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Abstract. This paper develops and proves an exact distributed invali-
dation algorithm for programs with compile time decidable control-flow.
We present an efficient constructive algorithm that globally combines
locally gathered information to insert coherence calls in such a manner
that eliminates all invalidation traffic without loss of locality and places
the minimal number of coherence calls. Experimental results show that
it outperforms existing compiler directed coherence techniques and hard-
ware based memory consistency.

1 Introduction

The main goal of any distributed shared memory system is to support a shared
memory programming model across distributed resources as efficiently as possi-
ble. More specifically, we would like to minimise the system overhead associated
in maintaining memory coherence. This paper focuses on reducing the amount
of coherence traffic associated with maintaining consistency. In particular we
are interested in entirely eliminating invalidation traffic in a write-invalidation
based protocol using compiler directed distributed invalidation. Given certain
preconditions, we can provably eliminate all invalidation traffic thereby reducing
latency. Furthermore, we can easily expand this approach to tackle the general
case without adversely increasing memory traffic.

In invalidation protocols, attempts to write a new value may be delayed until
all remote copies are invalidated. Performance can be degraded both by the
delay on the writing node, and by the resulting network traffic. One approach
to improving performance is to reduce the overhead of invalidation traffic within
a write-invalidate based protocol by using distributed invalidation (DI). DI [10]
transfers the responsibility of invalidation from the writing processor to the
processors with the remote copies. The writing processor does not incur a write
miss and can proceed without stalling as the invalidation of copies is done locally.
The DI scheme also has the advantage of reducing network invalidation traffic
by removing invalidation and acknowledgement messages.

Early work invalidated all cached data at each parallel region or epoch. More
recent schemes have used tags or timestamps to maintain cached data across
epochs [2,3,5]. Some schemes use a compiler controlled directory to help in run-
time dependence analysis, whilst others remove the need for a directory alto-
gether [2,11,6,12,15,17]. In [4], a more sophisticated form of analysis based on
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reads after RDS (relaxed determining sequence) is described. In [7], vectorisa-
tion is used to minimise the overhead of redundant invalidation when using RDS
analysis. Array data-flow analysis was used in [5] to detect and eliminate stale
data references. However, the greater accuracy of this method was not exploited
in determining the coherence action of the entire program.

In our previous work [13] we presented an algorithm based on coherence
equations which allowed the exact modelling of coherence actions. However, this
approach, in general, is undecidable and relies on a heuristic technique. This
paper describes an exact algorithm for distributed invalidation for static control-
flow programs and makes the following contributions:

– it presents an exact compiler algorithm that provably eliminates all invali-
dation traffic in static control-flow programs.

– it eliminates unnecessary invalidations which cause loss of temporal locality
and provably places the minimal number of self-invalidations to maintain
consistency.

2 Approach

In DI if each processor invalidates its stale read copies and marks as exclusive
the data it will write then memory consistency is maintained without incurring
any invalidation traffic by inserting local invalidate calls (LI) and local exclusive
calls (LEx) (see [13]). The goal of any compiler directed technique is to determine
exactly those memory elements that require coherence actions. Under estimation
will partly rely on the systems coherence mechanism, over estimation leads to
over invalidation and loss of temporal locality.

1. Forall statements, determine enclosing static if conditions
2. For each loop nest L

(a) For each loop with the nest deepest first (section 5)
i. Determine coherence actions required
ii. Insert coherence code
iii. Determine exposed writes and live reads
iv. Remove anti-dependences and consider each loop as a statement

3. For a basic block (section 4)
(a) Determine coherence actions required
(b) Insert coherence code

Fig. 1. The coherence algorithm

Given a certain sequence of memory accesses, we can exactly determine the
coherence actions required, based on array section analysis and static scheduling
information. The key feature of our algorithm is that relatively short sequences
can be summarised locally before combining the results to determine the coher-
ence actions throughout the program. In figure 1, starting at the lowest loop
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nest depth, the statements are examined to see if there exists a cross-processor
anti-dependence. If there is a dependence, only those read and write actions oc-
curring within the loop at that level are considered. Once coherence calls have
been inserted, it is necessary to determine those upwardly exposed writes that
may form the sink of anti-dependences causing coherence traffic. Similarly we
need to determine those reads that are not covered by coherence calls and may
be the source of anti-dependence causing later coherence traffic. The loop nest
can now be considered as a single statement with a modified read and write set.
This approach not only guarantees that all anti-dependences are exactly deter-
mined, it also means that coherence calls are always placed at the highest lexical
level - removing the overhead of repeatedly making redundant coherence calls.

2.1 Example

Column 1 of figure 2 shows a parallelised program fragment based loosely on
the Eispack routine Tred2, where lo and hi refer to the local upper and lower
loop bounds. Column 2 shows a series of 4 boxes denoting the particular memory
actions at various stages in the program to array z, in each of the four processors,
while column 3 presents a summary of the state of memory at various points -
critical to our algorithm. In column 2, reading or writing data that is already
in exclusive state on the local processor does not affect it’s memory state and
is denoted by the colour grey. Similarly, reads to local data already in read-only
state remain in read-only state denoted by a box containing a wave pattern.
Reading remote data requires data to be in read state, once again denoted by a
wave pattern. When a processor wishes to write data previously in read state,
it must first mark the data to be written exclusive, i.e. Ro->Ex, with a call to
LEx, this is denoted by the area of memory marked in black. Remote read copies
must also be invalidated, i.e. Ro->I, with a call to LI, denoted by the cross 1.

We first of all consider those deepest nested loops containing statements S2
and S3 and only consider those read and write actions within the immediate
enclosing loop. As these are parallel loops there are no cross-processor anti-
dependences and we may simply summarise the read and write actions as an
array section for later use. Moving up syntactic levels, we must also consider
statement S1 then S4 and cross-processor dependences within L1.

In the case of the write in statement S3, the cross-processor anti-dependence
from S2 to S3 is from one iteration to the next. Hence, in S3 the read copies
invalidated corresponding to those of the previous iteration. Once the coherence
actions have been determined within loop L1, they must be summarised before
the whole fragment must be considered. In particular we must consider those read
copies that may still be sources of anti-dependences and those write accesses that
may be sinks. If we examine column 3, we notice that there are read copies of
the final column after executing L1. This uncovered read has a cross-processor
dependence with S4, hence the coherence calls in the final entry of column 2.

1 Coherence calls are only shown for one case due to space restrictions.
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Parallel Program Reads/Writes/ Exposed Writes and Reads
Coherence Actions

if (n.ne.1) then

L1:Do i=2,n

if (lo<=i-1<=hi)then

S1: z(i-1,i-1)=1.0

endif

Do j=lo,min(hi,i-1)

Do k=1,i-1

S2: gg(j)=gg(j)+z(k,i)

*z(k,j)

Enddo

Enddo

<Barrier+Coherence code>

Do j=lo,min(hi,i-1)

Do k=1,i-1

S3: z(k,j)=z(k,j)-

gg(j)*d(k)

Enddo

Enddo

Enddo

call mp_barrier()

if (lo<=n<=hi) then

LEx(z(1,n))

else

LI(z(1,n))

endif

endif

Do i=lo,hi

S4: z(1,i)=0.0

Enddo
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S2,i=n: Read Non-Local
(Ex->Ro) (wave), Read Lo-
cal (Ex) (grey), Read Local
(Ro) (wave).

S3,i=n: just Write (Ex)
(grey), Invalidate (Ro->I)
(X), Mark Ex. and Write
(Ro->Ex) (black).

S4: just Write (Ex) (grey),
Invalidate (Ro->I) (X),
Mark Ex. and Write
(Ro->Ex) (black).

L1: Exposed write, assumed
to be Ex.
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L1: Uncovered reads in Ro.

Fig. 2. Illustrative Example
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3 Coherence Equations

This section summarises equations describing coherence based on [13]. Let an
action i be a read or write operation occurring after action i − 1 and before
i + 1. Let Wi and Ri be the set of all the pages (global data) written and read
respectively in action i and let W i and Ri be the corresponding local pages. Let
Exi and Roi be the set of local pages in exclusive and read state respectively
after action i. A superscript is used, if necessary, to distinguish between actions
occurring on different processors, e.g. W 1

i and W 2
i refer to the local data written

on processors 1 and 2 respectively.
We use an owner-computes rule and static scheduling. To eliminate multiple

writer false sharing, arrays are padded and partitioned along page boundaries
where necessary [12].

After a write, the local pages in exclusive/read state will be modified as
follows:

Exi = Exi−1 ∪ W i (1)
Roi = Roi−1 − (Roi−1 ∩ Wi). (2)

Let p be the number of processors and let z be the processor id of the local
processor. After a read action, the local pages in read and exclusive state will
be modified as follows:

Roz
i = Roz

i−1 ∪ ((
k �=z⋃

k∈{1,...,p}
Rk

i ) ∩ Exz
i−1) ∪ (Rz

i − Exz
i−1) = Roz

i−1 ∪ R̂z
i (3)

Exz
i = Exz

i−1 − (Exz
i−1 ∩ (

k �=z⋃

k∈{1,...p}
Rk

i )). (4)

Let LExi and LIi be the local pages to be set to exclusive and invalid state
respectively due to action i. The local pages to be made exclusive are those
which will be written locally and are currently in read state:

LExi = W i ∩Roi−1. (5)

The local pages to be invalidated are those formerly in read state if written to
by remote processors:

LIi = (Wi − W i) ∩Roi−1. (6)

The above equations (5) and (6), if honoured by the compiler, will eliminate
invalidation traffic and unnecessary misses 2.

2 apart from those due to read/write false-sharing [14].
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3.1 Compiler Implementation

Static control-flow is a well defined form of program containing statements, loops,
procedures and if statements, where we restrict the form of conditionals to affine
functions of compile-time known values and constant run-time parameters. We
apply if-conversion throughout the program with the generated guards modelled
as additional constraints. Those pages to be invalidated have been defined in
terms of set algebra. To be amenable to compiler analysis, they have to be ex-
pressed as array sections. In our implementation we make use of Omega Library
[9] for set manipulation.

4 Basic Blocks

Although the equations in section 3 precisely define those array elements to
mark exclusive/invalid, they are in general, undecidable, as they are recursively
defined in terms of previous states. We derive a non-recursive formulation of
the coherence equations for basic blocks which can be used as the basis for a
constructive algorithm and translation to Presburger formulae.

A basic block program or fragment of code B is an ordered set of statements
and memory actions. Adjacent read actions within a statement in B can be
merged into one read action. Therefore, a general basic block program or code
fragment B can be represented as B = {R1, W1, ..., Rn, Wn}.

We make the initial assumption that all previous actions prior to entering
the basic block have already been dealt with, i.e. Ro0 = ∅.

Given the restraint on Roo and our restriction to basic blocks we may re-
cursively enumerate equation (3) to a point s − 1 and rearrange the resulting
equation using set manipulation to get:

Ros−1 =
s−1⋃

t=1

(R̂t −
s−1⋃

u=t

Wt) ∪ R̂s. (7)

The value of Ro is then substituted in equations (5) and (6).

Theorem 1. Equations (7), (5) and (6) exactly define the coherence actions
required before a write statement Ws [8].

Due to space constraints the proofs of all theorems have been omitted and
can be found in [8].

Based on the above formulation we have the following efficient algorithm to
insert coherence code in basic blocks:

1. Find the first sink of cross processor anti-dependence Sk.

2. Find the union of local cross processor anti-dependence reads D̂t at each source of
cross processor anti-dependence with a sink is Sk:
Dk−1 = ∪k−1

t=1 D̂t.
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3. Determine which coherence units should be made exclusive and which should be
invalidated before Sk:
LExz

k = W k ∩ (
⋃k �=z

k∈{1,...,p} Dz
k−1)

LInz
k = (Wk − W k) ∩ Dz

k−1.
4. Insert coherence calls between statements Sk−1 and Sk.
5. Reduce the local cross processor anti-dependence reads at each source of cross

processor anti-dependence with a sink in Sk by what has been written:
D̂t = D̂t − Wk.

6. Delete all anti-dependences with sinks in Sk and repeat steps 1-6 till the end of
the basic block is reached.

Theorem 2. The Basic Block algorithm eliminates all invalidation coherence
and guarantees memory consistency [8].

Theorem 3. The algorithm inserts the minimum number of invalidation calls
[8].

5 Loops

Consider a loop with 2n statements and N iterations. Let R̂t(i) be a read access
within iteration i in statement t which causes a cross-processor anti-dependence.
Similarly, W t(i) denotes a local write at iteration i within statement t. Before
we can express the equations denoting the read state, we first introduce a term
Q to allow a more succinct presentation of the read state equation:

Q(j, i, t, s) = R̂t(j) −
n⋃

u=t

Wu(j) −
i−1⋃

k=j+1

n⋃

t=1

Wt(k) −
s−1⋃

u=1

Wu(i), (8)

if j < i.
This equation summarises all the reaching reads from statement St in itera-

tion j to statement Ss at iteration i. It takes into consideration all the intervening
writes which reduce the amount of data in read state. In those cases where we are
considering statements within the same iteration, we can simplify Q as follows:

Q(i, i, t, s) = R̂t(i) −
s−1⋃

u=t

Wu(i),

if i = j, t < s. Finally, Q(i, i, s, s) = R̂s(i). We now have two cases:

No cross iteration dependences: This case is very similar to that of the basic
block - except that we have an additional parameter - namely the iterator. This
can be expressed as follows:

Ros(i) =
s⋃

t=1

Q(i, i, t, s).
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General Case: For the general case where there may be cross-iteration data
dependence, we have the following expression:

Ros(i) =
i−1⋃

j=1

n⋃

t=1

Q(j, i, t, s)
s⋃

t=1

Q(i, i, t, s). (9)

Theorem 4. Equations (9), (5) and (6) exactly determine the necessary coher-
ence actions in a loop before a write in a statement Ws(i) [8].

5.1 Nested Loops and Summarising

Once coherence actions have been determined for this loop level, we determine
the array section of those writes that are upwardly exposed to possible anti-
dependences at a higher loop level or earlier statement, i.e.

⋃N
i=1

⋃n
s=1(W s(i)−

LExs(i) ∪ LIs(i)).
Similarly the read set associated will be those reads that may form the sources

of anti-dependences is simply the read state after the last iteration, i.e.Ron(N).
This leads to the overall algorithm described in figure 1.

6 Experiments

We prototyped the above algorithm in our compiler MARS [1] and applied it to
two benchmarks, Power, an iterative eigenvalue solver and Cholsky, a routine
from the Spec92 benchmarks. Our scheme was compared with hardware based
sequential consistency (SC) which is guaranteed not to over-invalidate data and a
compiler based scheme which uses lazy distributed invalidation based on relaxed
determined sequences and time stamps [4]. The resulting programs were run on
our DELTA simulator and execution times and memory statistics were gathered
and presented below.

In the power program, both RDS and DI are capable of entirely eliminating
the invalidation traffic required by sequential consistency shown by (Total remote
cache line invalidates). This was achieved in the DI case by simply inserting local
invalidates (Total local invalidates), however, additional write-backs were also
needed by the RDS scheme. As we assume that write-backs are relatively cheap
and the cost of invalidation traffic relatively small, both schemes give a modest
improvement over sequential consistency. For larger systems, the improvement
would be more dramatic. We further assume that special time-reads and the
checking of the entire cache for data to flush, required by RDS, have no runtime
cost. In practice, this could be a significant overhead and RDS would perform
much worse than the DI scheme.

In the cholsky program, both sequential consistency and DI give the same
performance as there are no runtime cross-processor dependences. In the RDS
case, however, conservative compiler analysis has inserted excessive invalidation
calls and write-backs leading to extremely poor execution time.

In both cases, DI has the best execution time.
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Power (SC) 1 2 4 8 16 32

Cycles (*103) 283,240 143,363 74,625 42,224 28,172 23,536

Total wait for invalidate (*103) 0 108 3,358 8,779 23,319 54,976

Total remote cache line invalidates 0 1,568 4,704 10,976 23,520 48,608

Write backs to main memory 0 0 0 0 0 0

Power (DI)

Cycles (*103) 283,510 142,838 73,779 41,038 26,570 21,341

Total wait for invalidates 0 0 0 0 0 0

Total remote cache line invalidates 0 0 0 0 0 0

Total Local invalidates 0 1,568 4,704 10,976 23,520 48,608

Write backs to main memory 0 0 0 0 0 0

Power (RDS)

Cycles (*103) 283,666 142,916 73,818 41,058 26,580 21,346

Cache Flush checks 18 18 18 18 18 18

Time-reads (*103) 50 100 201 401 803 1,606

Total remote cache line invalidates 0 0 0 0 0 0

Total local invalidates 3,008 4,544 7,616 13,760 26,048 50,624

Write backs 3,136 3,136 3,136 3,136 3,136 3,136

Cholsky (SC) 1 2 4 8 16 32

Cycles (*103) 29,189 14,617 7,332 3,691 1,874 975

Total wait for invalidates (*103) 0 0 0 0 0 0

Total remote cache line invalidates 0 0 0 0 0 0

Write backs to main memory 0 0 0 0 0 0

Cholsky (DI)

Cycles (*103) 29,189 14,617 7,332 3,691 1,874 975

Total wait for invalidates 0 0 0 0 0 0

Total remote cache line invalidates 0 0 0 0 0 0

Total Local invalidates 0 0 0 0 0 0

Write backs to main memory 0 0 0 0 0 0

Cholsky (RDS)

Cycles (*103) 30,304 38,852 99,010 120,731 153,203 187,934

Cache Flush checks 64 64 64 64 64 64

Time-reads (*103) 381 381 381 381 381 381

Total remote cache line invalidates 0 0 0 0 0 0

Total local invalidates 26,194 28,381 27,943 27,110 26,235 34,422

Write backs to main memory 70,912 70,912 70,912 70,912 70,912 70,912

7 Conclusion

This paper has presented, for the first time, an exact compiler based distributed
invalidation algorithm. Assuming a static control-flow program we provably in-
sert the minimal number of coherence calls to guarantee consistency, eliminating
all coherence traffic and reducing network contention without destroying tem-
poral re-use due to over-invalidation. Furthermore, we can outperform existing
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hardware and compiler-based techniques. Future work will combine this exact
technique with our previous work on general control-flow, based on a hybrid
coherence based scheme.
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