM (4000x4000)

0

50

100

150

200

250

300

350

16x16x16 32x32x32 64x64x64 128x128x128
Block Size

M
F

lo
p

s

Lexicographic Block-recursive
Space-filling

BLAS
Compiler

156

265

Cholesky (4000x4000)

0

50

100

150

200

16x16x16 32x32x32 64x64x64 128x128x128
Block Size

M
F

lo
p

s

Lexicographic Block-recursive

192

53

LAPACK Compiler

Fig. 16. Performance

doubling does cause significantly more TLB misses for small block sizes, although
the recursive walks are largely immune to the effect of reordering the loops. By
comparison, in the jik-order (not shown here), the code with block size of 16
suffers a 100-fold increase in the number of TLB misses for the lexicographic
case but the number of misses remains roughly the same in the recursive cases.

Figure 16 shows the performance of the two programs in MFlops. As a sanity
check, the lines marked Compiler show the performance obtained with compiling
the original code with the ”-O3” flag of the SGI compiler which attempts to tile
for cache and registers and then software-pipeline the resulting code. For both
programs, the recursive codes with block size of 32 are the best among all the
generated code. For most block sizes, the recursive codes are better than their
lexicographic counter-parts by a small percentage (2-5%). For a block size of 16,
the recursive cases are worse due to an increase in the number of TLB misses.

For matrix multiply, the best recursive code generated by the compiler is still
substantially worse than the hand-tuned versions of the programs even though
the recursive overhead is less than 1% in all cases. This difference could be due
to the high number of TLB misses suffered by the recursive versions. Copying
data from base blocks into contiguous locations as is done in the hand-tuned
code might help improve performance. It is interesting to note that although
the hand-tuned version suffers higher primary cache miss rates, the impact on
performance is small. This is not surprising in an out-of-order issue processor like
the R12K where the latency of primary cache misses (10 cycles) can be hidden
by scheduling and software-pipelining. These misses will be more important in
an in-order issue processor like the Merced. For Cholesky factorization, on the
other hand, the best block-recursive version is comparable in performance to
LAPACK code.

5 Related Work and Conclusions

Hand-coded versions of block recursive algorithms have been studied for a long
time [1, 7, 6]; some of them are implemented in the IBM’s Engineering and
Scientific Subroutine Library (ESSL) for example.

In this paper, we developed program restructuring technology to convert it-
erative numerical programs into block-recursive versions. Our experiments show

Automatic Generation of Block-Recursive Codes 377

that the block-recursive versions of matrix multiply and Cholesky are effectively
blocked for all memory hierarchy levels. However, base block sizes must be cho-
sen with care – the data accessed in a base-block must fit into the lowest level
of the cache hierarchy, the blocks must be large enough so that the recursive
overhead is negligible, and the back-end compiler must be able to schedule the
instructions in a base-block efficiently. Unfortunately, our experiments also show
that the block-recursive algorithms do not interact well with the TLB. In spite of
this, the best compiler-generated code for the two applications was nevertheless
a recursive version. We conjecture that better interaction with the TLB requires
either (i) copying data from column-major order into recursive data layouts as
suggested by Chatterjee [6] or (ii) copying the data used by a base block into
contiguous locations as suggested by Gustavson [1].

The work in this paper can be extended in a number of ways. More exper-
iments are needed to assess the importance of block-recursive codes for other
applications such as relaxation methods. Non-square base-blocks may be useful
to eliminate conflict misses in some codes. Finally, it would be interesting to
study the effect of copying data into layouts that are matched to block-recursive
traversals.

References

[1] Ramesh C. Agarwal, Fred G. Gustavson, Joan McComb, and Stanley Schmidt.
Engineering and Scientific Subroutine Library Release 3 for IBM ES/3090 Vector
Multiprocessors. IBM Systems Journal, 28(2):345–350, 1989.

[2] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing transforma-
tions for locality enhancement of imperfectly-nested loop nests. In Proc. Interna-
tional Conference on Supercomputing, Santa Fe, New Mexico, May 2000.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, editors.
LAPACK Users’ Guide. Second Edition. SIAM, Philadelphia, 1995.

[4] Steve Carr and K. Kennedy. Compiler blockability of numerical algorithms. In
Supercomputing, 1992.

[5] L. Carter, J. Ferrante, and S. Flynn Hummel. Hierarchical tiling for improved
superscalar performance. In International Parallel Processing Symposium, April
1995.

[6] S. Chatterjee, V. Jain, A. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear
array layouts for hierarchical memory systems. In International Conference on
Supercomputing (ICS’99), June 1999.

[7] Matteo Frigo, C.L.Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Foundations of Computer Science. IEEE Press, 1999.

[8] F. G. Gustavson. Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM Journal of Research and Development, 41(6):737–755,
November 1997.

[9] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple
mappings. In 5th Symposium on the Frontiers of Massively Parallel Computation,
pages 332–341, February 1995.

378 Nawaaz Ahmed and Keshav Pingali

[10] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric multi-
level blocking. In Programming Languages, Design and Implementation. ACM
SIGPLAN, June 1997.

[11] William Pugh. The Omega test: A fast and practical integer programming algo-
rithm for dependence analysis. In Communications of the ACM, pages 102–114,
August 1992.

	Introduction
	The Program-Space Formulation
	Traversing the Program Iteration Space

	Code Generation
	Experimental Results
	Related Work and Conclusions

