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Abstract. The purpose of this paper is to investigate the parallelization of one-
dimensional Fast Hartley Transform (FHT) algorithm on shared memory
multiprocessor systems. The computational dependencies of the sequential FHT
algorithm are analyzed, in order to distribute the loops of the algorithm among
multiple processes (threads), executed on the available processors of the
system. The outer loop of the algorithm carries data dependencies between
consecutive iterations and, for parallel execution, synchronization barriers are
introduced. The results show that in the parallel execution of the FHT algorithm
a significant speed-up is obtained and that the speed-up increases with the size
of the input sequence.

1 Introduction

Discrete Hartley Transform (DHT), like Discrete Fourier Transform (DFT), plays an
important role in digital signal processing. DFT is very used, but it includes complex
arithmetic even if the input sequence is a real one. Hence, DHT was developed to
eliminate this redundancy for a real sequence of numbers. The DHT of a sequence of
N real numbers X(i),1=0,1,....,.N—1, is:
N-1
H(k)= Y (X(i)[cos(2nki/ N)+sin(2nki/ N)]). (1)
i=0

The computational complexities of both transformations, DFT and DHT, are in
O(N?). As well as DFT, DHT has a fast version called Fast Hartley Transform (FHT)
[1], with the time complexity in O(N log, N). The purpose of this paper is to
investigate the parallelization of FHT algorithm on shared memory multiprocessors.

2 The Analysis of the Sequential FHT Algorithm

Several different forms of the FHT algorithm exist, but in this paper we use for
parallelization a radix-2 decimation-in-time FHT algorithm [2]. Fig. 1 illustrates the
computational flow graph for N = 8-points FHT algorithm.
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Fig.1. Computational flow graph for the 8-points FHT
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An examination of Fig. 1 reveals that FHT computations at each level resemble
basic FFT butterfly computations. The first level (r = 0) consists of 2-points FFT-like
butterflies and the remaining levels (r = 1,2,..n — 1, wheren =log, N) consist of
4-points FHT butterflies. There are two types of FHT butterflies, which will be
referred here as T1 and T2 4-points basic butterflies. Each type of FHT butterflies,
which are presented in Fig. 2, is identified by a 4-tuple (p, r, q, s).
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Fig. 2. Computational flow graphs for a) T1 and b) T2 4-points butterflies. Ci = cos (2ri / N),
Si =sin (2mi / N)

The C-like pseudo-code of the sequential FHT algorithm is given bellow.

/* Sequential FHT algorithm
Input in bit-reversed order in H[0..N-1]
Output in normal order in H[O0.N-1] */
for(i = 0; 1 < N/2; 1i++){
temp = H[2i+1];
H[2i+1] = H[2i] - temp;
H[2i] = H[2i] + temp;}
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for(r = 1; r < n; r++)
for(i = 0; i < N/pow(2,r+1); i++) |
p2 = i*pow(2,r+l); g2 = p2 + pow(2,r);
r2 = p2 + pow(2,r-1); s2 = g2 + pow(2,r-1);
tmpl = H[g2]; tmp2 = H[s2];
H[g2] = H[p2] - tmpl; H[s2] = H[r2] - tmp2;
H[p2] = H[p2] + tmpl; H[r2] = H[r2] + tmp2;
for(j = 1; j < pow(2,r-1); j++) {
Pl = p2 + j; gl = pl + pow(2,1r);
rl = p2 + pow(2,r) - j; sl = rl + pow(2,1);
tmpl = Ci*H[gl] + Si*H[sl];
tmp2 = Cj*H[sl] + Sj*H[qgl];
H[gl] = H[pl] - tmpl; H[sl] = H[rl] - tmp2;
H[pl] = H[pl] + tmpl; H[rl] = H[rl] + tmp2;

As it is shown above, the first for loop performs computations required by the first
level (r = 0), corresponding to the 2-points butterflies. The second outer for loop
performs the computations for the remaining n — 1 levels. The first inner for loop

iterates N/2"! times to compute the T2 butterflies at each level r and the innermost

for loop iterates 211 times to compute the T1 butterflies. The numbers of T1 and
T2 butterflies at level r are:

Sp()=N/4=N/2™; s (1) =N/2". @)

3 Parallelization of the FHT Algorithm

For parallelization of N-points FHT on a shared memory multiprocessor system, a
number of P threads run on P processors of the system, executing the code that
implements the parallel version of the algorithm. The only computational dependency
in the sequential version of the algorithm exists between successive levels because
level-r computations depends on the level-r-1 results. For this reason, we distribute
the iterations of each level loop and provide synchronization mechanisms between
threads (implemented using barriers) at the beginning of each level. These barriers are
needed before the beginning of the second outer for loop that performs the
computations for levels 1,2,.... n —1 and before the first inner for loop that iterates

N/2™ times to compute the T2 butterflies.

Because the number of iterations of the for loops which compute the T1 and T2
butterflies are dynamically varying as a function of r (the current level), we have
chosen to parallelize the for loop with the greatest number of iterations. The level r
for which the number of iterations of these two for loops is the same is obtained by
equaling the numbers of butterflies of type T1 and T2 given by (2) and has the value
r = 2. For r <2 the loop corresponding to T2 butterflies is parallelized; for r > 2 the
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loop corresponding to T1 butterflies is parallelized; in this case, the computations for
the T2 butterflies are done only by one process (thread).
The pseudo-code of the parallel version of the algorithm is presented bellow.

/* Parallel FHT Algorithm */
forall(0 < p £ P-1) {
for(j = p*N/(2P); j < (p+1)*N/(2P); j++) {
temp H[2j+1]; H[2j+1] = H[2j] - temp;
H[2j]= H[2]j] + temp;}

barrier synchronization;
for(r = 1; r < n; r++) {
barrier synchronization;
if(r £ 2)
forall(0 < p £ P-1) {
for(i = p*N/ (P*pow(2,r+1));
i < (p+1)*N/ (P*pow(2,r+1)); i++)
Compute T2 butterfly;
for(j = 1; j < pow(2,r-1); Jj++)
Compute T1 butterfly;

}

else
for(i = 0; 1 < N/pow(2,r+1); i++) |
Compute T2 butterfly;
forall(0 < p £ P-1) {
for(j = p*pow(r-1)/P;
j < (p+1l)*pow(2,r-1); Jj++)
Compute T1 butterfly;

4 Results and Conclusions

For evaluation of performances, the parallel FHT algorithm was implemented on a
two-processor IBM RS/6000 station, under AIX 4.3 operating system. The initial data
are arrays of different dimensions and their elements are double-precision real
numbers. The results show that the execution speed of the parallel algorithm can be
increased using all processors in a multiprocessor system and that the speed-up
increases with the size of the input sequence.
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