
Grammars and Discourse Theory to Describe
and Recognize Mechanical Assemblies

Christian Bauckhage, Susanne Kronenberg,
Franz Kummert, and Gerhard Sagerer

Technische Fakultät, AG Angewandte Informatik
Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany

{cbauckha,susanne}@techfak.uni-bielefeld.de

Abstract. In recent years numerous approaches to automatic reaso-
ning about mechanical assemblies have been published. CAD techniques,
graph-based approaches and semantic methods to model assembled ob-
jects were proposed. However, all these methods are difficult to employ
for visually supervising assembly processes since they lack the flexibility,
generality or ease required in practice. This paper presents the idea of
using syntactic methods known from discourse theory in order to model
classes of mechanical assemblies. Moreover, a criterion to derive recursive
grammatical production rules is introduced so that the representation of
a class of assemblies becomes especially compact. This general repre-
sentation scheme allows to automatically derive hierarchical structural
descriptions of individual assemblies by means of computer vision.

1 Introduction

The work presented in this paper is embedded in a research project studying ad-
vanced human-machine communication [4]. The project’s purpose is to develop
a robot which is able to process visual and acoustic data in order to recognize
and manipulate arbitrarily positioned objects in its environment according to
the instructions of a human.The domain was chosen to be the cooperative con-
struction of a toy-airplane using parts of a wooden construction-kit for children
(see Fig. 1). As it is customary for every mechanical construction process this
scenario implies that objects from a set of separate parts are assembled to form
more complex units. These units are called mechanical assemblies and are defi-
ned to be sets of solid parts with a distinct geometric relation to one another
[8]. Subassemblies are subsets of parts consisting of one or more elements in
which all parts are connected. Thus, in a construction process subassemblies are
sequentially assembled and the resulting products typically show a hierarchical
structure.

Supervising robotic assembly by means of a computer vision system requires
a representation of knowledge about feasible assemblies in order to recognize
complex objects in image data. Concerning flexibility, our system must not be
specialized on the construction of airplanes. Thus, a compact representation is
required which enables to describe any of the numerous feasible toy-assemblies.
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Throughout the last decade there was extensive research concerning flexible
assembly. In geometry based modeling CAD techniques are used to describe
elementary objects and assemblies [14]. Graph-based methods model certain re-
lations between elementary parts [3], whereas semantic approaches make use of
manually created hierarchical descriptions [2]. There also are sensor based appro-
aches to monitor assembly processes which, however, employ highly specialized
sensing tools like laser-range-finders [7].

(a) (b)

Fig. 1. Examples of feasible assemblies in the construction scenario.

All these approaches either depend on detailed geometric information or re-
quire structural knowledge about individual assemblies. Our system, however,
should react to instructions in reasonable time but visually determining the geo-
metric structure of an assembly is rather time consuming. Moreover, it is impos-
sible to provide a detailed structural description for every imaginable assembly
in our scenario. To cope with these difficulties we propose a grammar-based
method to model assembled objects which is described in the following.

2 Assembly Modeling by Discourse Grammars
2.1 Motivation

Syntactical approaches to pattern recognition problems are used for many years.
They allow to classify complex patterns of interrelated primitives and yield a
structural description simultaneously. Furthermore, the possibility to define re-
cursive production rules generally leads to particular compact representations of
classes of patterns [5].

Grammatical methods have also been introduced to computer aided manu-
facturing applications like workpiece or machine tool design [1]. However, to the
best of our knowledge grammar-based approaches have not yet been used to
qualify the internal structure of mechanical assemblies.

Our efforts towards this end start from the following consideration: putting
mechanical parts together means to connect them via some mechanical features.
These mating features are well known in assembly modeling where their geo-
metrical aspects are of primary concern [14]. An examination of their functional
aspects reveals, however, that mating features also allow to specify recursive pro-
duction rules: from a mating feature point of view an assembly consists of several
functional units each providing features necessary to realize stable connections.
Similarly, an assembly is composed of several subassemblies which –as pointed
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out in the introduction– may be elementary parts or assembled objects. Thus,
from a functional viewpoint elementary parts and assemblies can be treated
equally: both must provide mating features to be assembled.

This observation immediately leads to a recursive method to describe me-
chanical assemblies. Consider for example the bolt-nut type assemblies depicted
in Fig. 1. Objects like rings, bars or sockets (called miscellaneous objects in the
following) can be put onto bolts and are fastened using nut-type objects like
cubes or rhomb-nuts. As Fig. 1(b) indicates an assembly consists at least of a
bolt and a nut and optionally of some miscellaneous objects and may serve as
a bolt, a miscellaneous object or a nut itself. Thus, understanding assemblies to
be composed of a bolt-part, an optional miscellaneous-part and a nut-part results
in the following grammar for bolted assemblies:

ASSEMBLY → BOLT PART NUT PART |
BOLT PART MISC PART NUT PART (1)

BOLT PART → ASSEMBLY | BOLT (2)

NUT PART → ASSEMBLY | CUBE | RHOMBNUT (3)

MISC PART → ASSEMBLY | BAR | FELLY | RING | SOCKET |
ASSEMBLY MISC PART | BAR MISC PART | RING MISC PART |
FELLY MISC PART | SOCKET MISC PART (4)

Production rule (1) describes the composition of a bolted assembly and reflects
the fact that the miscellaneous-part is optional. The second and third rule state
that the bolt- and the nut-part consist either of a (sub)assembly or a corre-
sponding elementary object. Rule (4) describes how the miscellaneous-part of
an assembly is constructed: it is either given by a single part or a subassembly
or a possibly infinite sequence of those. In reality, of course, the number of mis-
cellaneous objects depends on the length of the corresponding bolt. This fact is
neglected here but is captured by a unification process (see section 2.3).

In fact, this grammar produces linear structures and is rather simple. Even
though sophisticated techniques like graph grammars seem more appropriate we
will show in the following that this simple grammar is nevertheless sufficient
to describe 3D objects resulting from a construction process. Moreover, gram-
matical assembly models are not restricted to cases with one class of mating
features or to binary mating relations. Figure 2 shows another (rather didactic)
assembly domain to illustrate how the principles deduced for bolted assemblies
can be generalized to n-ary mating relations and several types of connections. A
hammer as depicted in Fig. 2(c) consists of subassemblies which are connected
via different mating features. To construct the handle a ternary mating relation
comprising a chock-part a ring-part and a shaft-part has to be established while
the head of the tool is connected to the handle via a snap fit mechanism.

2.2 Discourse Grammars - Assembly Grammars

As mentioned above this work is associated with research in man-machine com-
munication where speech processing is of especial importance. It were these
fortunate circumstance that revealed a similarity between discourse and assem-
bly structures. In this section some common known facts of discourse analysis
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Fig. 2. Another assembly domain.

are outlined to motivate that the underlying principles for processing discourse
can be directly transformed to a computational framework for reasoning ab-
out assemblies. Intuitively, discourse grammars specify how structural units are
combined due to some tools for investigating discourse structure and discourse
relations [13]. It is generally agreed that discourse has a recursive structure i.e. a
discourse structure is recursively built based on discourse relations which can be
stated between smaller discourse segments [6]. Therefore, a discourse grammar
consists of a sentence grammar, mostly chosen to be unification based, and a
set of (binary) discourse grammar rules, i.e. a set of rules describing discourse
relations. This defines a framework in which both intra- and intersentential con-
straints can be expressed, i.e. a framework which integrates discourse constraints
together with syntactic and semantic constraints. Moreover, often the processed
discourse structure is only partially available for further processing. This me-
ans that only subparts with special properties are labeled as admissible parts
for subsequent interpretation [15]. Summarizing, discourse grammars generate
a structure based on semantic and syntactic knowledge which captures various
discourse phenomena [9].

To show that discourse theory can be transformed into a framework for the
description of the internal structure of assemblies the structural properties of as-
semblies must meet the requirements of discourse. That is, assemblies must have
a recursive structure in that bigger units can be obtained by recursive sequencing
and embedding of smaller ones. Additionally, this recursion must be defined by
a relation which holds between subassemblies. As outlined in section 1 recursion
is naturally given for mechanical assemblies due to the properties of the con-
struction process. Furthermore, a relation can be stated between subassemblies
which is given by common elementary objects: subassemblies can be conjoined
to yield larger units iff these subassemblies share common elementary objects.

2.3 The Processing Model

The approach for recognizing assembled objects is based on a LR(1)-parser and a
unification grammar [11]. The advantage of this approach is that the unification
grammar puts most of the syntactic information that is standardly captured in
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context free phrase structure rules into the lexicon. Every word is represented
in the lexicon by a feature structure which specifies the values for various attri-
butes. In the assembly approach the lexicon contains all elementary objects and
the feature structure for each object specifies values for various attributes de-
scribing the structural properties of this object. A LR(1)-parser standardly uses
two actions: shift and reduce. The reduce action reduces the right hand symbols
of a grammar rule to the left hand symbol. Our model is based on a LR(1)-
parser which is augmented with the facility to handle feature structures [10].
This implies that every reduce action includes a unification of the corresponding
feature structures yielding structural descriptions of subassemblies. The shift ac-
tion pushes the input symbols from the input string onto the processing stack.
In order to ‘parse’ three dimensional objects an order to shift recognized objects
of a given scene onto the processing stack must be defined, i.e. a multi dimen-
sional signal must be transferred into a linear sequence of primitives. Generally,
this order depends on the domain but as a rough estimate it is always stated
on necessary elementary objects. These are objects that must be found in every
subassembly (e.g. bolts in bolted assemblies) and constrain the range within
the signal where parsing has to proceed next (for a detailed description of our
linearization heuristic see section 3).

The basic idea of our processing model is to try to find small units in the input
signal (similar to discourse segments in speech parsing) and to conjoin them
with earlier found ones, if possible. This means: based on the shift and reduce
actions of the LR(1)-parser the process of parsing subparts of the signal yields
derivation trees (or structural descriptions) of subassemblies which are conjoined
with already derived descriptions, if necessary. Subsignal parsing terminates if
the signal is processed completely or if the unification fails. A unification error
occurs if two objects should be assembled due to the LR(1)-parser grammar
but the subcategorization frame of the corresponding feature structure of one of
these objects is already satisfied (e.g. a bolt and a cube will not be combined
if the cube cannot absorb another bolt since all its holes are used already). If
parsing a subpart of the signal terminates two different cases can occur:

1. No other subassembly was recognized so far. Therefore, the parsing process
restarts at another part of the signal, i.e. with another necessary elementary
object, if existing, otherwise the complete assembly is recognized.

2. Other subassemblies were already recognized. Therefore, it is tested if the
subassemblies recognized earlier can be conjoined with the recent one to form
a larger assembly. After that, the parsing process is continued at another
necessary elementary object, if existing.

In order to merge subassemblies a conjoin relation is stated between deriva-
tion trees (also denoted assembly trees) to integrate already derived trees (which
are called current assembly trees according to discourse theory terminology) into
incoming assembly trees (which is another denotation for the recently derived
assembly tree).

Definition: The conjoin relation 4 combines two assembly trees X and Y
if both share an elementary object. The assembly tree X is integrated into Y at
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node n which is labeled with the common elementary object and which occurs
at the frontier of the incoming assembly tree Y. This means in Y4X the node
n of Y is substituted by the assembly tree X (see Fig. 3(b), 3(c) and 3(d)).

In our processing model this relation is realized by an additional LR(1)-parser
action, so-called conjoin. If an assembly tree is derived the conjoin action first
searches for common elementary objects in the current assembly trees and then
–if common elementary objects are found– conjoins both assembly trees. Since
the head node of every subassembly tree is labeled with the elementary objects
contained in the highest hierarchical level of the subassembly only nodes along
the path given by the head node have to be searched for common objects. This
conjoin action is performed on every elementary object of the incoming assembly
tree and for all current assembly trees 1 Three different cases can occur:

1. No common elementary object is found in the current assembly trees, i.e.
only subassemblies were recognized so far which are not connected to the
incoming one. (see Fig. 3(a) and 3(b)).

2. The conjoin relation can be stated between a current assembly tree and
the incoming assembly tree. Therefore, the current assembly tree will be
integrated into the incoming one (see Fig. 3(d)).

3. More than one common elementary object can be found in a current as-
sembly tree. Consequently, every node labeled with an elementary object in
the incoming assembly tree will be substituted by the current assembly tree.
Because the same current assembly tree is integrated several times into the
incoming one, all occurrences of the current assembly tree in the incoming
one are identical 2. This corresponds to cases where assemblies are connected
via several elementary objects. Therefore, all occurrences of a current assem-
bly tree in an incoming assembly tree are unified to one singleton subtree.
An example of this case is shown in Fig. 5(g).

3 Recognition

In this section we illustrate the processing model for the visual recognition of
assembled objects by means of the example depicted in Fig. 5(a) (note that the
object labels were added manually to facilitate the discussion).

As a syntactic method the assembly recognition procedure depends on pri-
mitives which in our case are elementary objects. Following a hybrid approach
that combines neural and semantic nets Kummert et al. [12] realized a fast
and reliable method to recognize such primitives yielding labeled image regions
as shown in Fig. 5(b). Since assembled objects are physically connected they
appear as clusters of adjacent regions once the recognition of single objects is
completed. In order to recognize assemblies by parsing clusters of regions their
elements have to be examined in a sequential manner. Generally, a method to
1 After a conjoin action is performed the comparison process is continued on the conjoined assembly

tree, for than the new incoming tree, and the remaining current trees, including the just conjoined
current tree, in case that it contains several common elementary objects.

2 This can be easily verified by the head nodes of each integrated current assembly tree, because
they all are labeled with the same elementary objects.



Grammars and Discourse Theory 179

BOLT1 CUBE1

A: ASSEMBLY (B1, C1)

BOLT_PART NUT_PART

(a)

BOLT_PART NUT_PART

B: ASSEMBLY (B2, C2)

CUBE2BOLT2

(b)

ASSEMBLY (B3, BAR, C2)C:

MISC_PARTBOLT_PART

BOLT3 BAR

NUT_PART

CUBE2

(c)

MISC_PART

ASSEMBLY (B3, BAR,   C2    )

BOLT_PART

BOLT3 BAR

NUT_PART

BOLT_PART NUT_PART

CUBE2BOLT2

B:C

ASSEMBLY (B2,   C2   )

(d)

Fig. 3. 3(a), 3(b) and 3(c) Assembly trees of singleton subassemblies. 3(d) Subassem-
blies C and B share object CUBE2 thus the corresponding trees are conjoined. All
structures describe subassemblies of the assembly shown in Fig. 5(a).

order two-dimensionally distributed primitives is domain dependent and has to
be found heuristically. In our application, simple topological considerations lead
to a straightforward linearization technique: objects that are put onto bolts are
linearly arranged in space, thus the centers of mass of regions representing single
objects are ordered approximately linear (see the crosses in Fig. 5(b)). There-
fore, starting parsing at regions representing bolts and then choosing an adjacent
region provides a search direction. If there are several adjacent regions different
alternatives for parsing must of course be considered. After examining a certain
region in the parsing process the next object to be examined must be adjacent
to the recent one and if there are several candidates the nearest one complying
with the search direction is chosen. If an adjacent object depicts a bar this heu-
ristic has to be modified since the positions of the holes have to be considered
instead of the center of mass. Obviously, holes that have been used in construc-
tion are not visible, however, virtual positions as emphasized in Fig. 5(b) can be
estimated by dividing the bar’s main axis into equidistant ranges.

Figures 5(c)-5(f) show the intermediate results and the final outcome of the
assembly recognition procedure for the example. After starting the process at
BOLT1 the next object to be examined due to the heuristic is CUBE1. Accor-
ding to the rules of the grammar both objects form an assembly (see the cor-
responding assembly tree of subassembly A in Fig. 3(a)) thus a white polygon
comprising both labeled regions is output (Fig. 5(c)). Then, another necessary
elementary object, i.e. a bolt (here: BOLT2), is chosen as the starting point for
a parsing process leading to the description of subassembly B in Fig. 3(b) and
the recognition result depicted in Fig. 5(d).

Continuing at BOLT3 yields assembly tree C in Fig. 3(c) which shares an
elementary element with subassembly B. Consequently, both descriptions are
unified leading to the description C4B in Fig. 3(d) and the result depicted in
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Fig. 4. Assembly trees describing a singleton subassembly and the whole assembly
depicted in Fig. 5(a).

Fig. 5(e). Note that black polygons surround the objects of recently found com-
plex subassemblies. Finally, continuing the parsing process at BOLT4 detects
subassembly D shown in Fig. 4(a). Since D shares elementary objects with subas-
semblies A and C4B the corresponding conjoin operation leads to the assembly
tree (D4(C4B))4A describing the whole assembly and a polygon comprising
all the subassemblies is generated (see Fig. 5(f)).

4 Conclusion

Structurally analyzing mechanical assemblies typically yields a component hier-
archy where higher-level components consist of lower-level parts which again
may have internal structure. This paper presented the idea to use grammars in
order to describe the hierarchical structure of individual assemblies. Analyzing
mechanical mating features revealed a functional equivalence of elementary ob-
jects and subassemblies and resulted in compact grammatical rules describing
whole classes of assemblies.

Grammars together with a suitably defined lexicon comprising facts about
mechanical elements allow an automatic derivation of structural descriptions
of assembled objects. Employing techniques known from discourse theory we
introduced a parsing model to recognize assembled objects in image data. Based
on a domain dependent heuristic clusters of recognized elementary objects are
analyzed sequentially and structures of detected subassemblies are conjoined if
necessary. Thus, if all elementary objects comprising an assembly are visible a
reliable recognition of assembled objects is possible which allows to supervise
the intermediate steps of a construction process.
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Fig. 5. 5(a) An assembly with 4 bolts. 5(b) Results of a single object recognition pro-
cedure and highlighted portpoints of the bar. 5(c) Recognition of a simple subassembly.
5(d) Recognition of a second simple subassembly not connected to the first one. 5(e)
Recognition of a further subassembly sharing a part with the second one, thus they are
conjoined. 5(f) Detection of a subassembly sharing parts with the first and third one,
i.e. recognition of the whole assembly. 5(g) and 5(h) Another feasible assembly and the
recognition result.
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Further work concerning grammar based assembly recognition must consider
the problem of perspective occlusions. I.e. the parsing model must be extended
such that fuzzier input data like incorrect or missing results of the elementary
object recognition procedure does not affect the correct detection of assembled
objects. To this end we hope to benefit from ideas to deal with incorrect or
incomplete speech input [11].
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