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Abstract. This paper reports a study of sparse matrix vector multipli-
cation on a parallel distributed memory machine called EARTH, which
supports a fine-grain multithreaded program execution model on off-the-
shelf processors. Such sparse computations, when parallelized without
graph partitioning, have a high communication to computation ratio,
and are well known to have limited scalability on traditional distributed
memory machines. EARTH offers a number of features which should
make it a promising architecture for this class of applications, including
local synchronizations, low communication overheads, ability to overlap
communication and computation, and low context-switching costs. On
the NAS CG benchmark Class A inputs, we achieve linear speedups on
the 20-node MANNA platform, and an absolute speedup of 79 on 120
nodes on a simulated extension. The speedup improves to 90 on 120
nodes for Class B. This is achieved without inspector/executor, graph
partitioning, or any communication minimization phase, which means
that similar results can be expected for adaptive problems.

1 Introduction

One of the most difficult challenges in parallel processing is obtaining high per-
formance for a variety of applications in the presence of high communication and
synchronization costs. Multithreaded architectures promise scalable performance
for both regular and irregular applications. These systems hide communication
and synchronization costs by letting a processor switch to a different thread
when a long-latency operation is encountered, and by keeping the cost of this
switching low. Multithreaded systems based on dataflow models of computation,
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such as EARTH [1, 2], offer a further benefit of permitting local control between
producers and consumers of data rather than expensive global barriers.

This paper presents an important case study to examine the performance of
sparse matrix vector multiply (MVM) on EARTH. Sparse MVM is an important
and time-consuming kernel in sparse linear algebra problems, including Conju-
gate Gradient (CG). We have chosen this because it leads to a very high commu-
nication to computation ratio, when parallelized without graph partitioning [3]
and/or an inspector/executor paradigm [4], due to the sparseness of the matrix,
and does not perform well on conventional distributed memory machines. We
show that even without these techniques, a multithreaded system with local syn-
chronization, overlapping of communication and computation, and low-overhead
communication and thread-switching can efficiently parallelize sparse MVM.

The goal is to compute a product q = Av, where A is an n×n matrix and v
is a vector of length n. Typically, fewer than 1% of the elements of A are non-
zero. A common representation for sparse matrices is Compressed Row Storage
(CRS), in which only the non-zeroes of a row are stored, and a separate array
(colidx) holds their column positions.

The NAS Parallel Benchmark suite [5] includes a version of CG without graph
partitioning. Shared memory machines show reasonably good relative speedups
(absolute speedups are not reported) [5]. For instance, the cache-coherent SGI
Origin-2000 has a speedup of 28 on 64 nodes, while the speed of the non-coherent
Cray T3E improves by 25 going from 2 to 64 nodes (single-node performance is
not reported). The IBM SP-2 distributed memory machine is the most “off-the-
shelf,” as it has no hardware support for shared memory; its relative speedup is
only 13 on 64 nodes. CG results are generally not reported for PC clusters as
their relatively slow networks result in terrible speedups.

We have implemented sparse MVM on the EARTH multithreaded system
(described in Sect. 2). In our code, the program on each processor is executed
as a sequence of threads where the enabling of a thread is event driven. Point-
to-point, split-phase style communication is performed between processors, gen-
erating events to trigger thread execution in a fully asynchronous manner. This,
coupled with the low-cost spawning and termination of threads, contributes to
highly scalable performance. Execution on each processor is not broken into sep-
arate computation and communication phases and global synchronization is not
required. Since graph partitioning and inspector/executor are not used, the same
approach can be used for parallelization of linear solvers for adaptive problems,
i.e., problems where the matrix A is frequently modified.

We report speedups from different problem sizes and different EARTH con-
figurations in this paper. With the NAS Class A sparse matrix (14,000 rows), we
observe linear speedups on our 20-node MANNA distributed memory machine
[6]. A simulated expansion of the hardware to more nodes yields an absolute
speedup of 59 on 120 nodes for purely off-the-shelf systems on Class B (75,000
rows), rising to 90 on 120 nodes when a small chip specifically supporting the
EARTH execution model is added. A series of experiments reveal the factors
leading to high scalability in our implementation.
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Fig. 1. EARTH Architecture

The rest of the paper is organized as follows. In Sect. 2 we review the details
of the EARTH architecture. Our multithreaded approach for sparse MVM is
described in Sect. 3. We present our scalability results in Sect. 4, an analysis
of how the features of the EARTH system contribute to these results (based on
additional experiments) in Sect. 5, and our conclusions in Sect. 6.

2 The EARTH Multithreaded Architecture

EARTH (Efficient Architecture for Running THreads) [1, 2] supports a multi-
threaded program execution model in which a program is divided into a two-level
hierarchy of fibers and threaded procedures. Fibers are non-preëmptive and are
scheduled atomically using dataflow-like synchronization operations initiated by
the fibers themselves. These “EARTH operations” make the control and data
dependences between fibers explicit, and fibers are scheduled by the rule that one
is eligible to begin execution as soon as all relevant dependences have been met.
Since fibers can’t be interrupted, the producer and consumer of a long-latency
operation, such as a data transfer, should be in different fibers.

This model allows the use of local synchronizations between fibers using only
relevant dependences, rather than global barriers. It also enables an effective
overlapping of communication and computation, by allowing a processor to grab
any fiber whose data is ready when an existing fiber terminates after initiating
a data transfer.

Conceptually, an EARTH node (see Fig. 1) has an Execution Unit (EU),
which runs the fibers, and a Synchronization Unit (SU), which determines when
fibers are ready to run, and handles communication between nodes. There is also
a Ready Queue (RQ) of fibers waiting to run on the EU, and an Event Queue
(EQ) containing requests for EARTH operations, generated by fibers in the EU.
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Because EARTH fibers are non-preëmptive, they are ideal for off-the-shelf
processors. This is a big advantage, since the costs of developing and introducing
a new processor architecture can be prohibitive. Machines can be developed for
the EARTH execution model in an evolutionary manner [2]. One can begin with
an off-the-shelf parallel machine, and gradually replace its stock components
with hardware specially designed to support EARTH operations. In this paper
(and previous studies) we consider four possible configurations:

Single: Each node has only one processor, which must alternate between the
tasks of the EU and the SU.

Dual: Each node has two processors; one performs the EU tasks and the other
emulates the behavior of the SU. The Ready and Event Queues are stored
in memory shared by the two processors.

External SU: Each node has a regular off-the-shelf processor and a custom
hardware SU. The SU can be built fairly cheaply, yet be optimized for per-
forming the EARTH operations [2, 7]. The EU communicates with the SU
through special memory addresses.

Internal SU: This is like the External SU, except that the CPU and SU cores
are combined in one package. The interface is the same (memory addresses),
but communication between them is off the main bus and hence faster.

3 Multithreaded Implementation

We assume that A is too large to have a complete copy on every node, and
needs to be divided among all p nodes. Unless one uses algorithmic techniques
to reduce communication (see Sect. 1), the simplest way to divide MVM is to
split A into p regular strips or blocks. Our algorithm divides A into vertical
sections A1, . . . , Ap. The vector v is also partitioned into sections corresponding
to the strips of A. During one multiplication, each node i multiplies its own Ai

and vi, producing a partial result qi of size n. Neither A nor v have to move, but
the vectors q1, . . . , qp must be added to produce the final answer.

The only communication required is the reduction of the components of q.
The reference MPI implementation of the NAS CG code adds the qi vectors
using a binary tree. Therefore, the running time of the reduction is O(n log p).

An alternative is to pipeline the reduction in a linear chain. The computation
is divided into p phases; the first two are illustrated in Fig. 2 (where p = 4).
During each phase, node i multiplies one part of its Ai with vi, producing a part
of qi with only n/p elements. This piece is then sent to the left neighbor (mod
p). The starting positions are staggered so that that piece can be added to what
the left neighbor produces in the next iteration, as shown in Fig. 2(b).

The total communication burden is the same as for the binary tree. However,
here it is evenly balanced among all nodes, so the reduction takes only O(n).
Furthermore, by pipelining the reduction, it can be effectively overlapped with
the computation (if the architecture allows this).
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(a) First phase (b) Second phase

Fig. 2. Pipelining of 4-Node MVM Reduction (First 2 Phases)

... ......

... ......

... ......

... ......
(a) Data flow (b) Data flow with syncs

Fig. 3. Implementation of MVM on EARTH

This pipelined reduction is a straightforward specialization of Cannon’s al-
gorithm [8] to one dimension. Its implementation in a conventional parallel ma-
chine, however, can be challenging because of the frequent communication steps.
The high degree of pipelining can hurt performance on conventional coarse-grain
parallel machines in at least some of the following ways:

1. If the overheads of sending a message are too high, the overheads become
collectively much more significant with p phases than with log p phases.

2. If a global barrier is required to synchronize the communication of the pieces
of q from one phase to the next, then any temporary load imbalance from
one phase to the next will force all nodes to wait for the slowest node. (Such
variances are likely in a sparse matrix.)

3. If separate communication and computation phases are required, the oppor-
tunity to overlap these is lost.

EARTH, on the other hand, is specifically designed for fine-grain synchro-
nization, low-overhead communications, and asynchronous local control. It is
therefore an ideal platform for this algorithm. In Sect. 5, we show quantitatively
how these properties of EARTH contribute to the performance of MVM.

Fig. 3 shows how the MVM algorithm is transformed to an EARTH program.
The computation is broken into a sequence of fibers (a). Each circle represents
one fiber, which performs the multiplication of one n/p× n/p section of A with
some vi. A column of fibers (circles) runs on one node, and represents successive
iterations on the same node. Arcs represent data and control dependences. The
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Fig. 4. Multithreading MVM

solid arcs represent the data (in this case, pieces of qi between nodes), while
the dashed arcs represent synchronization signals only. (In this program, all
iterations are executed by one program fiber, which is repeatedly instantiated
and doesn’t need to “send” data to itself.)

On a machine with global barriers, this diagram would adequately describe
the simple control structure of the program. However, we want to exploit the
features of the EARTH program execution model, namely, multithreading, local
synchronization between fibers, and overlapping of communication and compu-
tation. We use EARTH’s sync slots to permit a fiber to start as soon as all
required control and data dependences are met, which in this case means 1) the
previous iteration on the same node has finished, and 2) the qi block from the
previous iteration has been received from the right neighbor.

However, there is a catch here. If a node always sends its qi output to the
same buffer on its left neighbor, the fiber running iteration j must wait until
the fiber running iteration j on the left neighbor has finished reading the data
from the buffer, or else data could be overwritten. Yet there is no signal path
to inform the right neighbor when it is clear to send. Therefore, we add such
paths, as shown in part (b). Furthermore, this synchronization can’t occur within
one iteration, since fibers in EARTH are atomic and non-preëmptive (one can’t
synchronize “part” of a fiber). There must be a downward movement of sync
signals, as shown in (b). Therefore, we allocate two buffers in each node, and use
one buffer on odd-numbered iterations and the other buffer on even iterations.

This implementation now allows local synchronization between nodes, but
doesn’t allow overlapping of communication and computation. The fibers in it-
eration j must wait for the fibers in iteration j−1 to finish and send their results.
If the architecture has separate hardware for communications, then processors
could be sitting idle waiting for the communication to complete. Since EARTH
assumes separate communication hardware (a separate CPU or specialized Syn-
chronization Unit), we want to take advantage of this feature.

To do this, we exploit the other major feature of EARTH: multithreading.
We split each block multiplication into two halves, each of which produces half
of the result vector. This is shown in Fig. 4. Each half is computed by a separate
fiber. Now the top halves and the bottom halves of the block multiplications can
occur concurrently, as long as each has its own buffers. Essentially, the program
in Fig. 3(b) is replicated for each half.
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The code studied here uses the CRS format described in Sect. 1, with a
separate structure for each Ai. The algorithm was adapted to handle strips
of different sizes, so the number of nodes doesn’t need to divide n. The code
was written in Threaded-C [1, 2], an explicitly threaded programming language,
which extends ANSI-C with EARTH operations. Ordinary sequential code was
used for the core block multiplication, which dominates the execution time.
This routine is a 2-D loop, and our C compiler optimizes the inner loop at the
expense of the outer. For the partitioned version, the overhead of the outer loop
is much more critical, since the inner loop has far fewer iterations (as explained
in Sect. 5). As our compiler lacks any flags or pragmas to favor the outer loop,
the core was rewritten in assembly language (43 instructions).1

4 Scalability Results

The experiments in this study are based on the EARTH implementations for the
MANNA [6]. This machine has 20 dual-processor nodes and can run the Single
and Dual configurations listed in Sect. 2. Our experiments were run using SEMi,
an accurate, cycle-by-cycle simulator of the MANNA’s processors, system bus,
memory and interconnection network [1, 2]. The difference in the clock cycle
counts between the simulator and the real MANNA have been measured and
are typically less than 2% on real benchmarks. We have extended the simulator
to model faster processors based on the CPU, bus speed and cache parameters
of the PowerPC 620-based PowerMANNA, the MANNA’s successor. Here we
assume 200MHz processors, with each node having a 200MByte/sec connection
to the network. The specialized SU hardware is also simulated, and its speed and
interface characteristics are based on the existing MANNA hardware. This gives
us confidence that the results obtained from simulating the specialized hardware
are reasonably close to what could be achieved with real hardware. As a further
check, the MVM code was run on the real MANNA up to 20 nodes for the Single
and Dual configurations; the speedup results are nearly identical.

The matrices used come from the NAS Conjugate Gradient (CG) benchmark
[5]. We used the Class A (n = 14,000) and B (75,000) problem sizes. These
matrices contain 1.9 and 13.7 million non-zeroes, respectively.

Results for the two inputs on the 4 different EARTH configurations are shown
in Fig. 5 and 6. The speedups shown are absolute, i.e., the parallel performance
is compared against the sequential code rather than the single-node parallelized
code. On 120 nodes, the speedups achieved for Class A on the Single, Dual,
External SU, and Internal SU versions are 28, 44, 63, and 79, respectively. In the
case of Single, the one-processor threaded version is slower than the sequential
version by a factor of 68%. For the other three configurations, the degradation of
the threaded version on one processor is less than 7%. The Single version has a
high overhead of supporting threads, because no extra hardware is available for
1 An improved native C compiler should make this unnecessary. This kernel is not
used for the sequential version as it actually runs slower than the compiled version
on large blocks.
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Fig. 5. Speedup on Class A (14,000 Rows)
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Fig. 6. Speedup on Class B (75,000 Rows)

performing the actions of the SU. We believe that the results for the External
and Internal versions on 120 nodes are very encouraging, considering that the
problem is not very large for that many nodes. The speedups of the Single, Dual,
External SU, and Internal SU versions for Class B on 120 nodes are 44, 59, 78,
and 90, respectively.

We have also written a threaded version of the full NAS CG benchmark,
which has a number of reduction operations besides the MVM. Although we
have not yet conducted a full set of experiments, our initial results show that
the CG code has the same scalability as the MVM code. This is mainly because
the MVM loop takes more than 95% of the total execution time of CG.
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5 Performance Analysis

In this section, we examine the MVM performance in greater detail. We wish to
answer two questions:

1. What limits the performance of our implementation of MVM on EARTH?
2. How important are the defining characteristics of the EARTH program ex-

ecution model to the performance results?

To answer these questions, we ran a series of experiments with Class A input on
the same platforms in Sect. 4.

A major loss of efficiency comes from the partitioning itself. The core which
multiplies Ai (in whole or in part) with vi is a 2-D loop, but the sparseness of
A limits the iterations of the inner loop when p is large. For instance, the Class
A input averages fewer than 140 non-zeroes per row, which means that on 120
nodes, each row of Ai has usually only one or two non-zeroes. The overheads
due to partitioning must be significant irrespective of how it is parallelized.

To estimate the upper bound of the performance of our algorithm, we ran
a special version of the sequential code, in which we partitioned A and v into
p parts and multiplied them part by part, rather than in a single pass. The
multiplication of each part was further broken into p stages. This mimics the
kind of partitioning seen in the parallel version. On the other hand, to model the
beneficial cache effects that often accompany parallelization, this code reuses the
same (n/p)-element array for holding partial sums. While this produces incorrect
results, it does not affect the control structure of the code, and so tells us how
much benefit we are likely to get from cache effects.

Thus, for this algorithm, if the modified sequential code runs k times slower
than the normal sequential code for a partition factor of p, that suggests the
partitioning overheads will limit the speedup on an ideal parallel machine with
p nodes to p/k. If cache benefits dominate, then k < 1, and thus a superlin-
ear speedup may be attained. In the graphs that follow, we include the curve
calculated in this manner as an “Upper bound” speedup.

In Sect. 3, we argued that the multithreading and local synchronization pro-
vided by EARTH were essential to getting the most performance from the MVM
algorithm. To test this argument, we ran experiments on two modified versions
of the Threaded-C MVM code, in which features of EARTH are removed. This
way we can measure the benefits quantitatively.

The first experiment (“No multithreading”) removes the overlapping of com-
munication and computation by having a single fiber per iteration on each node,
as in Fig. 3(b). This code has the local synchronization feature of EARTH but
does not take advantage of the ability to switch to another thread of execution
during a long-latency operation such as transferring a block of data.

The second experiment (“Global barrier”) removes the benefits of local syn-
chronization from the preceding experiment by simulating the effect of a global
barrier in the no-multithreading code. In this experiment, SEMi halts each node
when it is about to begin or end a communication phase, and when all nodes
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have halted, SEMi causes all nodes to continue where they halted. (The synchro-
nizations are still local, but the earlier nodes are forced to wait for the last node.)
The “global barrier” thus simulated is instantaneous, and all we are measuring is
the cost of having some nodes wait for others, not the cost of the synchronization
itself.

Results for the Dual and Internal SU configurations are shown in Fig. 7–8.2

Each curve shows the original speedup curve from Sect. 4 (“Full multithread-
ing”), the theoretical upper bound, and the speedups for the two simulations
described above. We can make three main observations:

1. When we have efficient hardware support for EARTH’s communication and
multithreading operations, the speedup curves of our fully multithreaded
implementation are reasonably close to the “upper limit” according to the
limitations of our partitioning strategy. This tells us that our Threaded-
C implementation is very effective at exploiting the parallelism which is
inherent in the algorithm.

2. For this application, local synchronization gives a great improvement in per-
formance. Global synchronization eliminates the ability to tolerate tempo-
rary imbalances in the load among the nodes. We observed that our uniform
partitioning balanced the static work per node to within 10% of average,3

and that over time, the load on one node stays roughly in sync with the
other nodes [9].4 However, there can be slight variations from iteration to
iteration. While these variations average out in the long run, they can cause
a slowdown if a global barrier always forces the node with less work to wait

2 Other data can be found in our technical report [9].
3 If p is not a divisor of n, then the last node will have fewer columns than the others.
Uniform balancing may not occur with other types of inputs. However, since the
current program is already able to handle different numbers of columns on each
node, it would be easy to adjust the sizes of the Ai strips by counting non-zeroes.

4 The staggered starting position is important, since most sparse matrices are far
denser near the main diagonal.
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for other nodes to catch up. EARTH’s local dataflow synchronization mech-
anism allows for looser coupling between nodes.

3. Finally, the ability to divide code into multiple threads of control is helpful in
overlapping computation and communication. When we exploit this ability
in our Threaded-C code, the performance improves roughly 15%.

Additional statistics collected by SEMi showed that the network is almost
40% saturated with the multithreaded code on Class A, showing that we make
effective use of the communication hardware.

6 Conclusion

The aim of this study was to implement the sparse MVM core computation part
of the CG linear systems solver on the EARTH multithreaded system, and to
evaluate and analyze its performance. Sparse MVM has typically not performed
well on conventional distributed memory machines, due to the high communi-
cation costs. As mentioned in Sect. 3, a straightforward multiplication program
needs to communicate O(n) data between each pair of neighboring nodes. There-
fore, it is important to overlap this communication with computation and to
minimize all other overheads wherever possible.

We chose a straightforward partitioning strategy for our implementation,
and optimized it to take advantage of the special features of the EARTH mul-
tithreading model. Fine-grain threads (“fibers”) in our code are synchronized
strictly according to which data they need rather than through global barriers.
Partitioning the program into multiple fibers permits overlapping of computa-
tion with communications. Low overheads in performing the multithreading and
communication operations reduce the costs of frequent data transfers.

The current implementation of MVM on EARTH was shown to hide the
communication latency effectively, thereby increasing the performance to a very
high level. For example, a speedup of 59 is attained with 120 processors (on Class
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B) when strictly off-the-shelf processors are used. Specialized hardware support
for the EARTH model can increase the speedup to 90 on 120 nodes, without
compromising the use of off-the-shelf processors for the main CPU.

The program was written in Threaded-C, an explicitly threaded variant of C
which makes the features of EARTH visible to the programmer. While converting
sequential code to any parallel language requires some effort, the main effort was
in conceiving the high-level details of the parallel implementation. Once this was
done, the conversion to Threaded-C was relatively straightforward. We believe
that once programmers have gained sufficient experience in using Threaded-C,
the programming effort is no higher than for MPI.

In conclusion, we have shown that a multithreaded system with local syn-
chronization, overlapping of communication and computation, and low-overhead
communication and thread-switching can efficiently parallelize the sparse MVM
application.
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