
Pfortran and Co-Array Fortran as Tools for

Parallelization of a Large-Scale Scientific
Application

Piotr Ba�la1,2 and Terry W. Clark2

1 Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University, Pawińskiego 5a, 02-106 Warsaw, Poland,

bala@icm.edu.pl
2 Institute of Physics, N. Copernicus University,

Grudzia̧dzka 5/7, 87-100 Toruń, Poland,
3 Department of Computer Science

The University of Chicago and Computation Institute
1100 E. 58th Street, Chicago, IL 60637, USA

twclark@cs.uchicago.edu

Abstract. Parallelization of scientific applications remains a nontrivial
task typically requiring some programmer assistance. Key considerations
for candidate parallel programming paradigms are portability, efficiency,
and intuitive use, at times mutually exclusive features. In this study
two similar parallelization tools, Pfortran and Cray’s Co-Array Fortran,
are discussed in the parallelization of Quantum Dynamics, a complex
scientific application.

1 Introduction

Today’s parallel computers routinely provide computational resources permitting
simulations based on complex scientific models such as the models for describ-
ing the dynamics of quantum systems [1]. This area has experienced heightened
activity with the recent progress in experimental physics, especially ultrafast
optical spectroscopy and quantum electronics. Because analytical tools available
for the description of quantum dynamical systems are limited, computational
models must be used. Quantum dynamics simulations are usually based on nu-
merical propagation of a quantum wavefunction obeying the time-dependent
Schroedinger equation. This task can be easily performed for one-dimensional
systems, but in most cases, the size of the system is limited by the available com-
putational resources, i.e., computer memory and speed. However, this obstacle
can be overcome with parallel computers.

For the task of parallelization, well-established libraries such as MPI [2],
PVM [3,4] and shmem [5] can be used. An important advantage is availability of
implementations of these on a wide range of hardware platforms. There remains,
however, significant barriers to parallelizing complex scientific applications be-
cause complicated applications resist automatic parallelization, while low-level

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 511–518, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

512 Piotr Ba=la and Terry W. Clark

methods of parallelization lead the applicationist into complex and fragile meth-
ods obscuring the algorithmic intent behind the code.

To fill the gap between high-level approaches such as HPF and low-level
approaches such as MPI, intermediate-paradigms have been developed which
address important issues of efficiency, concise notation, and access to low-level
details. In this paper we consider two of these: Cray’s Co-Array Fortran [6,7]
and Pfortran [8,9]. The aim of this paper is to compare these intermediate-level
tools and their efficacy for parallelizing large-scale scientific applications starting
from both specially-defined test cases and production code.

2 Quantum Dynamics Algorithm

We parallelized the Quantum Dynamics (QD) code described in [10]. In QD, the
dynamics of the quantum particle is given by the time-dependent Schroedinger
equation modeled with a discrete representation of the wavefunction on a uniform
Cartesian grid. A Chebychev polynomial method is used for the propagation of
the wavefunction [1,11]. Simulations consist of the evolution of the wavefunction,
which is evaluated at each timestep during the simulations.

The propagation of the quantum-particle wavefunction requires at each time
step several evaluations of the Hamiltonian acting on the wavefunction. In practi-
cal calculations, both wavefunction and potential are represented on the discrete
grid and all variables are calculated numerically on the grid.

The evaluation of the potential energy part of the Hamiltonian is a relatively
lightweight computation consisting of the multiplication of a wavefunction by the
value of the potential. The evaluation of the kinetic part 1

2m∆xΨ(x) is performed
using a Fast Fourier Transform (FFT) [12]. We used a three-dimensional parallel
Fast Fourier Transform, PCFFT3D, from the Cray T3E Scientific libraries for
this. PCFFT3D requires a slicewise distribution of the transformed matrix over
processes.

3 Parallelization Tools

Co-Array Fortran and Pfortran were used in the parallelization of the QD code.
Both languages fall into the SPMD program model with all processes executing
the same program. Parallelism is exploited by explicit partitions of data and
control flow, or some combination of the two. Operations involving arrays can
be easily performed in parallel with the programmer distributing arrays and
iterations across the processors, allocating only the memory required for the local
part of the array if necessary. Ordinary variables are replicated, with the scalar
parts of the code performed independently and redundantly on each processor.

3.1 Pfortran

Pfortran extends Fortran with several operators designed for intuitive use and
concise specification of off-process data access. PC is the C counterpart to Pfor-
tran; both are implementations of the Planguages. The crux of Pfortran and

Pfortran and Co-Array Fortran as Tools for Parallelization 513

PC are fusions, a variant of the guarded-memory model [13]. Fusion objects are
distributed variables formed syntactically with the Planguage operators @ and
{}.

In a sequential program the assignment statement specifies a move of a the
value at the memory location represented by j to the memory location repre-
sented by i. The Planguages allow the same type of assignment, however, the
memory need not be local, as in the following example in a two-process system

i@0 = j@1

with the intention to move the value at the memory location represented by j
at process 1 to the memory location represented by i at process 0.

The other Pfortran fusion operator consists of a pair of curly braces with
a leading function, f{}. This operator lets one represent in one fell swoop the
common case of a reduction operation where the function f is applied to data
across all processes. For example, suppose one wanted to find the sum of an
array distributed across nProc processes, with one element per process. One
could write

sum = +{a}
where a is a scalar at each process, but can be viewed logically as an array across
nProc processes. With @ and {}, a variety of operations involving off-process data
can be concisely formulated.

In the Planguage model, processes can interact only through the same state-
ment, with such statements containing one or more fusion objects. Synchroniza-
tion is implied along with the @ and {}. A consumer will obtain off-process data
as it is defined at the point in the program where the access is performed, i.e.,
at the @ and {}. If there is uneven progress by the consumer and producer, the
implementation could either buffer the data, or stall the producer.

Programmers have access to the local process identifier called myProc. With
myProc, the programmer distributes data and computational workload. The
Planguage translators transform user-supplied expressions containing fusion ob-
jects into algorithms with generic calls to a system-dependent library using,
for example, MPI [2], PVM [3], TCGMSG [14] and the Intel message-passing
interface. To port a Pfortran code from one machine to another, one simply
recompiles it with Pfortran, next compiling the output FORTRAN77 with the
native Fortran compiler. This allows for mixing Pfotran code code with tradi-
tional Fortran77 subroutines and functions which allows for easy parallelization
of large parts of the code.

Pfortran currently targets on the Cray T3E/T3D, IBM SP2, SGI worksta-
tions, SUN multiprocessor computers, as well as on clusters of workstations.

3.2 Co-Array Fortran

Cray Co-Array Fortran is the other parallelization paradigm considered in this
study [6,7]. Co-Array Fortran introduces an additional array dimension for arrays
distributed across processors. For example, the Pfortran statement

514 Piotr Ba=la and Terry W. Clark

a(i)@0 = b(i)@1

is equivalent with the Co-Array Fortran statement

a(i)[0] = b(i)[1].

We note that all Pfortran data fusion statements can be written with co-arrays,
however, the converse is not true. Also, variables used in Co-Array Fortran state-
ments must be explicitly declared as co-arrays. While the co-array and fusion
constructs support the same type of data communication algorithm, Co-Array
Fortran generally requires more changes in the legacy code than does Pfortran;
however, Co-Array Fortran provides structured distribution of user-defined ar-
rays. Co-Array Fortran does not supply intrinsic reduction-operation syntax.
These algorithms must be coded by the user using point-to-point exchanges.

While Co-Array Fortran and Planguage models are similar, they have fun-
damental differences, namely, with Co-Array Fortran:

1. [] does not imply synchronization; the programmer must insert synchroniza-
tion explicitly to avoid race conditions and data consistency.

2. Inter-process communication with co-arrays can occur between separate state-
ments.

3. Co-array variables must be explicitly defined in the code.

The communication underlying Co-Array Fortran is realized through the
Cray’s shmem library, providing high communication efficiency. Cray’s parallel
extensions to Fortran are available only on selected CRAY architectures limiting
the portability of Co-Array Fortran applications.

4 Code Parallelization

The QD application consists of several different types of calculations which we
addressed independently for purposes of parallelization. Most parallelization is
concerned with the distribution of data and calculations for the wavefunction
propagation and potential function evaluation. The most time-consuming part
of the code computes the potential and propagates the wavefunction on a three-
dimensional spatial grid. The evaluations of the potential and wavefunction
propagation at each grid point require only local information, so all variables
evaluated on the distributed grid, such as the potential V (x, y, z) and the wave-
function Ψ(x, y, z, t), are evaluated in parallel. This step does not involve any
communication once arrays are distributed.

The Nx ×Ny ×Nz grid on which the potential and wavefunction are defined
are mapped onto a npx × npy × npz logical processor array. The mapping is
such that processes hold equally sized parts of the grid within a modulo factor.
In practice, three-dimensional arrays are linearized to one-dimensional arrays
of length Nall = Nx × Ny × Nz. The workload is already balanced using the
uniformly distributed grid since the processes perform identical operations at
each grid point.

Pfortran and Co-Array Fortran as Tools for Parallelization 515

Evaluation of different mean values characterizing quantum particles, such as
the energy, position, momentum and norm of the wavefunction requires various
reduction operations. These properties are computed only once per timestep, but,
because of the communication involved, this step can significantly impact the
code performance. In Pfortran and Co-Array implementations, the partial sums
are performed at each processor with a subsequent summation of the partial sums
across all processors. For this purposes the Pfortran global-sum fusion operator is
used with the reduction algorithms generated by the translator; Cray’s Co-Array
Fortran requires honing an algorithm consisting of point-to-point exchanges.

Parallel I/O consists of inputting and outputting the wavefunction and po-
tential-energy arrays. These quantities are stored in a file in some order required
for other applications, so that processes must output their data in appropriate
order. This is done with processes accessing files directly, or by individually
routing the data through a designated process. Other filesystem operations do
not incur significant overhead.

5 Results

We have explored performance of the simple tasks such as array reduction and
array exchange as well as performance of QD application as a whole.

 0.001

 0.01

 0.1

 1

 10

64 256 1024 4096 65536

T
im

e
[s

]

Array size

1 node

4 nodes

 0.01

 0.1

 1

 10

 100

1 2 4 8 16

Number of processors

65536

1024

Fig. 1. Performance of array reduction for different array lengths and parallel
execution as a function of processing elements. Pfortran results are denoted as
squares and Co-Array results as circles.

The reduction algorithm execution times are given in Figure 1. In the sin-
gle processor case, reduction simply consists of a sum over all vector elements.
As in the array update, there is also a discontinuity at 4096 array elements
in reductions using Co-Array Fortran and Fortran90. Recall that the reduction
algorithm interprocess data exchange consists of a single scalar from each pro-
cessor accumulating a processor’s partial sum. Consequently, the cost to perform
the reduction is dominated by the partial summation at each process. However,

516 Piotr Ba=la and Terry W. Clark

interprocess communication costs become more apparent with short vectors as
shown in figure 1. Interestingly, the Co-Array Fortran reduction algorithm, even
though naively written as O(P), outperforms the O(log P) Pfortran compiler
generated algorithm. The difference is likely measuring shmem and MPI, under-
lying Co-Array Fortran and Pfortran, respectively.

 100

 1000

 10000

1 2 4 8 16

T
im

e
[s

]

Number of processors

Pfortran
Coarray

Coarray->Pfortran

 10

 100

1 2 4 8 16

T
im

e
[s

]

Number of processors

Pfortran
Coarray

Coarray->Pfortran

Fig. 2. Performance of the array exchange using short (left) and long (right)
messages for different array length. Pfortran results are denoted as squares and
Co-Array as circles. Full circles denote results for automatic translation of Co-
Array code into Pfortran.

During QD code array exchange, the non-replicated data is sent to all pro-
cesses in the order needed to obtain all data available at each processor. This
task is performed using two different communication approaches. In the first, the
arrays are sent element by element, which results in exchanging small portions
of data. In the second model, communication is performed by a single exchange.
In both communication approaches, the amount of exchanged data is the same
therefore the of the exchange performance is dominated by the communication
efficiency. Co-Array Fortran and Pfortran results in significant differences in
performance due to the cost of communication initialization and process syn-
chronization (Figure 2). The communication overhead is smaller while using
Co-Array Fortran resulting in better performance for large numbers of short
messages. Where large arrays are exchanged, Co-Array execution time increases
almost linearly for number of processors grater than 2. The Pfortran code ex-
hibits a slower (O(log(P))) increase of execution time with increasing numbers
of processors as result of the underlying communication algorithm.

The overall performance for the 100 step propagation of quantum particle
represented on the 32 × 32 × 32 grid. presented in Figure 3 confirms high effi-
ciency of parallelization. Both Pfortran and Co-Array codes scale linearly with
the number of nodes, illustrating the viability of both parallelization tools. Small
differences originate in differences in the performance of elementary array oper-
ations.

Pfortran and Co-Array Fortran as Tools for Parallelization 517

 100

 1000

1 2 4 8 16

T
im

e
[s

]

Number of processors

Pfortran
Coarray

Coarray->Pfortran

Fig. 3. Performance of the Quantum Dynamics code. Pfortran results are de-
noted as squares and Co-Array results as circles. Full circles denote results for
automatic translation of Co-Array code into Pfortran.

6 Discussion

Our results show that efficient parallelization of large-scale scientific applica-
tions such as the QD code can be achieved using Pfortran and Cray’s Co-Array
Fortran.

The Pfortran and Co-Array Fortran implementations scale well with the num-
ber of processors, however, differences were observed in communication perfor-
mance which results from the respective approaches to interprocess data move-
ment. The small number of extensions and intuitive application of Pfortran and
Co-Array Fortran are important considerations; HPF on the other hand, is more
complex, resulting in code at times difficult to understand. We found the lim-
ited portability of Co-Array Fortran a disadvantage. Pfortran had performance
comparable to Co-Array Fortran, and is without the portability limitations. In
addition, the builtin Pfortran reduction operations along with the facility for
user-defined ones are a definite plus for developing the Quantum Dynamics code.
The Pfortran array exchange data reflects the communication algorithm used
which results in logarithmic scaling. This could be implemented in Co-Array
code, however this requires some additional programming effort.

In general, we found Co-Array Fortran and Pfortran both to be marked im-
provements over MPI for engineering parallel applications. In our opinion the
two methods are complimentary paradigms, suitable for different algorithmic
necessities. We plan to explore this concept further. The QD calculations are
representative of a wide range of large-scale computational chemistry and sci-
entific applications, suggesting general relevance of our findings concerning the
efficacy of the parallelization tools.

Acknowledgements We thank Ridgway Scott for his comments and sugges-
tions. Piotr Bala was supported by the Polish State Committee for Scientific

518 Piotr Ba=la and Terry W. Clark

Research. Terry Clark was supported by the National Partnership for Advanced
Computational Infrastructure, NPACI. The computations were performed us-
ing the Cray T3E at the ICM, Warsaw University, with Planguage compiler
development performed in part at the San Diego Supercomputer Center.

References

1. H. Tel-Ezer and R. Kosloff. An accurate and efficient scheme for propagating the
time dependent schroedinger equation. J. Chem. Phys., 81:3967–3971, 1984.

2. Message Passing Interface Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications and High Performance Com-
puiting, 8, 1994.

3. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, and R. Manchek. PVM 3 User’s
Guide and Reference Manual. 1994.

4. A. Beguelin, J. Dongarra, G. A. Geist, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Paralle Virtual Machine, A User’s Guide and Tutorial for Networked Par-
allel Conmputing. MIT Press, Cambridge, 1994.

5. R. Barriuso and A. Kniesi. Shmem User’s Guide for Fortran. 1998.
6. R. W. Numrich. F−−: A Parallel Extension to Cray Fortran. Scientific Program-

ming, 6(3):275–84, 1997.
7. R. W. Numrich, J. Reid, and K. Kim. Writing a multigrid solver using Co-Array

Fortran. In B. K̊agström, J. Dongarra, E. Elmroth, and J. Waśniewski, editors, Re-
cent Advances in Applied Parallel Computing, Lecture Notes in Computer Science
1541, pages 390–399. Springer-Verlag Berlin, 1998.

8. B. Bagheri, T. W. Clark, and L. R. Scott. Pfortran: A parallel dialect of Fortran.
ACM Fortran Forum, 11(3):20–31, 1992.

9. B. Bagheri, T. W. Clark, and L. R. Scott. Pfortran (a parellel extension of fortran)
reference manual uh/md-119. 1991.

10. P. Bala, P. Grochowski, B. Lesyng, and J. A. McCammon. Quantum–classical
molecular dynamics. Models and applications. In M. Field, editor, Quantum
Mechanical Simulations Methods for Studying Biological Systems, Springer-Verlag
Berlin Heidelberg and Les Editions de Physique Les Ulis, 1996 pages 115–196.

11. T. N. Truong, J. J. Tanner, P. Bala, J. A. McCammon, D. J. Kouri, B. Lesyng,
and D. Hoffman. A comparative study of time dependent quantum mechanical
wavepacket evolution methods. J. Chem. Phys., 96:2077–2084, 1992.

12. D. Kosloff and R. Kosloff. A Fourier method solution for the time dependent
Schroedinger equation as a tool in molecular dynamics. J. Comput. Phys., 52:35–
53, 1983.

13. Bagheri Babak. Parallel programming with guarded objects. Research Report
UH/MD, Dept. of Mathematics, University of Houston, 1994.

14. Robert J. Harrison. harrison@tcg.anl.gov, 1992.

	Introduction
	Quantum Dynamics Algorithm
	Parallelization Tools
	Pfortran
	Co-Array Fortran

	Code Parallelization
	Results
	Discussion

