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Abstract. The paper describes an efficient communication support for the global
address space programming model on the IBM SP, a commercial example of the
SMP (symmetric multi-processor) clusters. Our approach integrates shared
memory with active messages, threads and remote memory copy between nodes.
The shared memory operations offer substantial performance improvement over
LAPI, IBM one-sided communication library, within an SMP node. Based on the
experiments with the SPLASH-2 LU benchmark and a molecular dynamics
simulation, our multiprotocol support for the global address space is found to
improve performance and scalability of applications. This approach could also
be used in optimizing the MPI-2 one-sided communication on the SMP clusters.

1 Introduction

This work is motivated by applications that require support for a shared-memory
programming style rather than just message passing. Many of them are characterized
by irregular data structures, and dynamic or unpredictable data access patterns. For
certain types of applications, the shared-memory programming model can be
substituted or supported with the global address space model. Systems with a global
address space usually do not offer coherent shared memory at the operating system
level. Instead, in a distributed-memory environment they provide remote memory
operations, for example as in the SHMEM library [1] on the Cray T3E, or one-sided
communication operations in the MPI-2. The global address space can be used directly
by applications, or indirectly supporting a shared-memory view of data structures
emulated through a user-level library interface, such as the Global Arrays (GA) [2],
that transparently to the user performs an appropriate translation of shared to
distributed memory references. The programming model based on the global address
space has the added benefit of preserving data locality information (the application is
explicitly aware of, and controls data distribution) that well-written distributed-
memory message-passing applications can exploit to increase performance. It also
allows access the data in a fashion similar to shared memory without the interprocess
synchronization imposed by the traditional cooperative message passing model.

In recent years, clustered systems with symmetric multi-processor (SMP) nodes
have become increasingly popular as the cost effectiveness of SMP nodes and high-
performance networks improved. An example of such an architecture is the IBM SP, a
distributed-memory machine with SMP nodes, a network supporting high-
performance user-space communication, and a rich programming environment that
offers active messages and remote memory copy through the LAPI system library,
threads, thread-safe MPI, and the standard Unix shared-memory interfaces within the
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SMP nodes. Our goal is to optimize communication support for the global address
space on clustered SMP-based systems for applications that use one process/task per
processor (rather than the explicitly multithreaded single process with per SMP node).

The main contribution of this paper is an integration of multiple communication
protocols such as active messages, threads, and remote memory copy with shared
memory to support the global address space model efficiently. Performance of one-
sided operations is substantially improved by mapping the global address space to the
shared-memory segments on SMP nodes. This technique makes a low-level messaging
library such as LAPI responsible only for internode communication while the
intranode communication is handled directly by shared memory. Performance
advantages of this approach are shown for the remote-memory operations in the
ARMCI portable communication library[3] and two applications, the SPLASH-2 LU
benchmark and NWChem molecular dynamics code. The performance of NWChem
was improved by 12.6% on 64 processors by relinking this large and already well
tuned application unchanged with a different version of the ARMCI library. Although
this paper focuses on the IBM SP, we used the multiprotocols for supporting global
address space through ARMCI on other cluster platforms. We chose the SP since it 1)
is a major cluster platform widely used for technical computing, 2) offers a richer set
of vendor supported protocols (including active messages) relevant to our objectives
than most other cluster platforms, and 3) all the discussed protocols are widely
available in the user mode and supported on the current SP system configurations.

Shared memory has been exploited before in low-level one-sided messaging
systems like Active Messages[4] or Nexus [5], and higher-level two-sided message-
passing interfaces like MPI [6] on SMP clusters. However, as the programming models
based on the global-address space and message passing are fundamentally distinct,
different strategies are needed to pass benefits of shared memory to the applications.
For example, the IBM implementation of MPI on SMP nodes exploits shared memory
to move data between a pair of MPI tasks through an internal buffer in shared memory
with one task copying data into the shared memory buffer and then the other copying
into its separate address space. ARMCI places the application data in shared memory
thus the data can be accessed without any intermediate memory copies and message
buffer management overheads. It helps achieve 15 times better latency and 67% better
bandwidth than in the vendor version of MPI within the SMP node. Similar
performance gains are realized through the shared memory in ARMCI over LAPI
within the node. On the IBM SP, we found that the shared memory optimizations
benefit more the remote memory/one-sided operations than the message passing.

The rest of this paper is organized as follows: Section 2 describes integration of
shared memory with LAPI and thread-based protocols; Section 3 reports the results of
basic communication operations; Section 4 presents experimental results of two
applications, the SPLASH-2 LU benchmark and the molecular dynamic simulation;
Section 5 discusses related work. Finally, we conclude in Section 6.

2 SMP-Aware Communication Protocols

We developed ARMCI[3] to support remote memory operations in the context of
distributed array libraries such as GA and compiler run-time systems such as the
Parallel Runtime Consortium [7] Adlib. ARMCI supports remote memory copy,
accumulate, and synchronization operations. It is portable and compatible with
message-passing libraries such as MPI or PVM. Unlike most existing similar facilities,
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Figure 1: Combining shared memory with LAPI on the IBM SP

such as Cray SHMEM, it focuses on the noncontiguous data transfers that correspond
to the data structures used in scientific applications (sections of multi-dimensional
dense or sparse arrays, scatter, gather). Such transfers are optimized thanks to the non-
contiguous data interfaces available for ARMCI data transfer operations: multi-strided
and generalized UNIX I/O vector interfaces. ARMCI offers a simpler model and
lower-level interface than the MPI-2 one-sided communication.

The standard parallel programming environment of the IBM SP includes LAPI, a
low-level one-sided communication system that supports active messages (AM) and
remote memory copy operations. LAPI offers competitive performance to MPI;
however, unlike MPI it does not support noncontiguous data transfers which are
common in scientific codes. ARMCI on the IBM SP uses active messages and threads
rather than remote memory copies to optimize noncontiguous data transfers. Each
process in a LAPI program uses at least three threads: the main application thread, and
two extra threads for executing the LAPI active message handlers. In applications that
use MPI in addition to LAPI, there are three additional threads introduced by the
thread-safe IBM MPI library. For example, on the 4-way SMP node with 4 user
processes (explicitly single threaded) that use MPI and LAPI, there are 4x6=24
threads. LAPI is supported in the SMP environment. However, since it uses the
network adapter [8] to move data between processes on the same SMP node as if they
were on separate nodes, its performance is not optimal. In particular, to transfer data
between address spaces of two processes, LAPI performs at least two memory copies
(to and from the adapter DMA area), and in many cases generates an interrupt.

We developed hybrid communication protocols for the ARMCI to exploit the
SMP locality information and shared memory communication. The locality
information is determined at start time from the process-to-node mapping, and used to
select appropriate communication protocols. Within the SMP node, all operations are
implemented on top of shared memory rather than with LAPI, see Figure 1. For inter-
node communication, depending on the request size and shape, ARMCI chooses
between active messages (AM) or remote memory copies to optimize bandwidth, see
Figure 2. An implementation of the gather operation used by ARMCI is described in
[9]. Since ARMCI includes a memory allocation routine to be used in the context of
remote memory copy, memory is allocated using the System V shared memory
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Figure 2: SMP-aware implementation of the ARMCI strided get operation on the IBM SP

interfaces. This critical function helps reduce the put/get operations to a memory copy
and avoid at least one memory copy that LAPI must do. As explained below, the main
difficulty is posed by the requirement to make multithreaded active-message internode
protocols compatible with intranode shared memory operations.

ARMCI, in addition to remote memory copy, supports atomic operations:
accumulate (reduction) as well as read-modify-write. The mutual exclusion embedded
in the semantics of these operations requires special care when hybrid protocols are
used. ARMCI on uniprocessor nodes uses active messages, threads, and Pthread
mutexes. Since the same memory region in address space of process A can be
addressed concurrently by a process B executing on the same SMP node and process C
on a remote node, the mutual exclusion primitives must synchronize multiple threads
in both the same and different process spaces. In AIX, Pthread mutexes cannot be used
in this context. We designed a mutex lock replacement for both thread mutexes and
System V semaphores. It offers a very low overhead and is free of the disadvantages of
spin locks that can waste substantial amounts of CPU time by not yielding the
processor when the mutex cannot be acquired for an extensive amount of time. We use
the AIX atomic operation check_lock to check the content of a word. If the mutex is
already acquired by another thread we use a spin lock with limited asymptotic backoff
before finally yielding the processor to another thread.
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Figure 3: Performance of contiguous get (left) and contiguous accumulate (right) operations
implemented using shared memory(shmem) and LAPI on the same SMP or remote node.

3 Performance of Communication Operations

We used a 16-node, 4-way SMP IBM SP with 64 PPC-604e processors and the
TB3MX adapter at PNNL to study the performance of remote memory operations, the
SPLASH-2 LU kernel benchmark and the molecular dynamics simulation. In this
section, we discuss performance of the ARMCI get and accumulate operations in
accessing contiguous and strided data on the same and remote SMP node. For the same
node, the performance using the LAPI-based protocols and the shared-memory
operations is presented.

Figures 3-4 demonstrate that our SMP-aware protocol outperforms LAPI by a
large margin within a node. Interestingly, the observed bandwidth in the LAPI
protocols used for intranode communication is in many cases worse than for the
internode communication. This phenomenon is attributed to the fact that LAPI uses the
network adapter even when communicating within the same node. For the intranode
communication, the same adapter is used for sending and receiving the data, whereas
for the internode communication the adapter handles only one side of the data transfer.

Despite the obvious differences between one-sided protocols in ARMCI and two-
sided point-to-point message-passing protocols in MPI, we present performance of
these systems to demonstrate how these interfaces take advantage of shared memory.
Unlike LAPI, the IBM implementation of MPI already uses shared memory for
communication within the SMP node. Table 1 shows latency and bandwidth numbers
for the ARMCI get and the MPI send/receive operations. In this test, we used
contiguous data transfers and tried to assure that the data is not already in cache. The
MPI latency below is reported as 1/2 of the roundtrip time between two tasks for 1-
byte message size, and we measured bandwidth for 512KB data size. The primary
reason ARMCI outperforms MPI by a wide factor within the SMP node is that ARMCI
get operation reduces simply to a memory copy whereas the MPI protocol adds the
cost of message queue management and requires two memory copies and cooperation
of two tasks to move data through an MPI internal shared memory buffer. Of course,
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these advantages apply to the intranode environment. For the internode communication
ARMCI uses LAPI, and in this case MPI and LAPI performances are similar [10].

The SMP-aware protocols, by improving communication performance within an
SMP node, expose one additional layer of memory hierarchy in the IBM SP and
provide an additional optimization opportunity to the applications.

Table 1: Performance of MPI send/receive and ARMCI get on the SMP node

interface latency [us] bandwidth [MB/s]
MPI 13.2 65.63
ARMCI 0.85 109.64

4 Application Study

We used the SPLASH-2 LU benchmark and the NWChem molecular dynamics code
to study the implication of SMP-aware communication protocols on the application
performance. Neither of these codes was developed to exploit performance
characteristics of the SMP-based clustered systems, and in this respect, are
representative of the majority of scientific parallel codes. Since both codes perform
internode and intranode communication, it was not clear what degree of performance
improvement should be expected.

4.1 LU SPLASH-2 Benchmark

The SPLASH-2 benchmark suite [11] is a set of parallel applications for use in the
design and evaluation of shared-memory multiprocessing systems. The suite contains
two types of codes: full applications and kernels. We chose the LU program, which is
one of the kernel programs from SPLASH-2, to evaluate the performance of our
approach. The LU program factors a dense matrix into the product of a lower
triangular and an upper triangular matrix. The factorization uses blocking to exploit
temporal locality w.r.t. individual submatrix elements [12]. Originally designed to run
on shared memory systems, this benchmark can only be used on a single SMP node of
the IBM SP. Some modifications were needed to use the global address space model.
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Figure 4: Performance of strided get (left) and strided accumulate (right) operations imple-
mented using shared memory (shmem) and LAPI on the same SMP or remote node.



724 Jarek Nieplocha, Jialin Ju, and Tjerk P. Straatsma

4 9
8 Wad
6 /'
s
5 .
8 2
=8 4
—e—cyclicamci 3 —e— block lapi+shm =
1 —— block armi 5 —m— block lapi Ll
—a— cyclic pthreads —a— cyclic lapi+shm
—@— block pthreads 11 —@— cycliclopi [
0 T T T T 0 T T T T
0 1 2 3 4 5 0 4 8 12 16 20
number of processors number of processors

Figure 5: Speedup in the Pthread and ARMCI Figure 6: Speedup in the SPLASH-2 LU
versions of the SPLASH-2 LU benchmark using benchmark using block and block cyclic
block and block cyclic distributions on one SMP distributions and SMP-aware or SMP-obliv-
node ious communication protocols

We also developed a Pthread version of the benchmark to evaluate the performance of
our modifications within an SMP node. The primary issues to be addressed included
memory allocation, access to shared data, and interprocess/thread synchronization.
The Pthread version uses threads while the ARMCI version uses processes. In the
first case, shared data is located in the process memory and accessed directly by the
threads as needed. In order to replace shared memory with global address space, we
had to divide the shared data, assign it to individual processes, and allocate the
corresponding storage on each process. To synchronize processes, we used
MPI_Barrier. Threads are synchronized with a Pthread mutex and a condition variable.
During the LU factorization, if required data blocks are in the local process
memory, they are accessed directly. Otherwise, ARMCI_Get is used to copy the data
block from the remote process that owns it to the local temporary storage. The
computation requires transferring data blocks from the same row and column (for
diagonal blocks). The original benchmark uses block cyclic distribution for load
balancing. We also used block decomposition, as it had better locality of the data
accesses. To take advantage of the SMP performance, the blocks are distributed
according to a block pattern, such that the block that needs to be transferred has a
better chance of residing in the local memory or neighboring memory on the same
node. We used a matrix size of 3072 and a block size of 32 to study performance of the
SPLASH-2 LU benchmark. The performance results given in Figure 5 indicate that the
global address space and shared memory versions of the benchmark have similar
performance for the same distribution types. The block cyclic distribution gives better
performance than the block distribution because of better load balancing properties.
As the Pthread version works only on a single SMP node of the SP, we used only
the ARMCI version of the benchmark on multiple nodes to study performance of the
SMP-aware communication. We relinked the program with two alternative versions of
ARMCI - one that uses only LAPI and the other that uses LAPI for internode
communication and shared memory on a node. Since the block cyclic decomposition
yields better load balancing the code scales better on a single SMP node. However, the
lower memory reference locality compared to block decomposition causes
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communication patterns to be spread out across all the nodes. Consequently, the
benchmark performance on multiple nodes is better with block decomposition. To
exploit performance advantages of both decomposition schemes, we also developed a
third version of the benchmark that uses block cyclic decomposition on a single SMP
node and block decomposition on multiple SMP nodes. Its performance is a good as its
component protocols in their optimal operational regimes, see Figure 6.

The impact of using faster communication within SMP nodes is more significant
with the block rather than block cyclic decomposition because it better exploits data
locality. Improved performance is observed for the approach using LAPI and shared
memory, although the difference is small when few processors are used. This is
because more time is spent in computation than in communication. With more
processors, the multi-protocol approach shows better performance, proving the
benefits of shared memory support for the global address space.

Figure 6 shows some performance degradation effects in the LAPI-only version
with four processors. We contribute this phenomenon to the hardware and software
interaction involving the heavily used (for all the intranode communications) network
adapter and scheduling of the 24 threads for a particular communication pattern in the
benchmark. As our approach relieves the adapter from handling intranode
communication any similar performance degradations have never been experienced.

4.2 Molecular Dynamics Simulation

NWChem is a massively parallel computational chemistry software package developed
on top of Global Arrays (GA). This large (>600,000 code lines) package contains
multiple methods for quantum-mechanical and classical computational chemistry
including molecular dynamics. The recent version of GA employs ARMCI as its run-
time system. GA maintains only the distributed array infrastructure, performs array
index translation to the global address space, and implements collective array
operations. All the GA one-sided communication is supported through ARMCI.
Molecular dynamics (MD) simulations typically evaluate atomic interactions
within a specified cutoff distance. The implementation of the method in NWChem
uses this locality of atomic interactions in the way the data is distributed on a
distributed-memory MPP. This domain decomposition of the physical simulation
volume exploits the locality of the atomic interactions such that all-to-all
interprocessor communication is avoided. On computers where the cost of
communication between processor pairs is not homogeneous, such as SMP clusters, an
additional optimization of the domain decomposition is in principle possible for
example by avoiding the assignment of physically distant parts of the simulation
volume to processors capable of fast communication. In practice, this means that the
locality in the simulation space is reflected in the choice of processor assignment. The
processors on a given SMP node should typically be assigned adjacent parts of the
simulation volume, for which communication requirements are always high.
Molecular dynamics simulations of liquid water were carried out with three
versions of the code, see Figure 7. The application uses numbers of processors that are
powers of 2. The original version is based on the ARMCI library that uses only LAPI
for communication between and within SMP nodes. The other versions use the SMP-
aware ARMCI library, with and without an additional permutation of the process
numbers (inside GA) to improve communication locality based on our analysis of the
MD communication patterns. No modification of the application code was needed.
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Figure 7: Performance of the MD simulation with SMP-aware and unaware (original) versions
of ARMCI. A permutation of process numbers is used to improve communication locality

The three versions were produced by simply relinking the application with different
versions of the ARMCI and GA libraries.

Similarly to the LU benchmark, the shared memory multiprotocols improved
performance and scaling of this application. The improvement rate depends on the
number of processors used and ratio of communication to calculation. The SMP
optimizations are more effective when communication is made through a permutation
of the process numbers. On 64 processors a 12.6% performance improvement is
achieved over the original version. Since this well optimized application had already
scaled almost linearly up to 32 CPUs, this is a substantial improvement, and it was
achieved without any explicit modifications to this complex code. Moreover, 3-
dimensional MD simulations on 4-way SMP clusters could not take full advantage of
the communication locality. Our analysis indicates that with the increased number of
CPUs per SMP node, the performance improvements should be even better.

5 Related Work

Multiprotocols involving shared memory has been used before to optimize
performance of two- [6] and one-sided messaging systems [4,5]. Husbands and Hoe
[6] used the shared memory mechanism for intra-SMP communication in an MPI
implementation for a cluster interconnected by the StarT-X network. They optimized
contiguous data transfer through a shared memory transfer facility in the MPICH
channel layer on the node. ARMCI unlike MPI-1 supports one-sided communication.
Lumetta el., [4] proposed multi-protocol Active Messages on SMP cluster. Thir multi-
protocol implementation of Active Message directs message traffic through the
appropriate medium, either shared memory or network. Separate message queues are
maintained for these two media. The shared memory queue block must first be mapped
into address space of processes on the node. Message polling operations are ubiquitous
in Active Message layers even with shared memory implementation, whereas ARMCI
does not require polling. Also unlike [4], ARMCI incorporates threads among other
protocols used. Foster, el., [5] discussed the multi-protocol communication in the
Nexus multi-threaded one-sided communication system that extends to heterogeneous
platforms. Two-level protocols are available: one better suited for small, latency-
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sensitive communications, and the other for large communications. The application
performance can be optimized by using one link for synchronization and the other for
data transfer. In ARMCI, selecting the protocol is not an issue anymore. Nexus unlike
ARMCI does not include active messages among the protocols considered in [5].

The other differences between these papers and our work arise from the fact that
ARMCI: 1) supports one-sided remote memory operations rather than one- or two-
sided message-passing interfaces; 2) emphasizes noncontiguous data transfers (not
addressed in papers [4-6]); and 3) supports atomic remote memory operations. In our
experience, one-sided messaging libraries such as Nexus or Active Messages are very
well suited for implementing inter-node communication but they add unnecessary
overhead on the SMP node (e.g., related to message queue management, flow control,
buffering) that can be avoided in the context of global address space model by using
shared memory directly.

6 Conclusions and Future Work

We described a multiprotocol communication support for the global address space on
the IBM SP that integrates shared memory within SMP nodes with the LAPI active
messages, threads and remote memory copy between nodes. Shared memory offers
substantial performance improvements over LAPI within a node for both contiguous
and noncontiguous data transfers. Based on the SPLASH-2 LU benchmark and
molecular dynamics simulation, the multiprotocol support for global address space is
found to improve both performance and scalability of these applications. In the
application context we have also found that 1) distribution plays an important role in
exploiting the shared memory effectively and 2) replacing a shared memory
programmming style (Pthreads) with the global address space model does not lead to
performance losses within the SMP domain and provides good scaling across the
cluster. Another important benefit of this approach is that the intranode communication
is no longer involving the network adapter and its resources thus they can now be
devoted exclusively to inter-node communications. This technique can also be used in
implementations of the MPI-2 (not yet available on the IBM SP) on SMP clusters since
it also offers a memory allocation interface (MPI_Alloc_mem) in the context of the
one-sided operations. The described integrated protocols are employed in ARMCI for
supporting the global address space model on more SMP-based systems than just the
IBM SP. We intend to extend the ARMCI capabilities (e.g., support for heterogenous
systems) and use it to implement other interfaces. For example, ARMCI is well suited
for a portable implementation of the SHMEM library and we are also considering
using it to support the MPI-2 1-sided “passive communication model”.
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