Database Replication Using Epidemic
Communication

JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi*

University of California at Santa Barbara, Santa Barbara, CA 93106, USA
{joanne46,agrawal ,amr }@cs.ucsb.edu

Abstract. There is a growing interest in asynchronous replica manage-
ment protocols in which database transactions are executed locally, and
their effects are incorporated asynchronously on remote database copies.
In this paper we investigate an epidemic update protocol that guaran-
tees consistency and serializability in spite of a write-anywhere capability
and conduct simulation experiments to evaluate this protocol. Our re-
sults indicate that this epidemic approach is indeed a viable alternative
to eager update protocols for a distributed database environment where
serializability is needed.

1 Introduction

Data replication in distributed databases is an important problem that has been
investigated extensively. In spite of numerous proposals, the solution to efficient
access of replicated data remains elusive. Data replication has long been touted
as a technique for improved performance and high reliability in distributed
databases. Unfortunately, data replication has not delivered on its promise due
to the complexity of maintaining consistency of replicated data. Traditional ap-
proaches for replica management incur significant performance penalties.

The traditional replica management approach requires the synchronous ex-
ecution of the individual read and write operations to be executed on some set
of the copies before transaction commit. An alternative approach is to execute
operations locally without synchronization with other sites, and after termina-
tion, the updates are propagated to other copy sites [7, [8]. In this approach,
changes are propagated throughout the network using an epidemic approach [g],
where updates are piggy-backed on messages, thus ensuring that eventually all
updates are propagated throughout the system. The epidemic approach (also
called asynchronous logging) works well for single item updates or updates that
commute. However, when used for multi-operation transactions, these techniques
do not ensure serializability. To overcome this problem, Anderson et al. [2] and
Breitbart et al. [3] impose a graph structure on the sites and classify copies into
primary and secondary copies, thus restricting how and when transactions can
update copies of data objects. We have developed a hybrid approach where a

* This work was partially supported by NSF grants CCR97-12108, EIA 9818320, IIS
98 17432, and IIS 99 70700

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 427-#374] 2000.
© Springer-Verlag Berlin Heidelberg 2000

428 JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi

transaction executes its operations locally, and before committing uses epidemic
communication to propagate all its updates to all replicas [1]. Once a site is sure
that the updates have been incorporated at all copies, the transaction is commit-
ted. This approach ensures serializability without imposing restrictions on which
sites can process update transactions or which database items can be accessed.
This approach also has the advantages of epidemic propagation, namely the
asynchronous propagation of update operations throughout the system which is
tolerant of network delays and temporary partitions. In this paper we explore
the potential benefits of epidemic communication for replica management and
use a detailed database simulation to evaluate its performance.

2 System Model and Epidemic Update Protocols

We consider a distributed system consisting of a number of database server
sites each maintaining a copy of all the items in the database. The sites are
connected by a point-to-point network that is not required to be reliable. A
transaction can originate at any site, and that site becomes the initiating or
home site. Vector clocks, an extension of Lamport clocks, are used to preserve
potential causal relations among operations. Vector clocks can detect if an event
causally precedes, follows, or is concurrent with another event. In addition to
vector clocks, each site maintains an event log of transaction operations. This log
is not the same as the database recovery log [4] as it is used solely for epidemic
communication purposes. Sites exchange their respective event logs to keep each
other informed about the operations that have occurred in the system. Each
site .S; keeps a two-dimensional time-table T;, which corresponds to S;’s most
recent knowledge of the vector clocks at all sites. Each time-table ensures the
following time-table property: if T;[k, j] = v then S; knows that Sy has received
the records of all events at S; up to time v (which is the value of S;’s local
clock). When a site S; performs an update operation it places an event record
in the log recording that operation. When S; sends a message to Sy it includes
all records t such that S; does not know if S has received a record of ¢, and it
also includes its time-table T;. When S; receives a message from Sy it applies
the updates of all received log records and updates its time-table in an atomic
step to reflect the new information received from Si. When a site receives a log
record it knows that the log records of all causally preceding events either were
received in previous messages, or are included in the same message.

In [1], this approach is extended to support multi-operational transactions
in a database. Since strict two-phase locking [4] is widely used, we assume that
concurrency control is locally enforced by the strict two phase locking protocol at
all server copy sites. When a transaction, ¢, successfully completes its operations
at the home site, S;, it pre-commits. If the transaction is read-only, it can be
committed at that time. Otherwise, a pre-commit record containing the readset
(RS(t)), writeset (WS(t)), the values written, and a pre-commit timestamp
(T'S(t)) from the home site’s vector clock is written to the local event log and the
read-locks held by the transaction are released. The pre-commit timestamp is the

Database Replication Using Epidemic Communication 429

it" row of the S;’s time-table, i.e., T;[, *|, with the i*" component incremented by
one. This timestamp assignment ensures that ¢ dominates all those transactions
that have already pre-committed on S; regardless of where they were initiated.
At this point there is still the possibility that the transaction will be aborted
due to conflicts with other pre-committed transactions.

When a site S; contacts site Sy to initiate an epidemic transfer, S; determines
which of its log records have not been received by Si and sends those records
along with S;’s time table T;. When Sj receives the message, it reads the trans-
action records in order and determines if there is any conflict with transactions
already in Sj’s log that have not yet committed and updates its time table with
the information from S;. Two operations conflict if they are concurrent, they
operate on the same data item, they originate from different transactions and
at least one of them is a write operation. The vector timestamps given to pre-
committed transactions can be used to determine concurrency and the read and
write sets in the log records determine conflicts. If there are any conflicts, to
enforce serializability both transactions involved in the conflict are aborted by
releasing any locks they hold and marking the pre-commit record in the log as
aborted. An aborted transaction is retained in the log and sent to other sites
until it is known (via the time table) that all sites have knowledge of that trans-
action’s termination. If the transaction ¢ whose record was sent from S; to Sk
is not aborted, it is executed at Sy by obtaining write locks and incorporating
the updates to the local copy of the database. If there are local transactions
that have not yet pre-committed that hold conflicting locks, they are aborted
and ¢ is granted the locks. A transaction is committed and the remainder of its
locks released when it is not aborted and it is known (via the time table) that
all sites have knowledge of that transaction. This protocol ensures serializability
and is explained more completely in [I]. The protocol also tolerates temporary
site failures, since the information is stored in the log, and remains there until
it has been received by all sites.

3 Performance Results

Our simulation [f] is based on standard database simulation models. The system
and transaction parameters of the model are given in Table [l along with their
values. The generation of new transactions is governed by a parameter called

Parameter Value || Parameter Value
Number of data disks per site 1 ||ER — Epidemic rate varies
CPU time needed to access disk 0.4 ms||Data disk access time 4-14 ms
Time for forced write of log 10 ms ||Cache hit rate 0.8
Number of log records per page 100 [|Transaction read set size 5-11
Time between operation requests 10 ms || Transaction write set size 14

Table 1. System and Transaction Parameters

430 JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi

10 Sites, Response time vs ThinkTime 5 Sites, Response time vs ThinkTime

200

Commit Time —
Pre Commit Time —+--
ronly G o

d-only Commit Time -&-- |

Commit Time +—
Pre Commit Time -
190 | Read-only Commit Time -8+ 190 | Rea

180
170 |
160 F

S
150 o
140 |-

130

120

110 L L L L L 110 L L
40 60 80 120 140 160 40 60 80

100 100
ThinkTime ThinkTime

(a) Response Time for 10 Sites (b) Response Time for 5 Sites

Fig. 1. Response times as a Function of ThinkTime

“ThinkTime”. This is the per site transaction interarrival time and corresponds
to the “open” queuing model. The percentage of read-only transactions is 75%
unless otherwise stated. When a site is ready to initiate an epidemic session with
another site, it chooses a receiver site at random. The epidemic rate determines
how often a site may initiate an epidemic update. All measurements in these
experiments were made by running the simulation until a 95% confidence interval
of 1% was achieved for each data point. All measurements of time are given in
milliseconds unless stated otherwise.

3.1 Response Time Analysis

In our first set of experiments, we analyze the response time for both read-only
and update transactions as a function of ThinkTime. We consider a system with
10 sites (i.e., 10 copies) and an epidemic rate of 2.0 ms. The results in Figure[Ila)
show the average commit time for read-only transactions as well as both the
average pre-commit and commit time for update transactions. Both the x- and
y-axis are in milliseconds. Since read-only transactions execute locally, they are
not adversely affected by the change in work load except at very low ThinkTime
when the rate of concurrently executing transactions at each site is so high that
conflicts are frequent and there is competition for resources. In fact, it is quite
easy to account for the response time of read-only transactions. Each transaction
has an average of 9 operations requested 10 milliseconds apart, so the issuing of
the operations takes over 90 ms on average. In addition, 1.0 ms of CPU time is
consumed for processing each operation, adding 9 ms to the transaction time.
Disk I/0O for reads takes up 16.9 ms (9 operations, 80% hit rate, 9.4 ms disk
access time) for a total of 115.9 ms. At a low load, e.g., ThinkTime = 160 ms,
a read-only transaction commits in about 121.0 ms. Hence a total of 5.1 ms is
spent on various database management functions such as log writes, lock table

Database Replication Using Epidemic Communication 431

25 Sites, Response time vs ThinkTime 50 Sites, Response time vs ThinkTime

300

Pre Commit Time -
280 1 Read-only Commit -&- | 280 |
260
240 |
220

200 [

180 |- I

L . | i B
B e I N

e .
140 | e e 4 140 Bege g

R 120 L L
140 160 180 120 140 160

180
ThinkTime.

(a) 25 sites, ER = 2.0 (b) 50 sites, ER = 3.0

Fig. 2. Response time for 25 and 50 sites

management and deadlock detection, which take place during the lifetime of the
transaction as well as competition with other transactions for resources.

Update transactions take longer than read-only transactions to pre-commit
since they must force write update data to the recovery log disk, requiring ap-
proximately 10 ms, and the average cost of a write is slightly higher than the
average cost of a read operation. However, as with read-only transactions, an up-
date transaction pre-commits based on local execution and requires no commu-
nication. Therefore the response time for the pre-commit of update transactions
closely follows the response time of read-only transactions. Committing update
transactions requires communication with all the other sites in the system since
the site must know that all sites have pre-committed that transaction. On av-
erage this delay which consists of disk I/O (a site which receives a pre-commit
record must do the writes before putting it in its log and sending it on) and on
communication costs is approximately 24 ms.

3.2 Varying Degree of Replication

Next, we compared systems with 5 (Figure (b)) 10 (Figure 0(a)), 25 (Fig-
ure Pl(a)) and 50 (Figure@(b)) copies. We were interested in the communications
overhead introduced by the additional sites as opposed to the advantage of being
able to handle more read-only transactions. Recall that 75% of the transactions
generated are read-only and can thus be executed and committed at the home
site. These graphs show the effect of increasing the number of sites. A Think-
Time of 100 for 50 sites means 50 transactions are started every 100 ms. Thus,
to evaluate a system load of 200 newly generated transactions per second, we
need to consider a ThinkTime of 50 ms for a 10 site system, a ThinkTime of 120
ms for a 25 site system and a ThinkTime of 240 for a 50 site system. In a 10
site system with 200 new transactions per second, the pre-commit time is 152.2
and the commit time is 181.2. Thus, the overhead introduced by the network to

432 JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi

enable the transactions to commit and ensure serializability is 19.1%. In a 25 site
system the overhead is 31.2% and in a 50 site system the overhead is 71%. If we
look at pre-commit times of less than 145 ms, a reasonable response time, a 5 site
system can handle 100 transactions per second, a 10 site system can handle 166
transactions per second, while a 25 site system can handle 227 transactions per
second and a 50 site system can successfully handle 200. After a certain point,
the possibility of being able to handle more transactions by adding sites to the
system is outweighed by the additional overhead introduced by those sites.

Since a lot of the time was consumed with disk I/O, we also performed
experiments with a cache hit rate of 1.0, thus all read and write accesses are to the
memory. Other experiments varied the transaction mix, network configuration
and epidemic rate. These results are reported in [6].

3.3 Comparison with Traditional Methods

In this section we explore the advantages of epidemic based updates versus a
more traditional synchronous approach. A simple traditional update protocol
allows for local execution of read-only transactions just like the epidemic pro-
tocol. When an update transaction does a write, the home site DBMS must
acquire write locks for that data page at each replica site. The home site DBMS
sends a message to each other site requesting a write lock. When the remote
site is able to grant the lock, it responds with an acknowledgment. When the
home site receives acknowledgments from all other sites, it lets the transaction
perform the data write and proceed with its next operation. When the transac-
tion has completed all its operations, the home site DBMS starts a two phase
commit protocol [4]. In order to assess the performance of the epidemic protocol
we modeled the traditional update protocol with our simulator [6].

Experiments were performed using the traditional protocol with the same sys-
tem and transaction parameters as the epidemic experiments. Response times
for epidemic and traditional protocols are contrasted for 10 (Figure B(a)), and
25 sites (Figure Blb)). In each case, the response times are greater for the tra-
ditional than for the epidemic based approach for both read-only and update
transactions. For example, in a 25 site system with a think time of 100ms, the
commit response time for update transactions for the epidemic based protocol
is 31% less than for the traditional approach.

The difference in read-only response time increases with increasing system
load. We investigated the make-up of the read-only response times for traditional
and epidemic protocols for the 10 site system (Figure[3l(a)). Since the epidemic
based protocol executes all write operations at remote sites together, the conflict
potential and hence the blocking time between transactions is greatly reduced.
We validated this hypothesis by measuring the wait time for the disk and CPU
and the blocking time (the time a transaction is waiting for a lock on a data
item). For example, at a ThinkTime of 120 ms, read-only transactions in the
epidemic protocol spent an average of 4.2 ms waiting (for disk and CPU) and
3.9 ms blocked. The traditional protocol transaction spent 3.3 ms waiting and
12.7 ms blocked. At a higher system load, epidemic read-only transactions spent

Database Replication Using Epidemic Communication 433

10 Sites, Response time vs ThinkTime 25 Sites, Response time vs ThinkTime

Update Commit Time, Traditional — Update Commit Time, Traditional —
Read-Only Commit Time, Traditional —+-- 200 | Read-Only Commit Time, Traditional ~+—-- |
260 | Update Commit Time, Epidemic -8-- | Update Commit Time, Epidemic -8

Read-only Commit Time, Epidemic - Read-only Commit Time, Epidemic -

“““““““““

150

100 120 140 160 180
ThinkTime ThinkTime

(a) Ten sites (b) 25 sites

Fig. 3. Response time for 10 and 25 sites

8.9 ms waiting and 10.0 ms blocked while the traditional read-only transactions
spent 9.1 ms waiting and 34.6 ms blocked. It was clear that the traditional read-
only transactions spend more time blocked and this increases with increasing
system load. This is further explained in [6].

Update transactions have a longer commit time in the traditional protocol,
even at low system load. This was surprising, since, at low system load, the ef-
fects of data and resource contention would be minimal and we expected that the
efficiency of two phase commit would be an advantage over the somewhat ran-
dom epidemic commit process (information propagation depends on the random
communication patterns among sites). We ran an additional experiment with no
disk (hit rate = 1 and log disk time = 0. The results (in [f]) show that removing
the effects of disk I/O has a definite effect on commit time. The commit time
for an update transaction in the traditional protocol reflects two forced writes of
the recovery log disk: the home site force writes its log disk before initiating two
phase commit and each remote site must force its log before responding in the
affirmative. The commit time for update transactions in the epidemic protocol
reflects only the forced write of the recovery log by the home site; the remote
sites respond after an unforced write of the pre-commit record enabling the home
site to commit the transaction. A remote site forces its log later when it commits
the transaction. Removing the effects of disk I/O removes the advantage of the
epidemic approach in terms of commit response time at low system loads.

We also investigated the performance of the epidemic protocol in terms of
total throughput. That is, how many transactions are actually committed per
second. After all, good response time is meaningless if most of the submitted
transactions are aborted. When the proportion of read-only transactions is 75%
on a 10 site system, the throughput results [6] for the epidemic and traditional
protocols are very close, although for high system load the traditional is slightly
better. When only 50% of the submitted transactions are read-only, the through-
put results change to favor the epidemic protocol at high system load.

434 JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi

4 Discussion

The epidemic protocol [I] relieves some of the limitations of the traditional ap-
proach by eliminating global deadlocks and reducing delays caused by blocking.
In addition, the epidemic communication technique is more flexible than the
reliable, synchronous communication required by the traditional approach. In
order for an update transaction to commit in the traditional protocol, all sites
must be simultaneously available and participating in the two-phase commit.
In the epidemic protocol, all sites must eventually be available but need not be
available at the same time. This is a great advantage in distributed systems that
may experience transient failures and network congestion. This protocol has also
been extended to use quorums to resolve commit decisions [3].

Current protocols include restricted execution models to ensure mutual con-
sistency of database copies under lazy replication and protocols which allow
inconsistency and non-serializable executions. We believe these limitations re-
strict replication to very limited classes of applications. The epidemic protocol
we study in this paper [I] ensures transactional serializability and replica con-
sistency without restricting updates or requiring reliable communication and
while tolerating transient network failures. The results of our performance eval-
uation indicate that for moderate levels of replication, epidemic replication is an
acceptable solution to guarantee serializability.

References

[1] Agrawal, D., El Abbadi, A., Steinke, R.: Epidemic Algorithms in Replicated
Databases. Proceedings, ACM Symposium on Principles of Database Systems, May
1997, 161-172

[2] Anderson, T., Breitbart, Y., Korth, H.F., Wool, A.: Replication, consistency and
practicality: Are these mutually exclusive? Proceedings, ACM SIGMOD, June
1998, 484-495

[3] Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S.: Update Propagation Pro-
tocols for Replicated Databases. Proceedings, ACM SIGMOD, June 1999.

[4] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993

[5] Holliday, J., Steinke, R., Agrawal, D., El Abbadi, A.: Epidemic Quorums for Man-
aging Replicated Data. Proceedings, 19th IEEE IPCCC, Feb. 2000

[6] Holliday, J., Agrawal, D.; El Abbadi, A.: Database Replication Using Epidemic
Update. Technical Report TRCS00-01, Computer Science Dept. University of Cal-
ifornia at Santa Barbara, January 2000

[7] Liskov, B., Ladin, R.: Highly Available Services in Distributed Systems. Proceed-
ings, 5th ACM Symposium, Principles of Distributed Computing, August 1986,
29-39

[8] Petersen, K., Spreitzer, M., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexible
Update Propagation for Weakly Consistent Replication. Proceedings, 16th ACM
Symposium on Operating Systems Principles, 1997, 288-301

	Introduction
	System Model and Epidemic Update Protocols
	Performance Results
	Response Time Analysis
	Varying Degree of Replication
	Comparison with Traditional Methods

	Discussion

