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Abstract. Balancing networks are highly distributed data structures
used to solve multiprocessor synchronization problems. Typically, bal-
ancing networks are accessed by tokens, and the distribution of the to-
kens on the network’s output specify the property of the network. How-
ever, tokens represent increment operations only, and tokens alone are
not adequate for synchronization problems that require decrement opera-
tions. For such kinds of problems, antitokens have been used to represent
decrement operations. It has been shown that several kinds of balancing
networks which satisfy the step property, smoothing property, and the
threshold property for tokens alone, preserve their properties even when
antitokens are introduced. A fundamental question that was left open
was to characterize all the properties of balancing networks which are
preserved under the introduction of antitokens. In this work, we provide
such a simple combinatorial characterization for all the properties which
are preserved when antitokens are introduced.

1 Introduction

Balancing networks were devised by Aspnes et al. [4] as a novel class of dis-
tributed data structures that provide highly-concurrent, low-contention solutions
to a variety of multiprocessor synchronization problems.

A balancing network is constructed from elementary switches with p in-
put wires and q output wires, called (p, q)-balancers. A (p, q)-balancer accepts
a stream of tokens on its p input wires. The i-th token to enter the balancer
leaves on output wire i mod q, where i = 0, 1, . . .. One can think of a balancer
as having a “toggle” state variable tracking which output wire the next token
should exit from. A token traversal amounts to a Fetch&Increment operation
to the toggle variable. This operation includes reading the current state of the
toggle, which is the wire the token will exit from, and then setting the toggle
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to point to the next output wire. The distribution of the tokens on the output
wires of the balancer satisfies the step property (explained below).

A balancing network is an acyclic network of balancers where output wires of
some balancers are linked to input wires of other balancers (balancing networks
look like sorting networks [15]). The network’s input wires are those input wires
of balancers not linked to any other balancer, and similarly for the network’s
output wires. Tokens enter the network on the input wires, typically several per
wire, propagate asynchronously through the balancers and leave from the output
wires, typically several per wire.

Balancing networks are classified according to the distribution of the exiting
tokens on the output wires. In particular, Counting networks [4] are those bal-
ancing networks on which the exiting tokens satisfy the step property: the exiting
tokens are distributed uniformly among the output wires and any excess tokens
appear on the upper wires. On smoothing networks [1, 4] the output tokens sat-
isfy the K-smoothing property: the sum of tokens on any two output wires differ
by at most K. On threshold networks [4, 7] the output sequence satisfies the
threshold property: the number of tokens on the bottom wire is increased by
one for every bunch of w tokens, where w is the number of output wires of the
network.

Based on balancing networks, simple and elegant algorithms have been de-
veloped to solve a variety of synchronization problems that appear in distributed
computing systems. For example, counting networks are used to implement effi-
cient distributed Fetch&Increment counters as well as linearizable counters [11].
Furthermore, smoothing networks solve load sharing problems [17], and threshold
networks provide solutions to barrier synchronization problems [9]. For applica-
tions of balancing networks see [4, 11, 12, 14, 16].

A limitation of balancing networks is that they are accessed by tokens only. A
token can be thought of as an “increment” operation issued by the process which
inserts the token in the network. Using tokens only, the capabilities of balancing
networks are limited to the use of only increment operations. However, many
distributed algorithms require the ability to “decrement” shared objects as well.
For example, the classical synchronization constructs of semaphores [8], critical
regions [13], and monitors [10] all rely on applying both increment and decrement
operations on shared counters.

In order to solve such kinds of problems Shavit and Touitou [16] invented
the antitoken, an entity that a processor shepherds through the network in order
to perform a decrement operation. Unlike a token, which traverses a balancer
by fetching the toggle value and then advancing it, an antitoken sets the toggle
back and then fetches it. Informally, an antitoken “cancels” the effect of the
most recent token on the balancer’s toggle state, and vice versa. Furthermore,
when an antitoken and a token meet while they traverse a network they can
“eliminate” each other without needing to traverse the rest of the network.

In the same paper, Shavit and Touitou provide an operational proof that a
specific kind of counting networks which have the form of binary trees count cor-
rectly even when they are traversed by both tokens and antitokens. Namely, they
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show that in these networks the step property is preserved by the introduction
of antitokens.

Subsequently, Aiello et al. [2] generalized the results of Shavit and Touitou [16]
to far more general classes of balancing networks and properties of balancing net-
works. More specifically, Aiello et al. considered boundedness properties, a gen-
eralization of the step and K-smoothing properties. They showed that bounded-
ness properties are preserved by the introduction of antitokens. Busch et al. [5]
considered the threshold property and they showed that this property is also
preserved by the introduction of antitokens.

A fundamental question that was left open by the results in [2, 5, 16], is
to formally characterize all properties of balancing networks that are preserved
under the introduction of antitokens. In this work, we provide the first answer
to this fundamental question.

We provide a simple, combinatorial characterization for all properties of bal-
ancing networks which are preserved when antitokens are introduced. In par-
ticular, for any arbitrary balancing network, we define a new, natural class of
properties, that we call closed under the nullity of the balancing network, which
precisely characterizes all the properties preserved by antitokens. This charac-
terization provides necessary and sufficient conditions for all the properties that
are preserved. For any property that is satisfied by a balancing network for to-
kens only, then our characterization implies that this property is preserved when
antitokens are introduced if and only if the property is closed under the nullity
of the network.

The combinatorial characterization provides a theoretical tool for identifying
which properties are preserved by the introduction of antitokens. For example,
consider some property of a balancing network for which we know the network
satisfies for tokens. In order to prove that this property will be preserved by the
antitokens we only need to show that the property is closed under the nullity
of the network. Having this theoretical tool, the practitioner can identify if a
specific property of balancing can be used to implement algorithms that require
decrements.

Moreover, the necessary condition of the characterization enables us to clas-
sify all the properties for which we already know are preserved with antitokens.
This necessary condition simply says that all these properties must satisfy the
characterization and therefore are closed under the nullity of a balancing net-
work. Consequently, from the results of [2], we can infer that the the step prop-
erty, the K-smoothing property, and in general the boundedness property are all
closed under the nullity of a balancing network. Furthermore, from the results
of [5], we can infer that the threshold property is closed under the nullity of a
balancing network.

The rest of this paper is organized as follows. Section 2 provides some neces-
sary background. In section 3 we describe properties of balancing networks. We
present our main combinatorial characterization result in Section 4. We give our
conclusions in Section 5.
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2 Framework

Throughout our discussion we consider integer vectors. For any integer g ≥ 2,
x(g) denotes the vector 〈x0, x1, . . . , xg−1〉T. For any vector x(g), denote ‖x(g)‖1 =
∑g−1

i=0 xi. We use 0(g) to denote 〈0, 0, . . . , 0〉T, a vector with g zero entries. In a
constant vector all entries are equal to some constant c. We say that a vector
is non-negative, if all of its entries are non-negative integers. We say that an
integer d divides a vector x(g) if each entry of x(g) is some integer multiple of d.

For the rest of our discussion, we consider balancers and balancing networks
in quiescent configurations in which no tokens and antitokens are traversing
the network, namely, all the tokens and antitokens that have ever entered the
balancer have left it.

We think of a token as a positive unit +1, and the antitoken as a negative unit
-1. Consider an (fin, fout)-balancer. For each input index i, 0 ≤ i < fin, we denote
by xi the algebraic sum of tokens and antitokens that have entered on input wire
i; that is, xi is the number of tokens minus the number of antitokens that have
entered on input wire i. We say that the vector x(fin) = 〈x0, x1, . . . , xfin−1〉T
is an input vector of the balancer. Similarly, we define the output vector of the
balancer. In the same way, we define input and output vectors for balancing
networks. Note that when we are considering tokens only the input and output
vectors are non-negative. Vectors can take negative values only when we consider
antitokens too.

Let B be a balancing network with win input wires and wout output wires.
We call win the fan-in, and wout the fan-out of the network. Take any input
vector x(win) to B and let y(wout) be the corresponding output vector. For each
input vector x(win), there is a unique output vector y(wout), and this allows us to
treat the network B as a function on vectors, and we write B(x(win)) = y(wout).
We write also B : x(win) → y(wout) to denote the network B.

Clearly, B(0(win)) = 0(wout). In any quiescent configuration it holds that
‖B(x(win))‖1 = ‖x(win)‖1, which means that the algebraic sum of tokens and
antitokens that have entered the network is the same with the algebraic sum of
tokens and antitokens that have left the network. This also includes the tokens
and antitokens that have been “eliminated” in the network, since their algebraic
sum is zero.

Consider now an (fin, fout)−balancer b. The state of balancer b, on input
sequence x(fin), is defined to be stateb(x(fin)) = ‖x(fin)‖1 mod fout. We remark
that the state of balancer b is some integer in the set {0, 1, . . . , fout − 1}, which
captures the “position” to which the balancer is set as a toggle mechanism.
Consider now a balancing network B : x(win) → y(wout). The state of B, de-
noted stateB(x(win)), is defined to be the collection of the states of its individual
balancers. The initial state of network B is the state stateB(0(win)).

In respect to the state of a balancing network, Aiello et al. [2] have defined
fooling pairs and null vectors as follows. Say that two input vectors x(win)

1 and
x(win)

2 are a fooling pair to network B : x(win) → y(wout), if stateB(x(win)
1 ) =

stateB(x(win)
2 ). Roughly speaking, a fooling pair “drives” all balancers of the
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network to identical states. Say that x(win) is a null vector to network B if the
vectors x(win) and 0(win) are a fooling pair to B. Intuitively, a null vector “drives”
the network back to its initial state. Using results on properties of fooling pairs
and null vectors from Aiello et al. [2], it is straightforward to obtain the following
“linearity” lemma for null vectors.

Lemma 1. Consider a balancing network B : x(win) → y(wout). Take any input
vector x(win) and any null vector x̃(win) to B. Then,

B(x(win) ± x̃(win)) = B(x(win)) ± B(x̃(win)).

For any balancing network B, denote by Wout(B) the product of the fan-outs
of balancers of B. Aiello et al. [2] show the following.

Lemma 2 (Aiello et al. [2]). Consider a balancing network B : x(win) →
y(wout). Assume that Wout(B) divides x(win). Then, x(win) is a null vector to B.

3 Properties

A property Π is a (computable) predicate on integer vectors. We identify Π with
the set of (integer) vectors satisfying it. Say that a vector y(wout) has the property
Π if y(wout) satisfies Π. Say that a balancing network B : x(win) → y(wout)

has a property Π, if all output vectors y(wout) have the property Π, for any
input vectors (not only non-negative input vectors). Below we describe in details
several interesting properties.

Boundedness properties were introduced by Aiello et al. [2]. Fix any integer
g ≥ 2. For any integer K ≥ 1, the K-smoothing property [1] is defined to be
the set of all vectors y(g) such that for any entries yj and yk of y(g), where
0 ≤ j, k < g, it holds |yj − yk| ≤ K. A boundedness property is any subset
of some K-smoothing property, and this subset is closed under addition with
a constant vector, for some integer K ≥ 1. Thus, a boundedness property is
a strict generalization of the smoothing property. Clearly, there are infinitely
many boundedness properties. The step property [4] is defined to be the set of
all vectors y(g) such that for any entries yj and yk of y(g), where 0 ≤ j <
k < g, it holds 0 ≤ yj − yk ≤ 1. Clearly, the step property is a boundedness
property, since any vector that has the step property, has also the 1-smoothing
property (but not vice versa). The main result of Aiello et al. [2] establishes that
allowing negative inputs (antitokens) does not spoil the boundedness property
of a balancing network.

Theorem 1 (Aiello et al. [2]). Fix any boundedness property Π. Consider any
balancing network B : x(win) → y(wout) such that y(wout) has the boundedness
property Π whenever x(win) is a non-negative input vector. Then, B has the
boundedness property Π.

The threshold property [4, 7] is the set of all vectors y(g), such that for the
entry yg−1 of y(g), it holds yg−1 = ‖y(g)‖1/g�. It has been observed in [5] that
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the threshold property is not a boundedness property in all non-trivial cases
(where g > 2). Thus, Theorem 1 does not apply a fortiori to this property.
The main result of Busch et al. [5] establishes that allowing negative inputs
(antitokens) does not spoil the threshold property of a balancing network.

Theorem 2 (Busch et al. [5]). Consider any balancing network B : x(win) →
y(wout) such that y(wout) has the threshold property whenever x(win) is a non-
negative vector. Then, B has the threshold property.

4 Combinatorial Characterization

A fundamental question that was left open by the results in Theorems 1 and 2,
is to formally characterize all the properties of balancing networks that are pre-
served under the introduction of antitokens. In this section, we give such a com-
binatorial characterization as follows.

Definition 1. Consider any balancing network B : x(win) → y(wout). A property
Π is closed under the nullity of B if for all non-negative input vectors x(win) and
for all non-negative null vectors x̃(win) to B, it holds that B(x(win)) ∈ Π implies
B(x(win)) ± B(x̃(win)) ∈ Π.

The use of non-negative vectors in the above definition allows us to determine
whether any given property of a balancing network is closed under the nullity of
the network by examining how the network behaves for tokens only.

In the next claim we establish our main result. We show that being closed
under the nullity of a balancing network is a necessary and sufficient condition
for the property to be preserved under the introduction of antitokens.

Theorem 3. Fix a property Π. Consider any balancing network B : x(win) →
y(wout) such that y(wout) ∈ Π whenever the input vector x(win) is non-negative.
Then, B has the property Π if and only if Π is closed under the nullity of B.

Proof. First, we prove the “if” direction of the claim. Consider any arbitrary
input vector x(win). We will show that B(x(win)) ∈ Π.

Construct from x(win) an non-negative input vector x̃(win) such that for each
index i, x̃i is the least positive multiple of Wout(B) so that 0 ≤ xi + x̃i. Clearly,
the vector x(win) + x̃(win) is non-negative. Furthermore, Wout(B) divides x̃(win),
and from Lemma 2 it follows that x̃(win) is a null vector.

By applying Lemma 1 with vectors x(win) and x̃(win), we obtain

B(x(win) + x̃(win)) = B(x(win)) + B(x̃(win)),

so that
B(x(win)) = B(x(win) + x̃(win)) − B(x̃(win)).

Since the vector x(win) + x̃(win) is non-negative, we have by assumption that

B(x(win) + x̃(win)) ∈ Π.
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Furthermore, since property Π is closed under the nullity of B, and since x̃(win)

is a non-negative null vector, we have by Definition 1 that

B(x(win) + x̃(win)) − B(x̃(win)) ∈ Π.

Subsequently, B(x(win)) ∈ Π, as needed.
We continue to show the “only if” part of the claim. Take any non-negative

input vector x(win) to B and any non-negative null vector x̃(win) to B. Trivially,
B(x(win)) ∈ Π, and thus, by Definition 1, we only need to show that B(x(win))±
B(x̃(win)) ∈ Π. By Lemma 1,

B(x(win) ± x̃(win)) = B(x(win)) ± B(x̃(win)).

Obviously, B(x(win) ± x̃(win)) ∈ Π. Subsequently, B(x(win)) ± B(x̃(win)) ∈ Π, as
needed.

Since the boundedness and the threshold properties were shown in [2, 5] to
be preserved under the introduction of antitokens (see also Theorems 1 and 2),
the necessary condition of Theorem 3 implies that these properties are closed
under the nullity of any balancing network.

The sufficient condition of Theorem 3 can be used to determine if any given
property is preserved with antitokens. In general, we are given a property Π
which we know it is satisfied by a balancing network when the network is ac-
cessed by tokens only. We want to find out if this property will still be preserved
even when the network is accessed by antitokens too. In order to show this, the
sufficient condition of Theorem 3 implies that we only need to prove that the
property is closed under the nullity of the network.

We can strengthen Definition 1 and Theorem 3 so that in their statements,
the non-negative input vectors and null vectors, are restricted to vectors with
entries in the range [0, Wout(B)]. This way, we obtain a new verification procedure
for identifying whether a particular network B satisfies a property closed under
the nullity of a network. In particular, if property Π is closed under the nullity
of a network B (for input vectors and null vectors with entries in the range
[0, WoutB]), Theorem 3 implies that in order to verify that B satisfies the property
Π, it suffices to verify that all vectors with entries in the interval [0, Wout(B)]
satisfy Π. We can simply feed all these vectors to the network and examine if
each respective output vector satisfies Π. This is the first verification procedure
established for properties satisfied by balancing networks that are traversed by
both tokens and antitokens. (For more about verification algorithms see [4, 6].)

5 Conclusion

We have provided a combinatorial characterization of the properties satisfied by
balancing networks traversed by tokens alone that are preserved when antitokens
are introduced. Our results close the main problem left open by the results
in [2, 5]. An interesting question still left open by our work is to provide a
corresponding characterization for randomized balancing networks [3], where the
balancers distribute the tokens on their output wires following some random
permutation.
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