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Abstract. This paper proposes a general framework for the develop-
ment of a novel approach to pattern recognition which is strongly based
on graphical data types. These data keep at the same time the highly
structured representation of classical syntactic and structural approa-
ches and the subsymbolic capabilities of decision-theoretic approaches,
typical of connectionist and statistical models. Like for decision-theoretic
models, the recognition ability is mainly gained on the basis of learning
from examples, that, however, are strongly structured.

1 Introduction

As early pointed out by Wiener, a pattern can often be regarded as an arran-
gement characterized by the order of the elements of which it is made, rather
than by the intrinsic nature of these elements. Hence, the causal, hierarchical,
and topological relations between parts of a given pattern yield a significant in-
formation that seems to be useful in most human recognition processes. Among
others, these motivations have given rise to the impressive development of ap-
proaches to syntactic and structural pattern recognition.

In the last three decades the emphasis on the research in the area of pat-
tern recognition has hovered pendulum-like from decision-theoretic to structu-
red approaches. Decision-theoretic methods are essentially based on numerical
features which provide a global representation of the pattern by means of an ap-
propriate pre-processing. Many different decision-theoretic methods have been
massively experimented in the framework of connectionist models, which operate
on sub-symbolic pattern representations. On the opposite, syntactic and struc-
tural pattern recognition and, additionally, artificial intelligence-based methods
have been developed which emphasize the symbolic nature of patterns. Since
their main focus is on expectations that can be derived from previous knowledge
of the components that have to be detected in the patterns under consideration,
such methods are often referred to as “knowledge-based” methods.

Such different approaches to pattern recognition have given rise to the lon-
gstanding debate which takes place between traditional AT methods, based on
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symbols, and computational intelligence methods, which operate on numbers.
However, both purely decision-theoretic or syntactical /structural approaches are
limited when applied to many interesting real-world problems for opposite rea-
sons.

It has been recently pointed out that traditional connectionist models con-
ceived for processing static data types can properly be extended so as to deal
with structured domains (see [12] for a survey on the topic). The basic idea is
that the input graphs are processed by attaching a state variable to each node
and performing a computation which is independent of the node. This assump-
tion of independence gives rise to computational models which are also referred
to as stationary models and represents at the same time the strength and the
weakness of these models.

In pattern recognition, the remarkable feature of these connectionist-based
models is that data can be graphs with real-valued nodes. As a result, the nodes
can contain typical real-valued features and the links among the nodes can ex-
press the relationship among the pattern components.

In this paper we review briefly the connectionist approaches for structu-
ral domains and show how can they profitably be applied to different pattern
recognition tasks. We discuss the extraction of appropriate pattern graphical re-
presentations and present general ideas for the application to classification and
retrieval. We emphasize the potential advantages with respect to either traditio-
nal adaptive pattern recognition or to structural pattern recognition, but we also
point out most severe limitations inherently related to the stationary assumpti-
ons in the propagation of the states attached to the input graphs. The extension
to non-stationary models is currently investigated which would allow one to pro-
cess input graphs depending on the particular node and preserve the general
connectionist-based training scheme [I3]. These models are likely to improve
significantly the chance to deal with very hard pattern recognition problems.

This paper is organized as follows. In the next session we discuss the limita-
tions of decision-theoretic and structural approaches so as to motivate the study
of the proposed approach. In section [3 we show possible a possible extraction
of data structure and briefly review the literature in the field. In section Hl we
review briefly the basic ideas behind connectionist models for processing in struc-
tured domains and in section Bl we discuss the application to different pattern
recognition tasks. Finally, limitations and future investigations are discussed in
section [6

2 Decision-Theoretic vs Structural Approaches

Syntactical and structural methods can nicely take the structure of patterns into
account. The classical structural approaches to pattern classification consider
each pattern class as a set of “strings” belonging to an appropriate grammar.
Classifying a pattern then means matching such a string against the production
rules of the grammar under consideration, to check if it is a valid string for
such a grammar. This approach, for its inherent symbolic nature, and for its
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inability to cope with corrupted instances of a class, is too little flexible when it
comes to handling the noisy nature of patterns typically found in most real-world
applications.

This problem has been early recognized and faced in different ways, to in-
corporate statistical properties into structured approaches to pattern recogni-
tion. The symbols used for either syntactical or structural approaches have been
properly enriched with attributes, which are in fact vectors of real numbers re-
presenting appropriate features which are expected to allow for some statistical
variability in the patterns under consideration.

Error-correction mechanisms have been introduced to deal with either noise
or distortions [I]. Additionally, symbolic string parsing has been extended using
stochastic grammars to model the uncertainty and the randomness of the accep-
ted strings [I16]. In these approaches, a probability measure is attached to the
productions of the grammar G and, finally, accepted strings can be assigned an
attribute representing the probability with which they belong to the class repre-
sented by G. Lu and Fu [21] combined error-correction parsing and stochastic
grammars to attain a better integration with statistical approaches. A very de-
tailed survey on the incorporation of statistical approaches into syntactical and
structural pattern recognition can be found in [29]. Likewise, related approaches
to integrate Al-based and decision-theoretic methods can be found in [6].

On the other hand, either parametric or non-parametric statistical methods
can nicely deal with distorted patterns and noise, but are severely limited in
all cases in which the patterns are strongly structured. The feature extraction
process in those cases seems to be inherently ill-posed; the features are either
global or degenerate to the pixel level.

The renewal of interest in artificial neural networks started in the middle
eighties [25] suggested that pattern recognition methods shift from the complex
task of feature selection and extraction to the development of effective architec-
ture and learning algorithms. In principle, neural networks should be capable
of extracting themselves optimal features for classification during the learning
process. Moreover, “learning from examples”, which is typical of connectionist
models, does not require that assumptions on the data probability distribution
be made and is conceived to approximate virtually any non-linear discrimination
function.

The field of neural networks, however, has now reached the maturity which
is necessary to state that the previous belief is neither theoretically nor experi-
mentally founded. There is evidence to claim that complex pattern recognition
tasks, for instance highly structured, require architectures with many parame-
ters to make the loading of the weights effective. This choice, however, makes
generalization to new examples very hard [5]. On the other hand, the adoption
of architectures with few parameters, which would facilitate the generalization,
results in a very hard loading of the weights. The nature of this problem is par-
tially addressed in the critical analyses on connectionist models by Fodor and
Pylyshyn [11] and Minsky [24].
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3 Graphical Representations of Patterns

The graphical representation of patterns has been extensively studied especially
in conjunction with structural approaches to pattern recognition. In the last few
years, most approaches have also incorporated grey levels and colors, thus gi-
ving rise to an impressive number of techniques with different performance (see
e.g. [2726/20/TOJT9223412]TH]. Amongst others, a possible way to create struc-
tured representations is that of defining a relationship to generate the children
of a given node. Different objects may be related to one another to give a scene
its meaning. Such relationships can be of two kinds, the is_a relationship and
the part_of relationship, which correspond to two fundamental operations, the
combination of parts into wholes and the abstraction, respectively.

Fig.1. A graphical item and a possible graphical representation based on border
relationships.

As an example, Fig. [l shows a possible way of creating a pattern graphical
representation which is based on the border relationship. The construction, which
is supposed to take place in a noisy-free environment, is based on a supersource
that is chosen on the basis of the largest area of the building block. Consequently,
the children are defined by finding the blocks at the border and then acting
recursivel.

4 Neural Networks on Structured Domains

Like data, the model can itself be structured in the sense that the generic variable
X, might be independent of q,?lX j,v, Where, following the notation introdu-
ced in [12], q,jl is the operator which denotes the k-th child. The structure of
independence of some variables represents a form of prior knowledge.

! An artificial set of pictures can be created using an attribute plex grammars. The

creation of pattern recognition benchmarks to assess the experimental results of the
methods described in this paper is currently under evaluation.
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Basically, the knowledge of a recursive network yields topological constraints
which often make it possible to cut the number of trainable parameters signifi-
cantly. Let us consider a directed ordered graph so as for any node v one can
identify a set, eventually empty, of ordered children ch[v]. For each node

X, = f (Xch[v]7 Uv7v7@:r) (1)
YU :g(XU,’U7@y>-

From the encoding network depicted in Figure 2l we can see a pictorial repre-
sentation of the computation taking place in the recursive neural network. Each
nil pointer is associated with a frontier state X ,, which is in fact an initial
state that turns out to be useful to terminate the recursive equation. The graph
plays its own role in the computation either because of the information attached
to its nodes or for its topology. A formal description of the computation of the
input graph requires sorting the nodes, so as to define for which nodes the state
can be computed first. In the literature, this problem is referred to as topological
sorting A sort of data flow computation takes place where the state of a given
node can only be computed once all the states of its children are known. To
some extent, the computation of the output Y, can regarded as a transduction
of the input graph U to an output Y with the same skeleton] as U. These
10-isomorph transductions are the direct generalization of the classic concept
of transduction of lists. When processing graphs, the concept of 10-isomorph
transductions can considerably be extended to the case in which also the skele-
ton of the graph is modified. Because of the kind of problems considered in this
paper, however, this case will not be treated in this paper. The classification of
DOAGES is in fact the most important IO-isomorph transduction for applications
to pattern recognition. The output of the classification process corresponds with
Y ,, that is the output value of the variables attached to the supersource in the

2 The skeleton of a graph is the structure of the data regardless of the information
attached to the nodes.
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Fig.2. Compiling the encoding network from the recursive network and the given
data structure.
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encoding network. Basically, when the focus is on classification, we disregard all
the outputs Y, apart from the final values Y4 of the forward computation.

The information attached to the recursive network, however, needs to be in-
tegrated with a specific choice of functions f and g which must be suitable for
learning the parameters. The connectionist assumption for functions f and g
turns out to be adequate especially to fulfill computational complexity require-
ments.

Let o be the maximum outdegree of the given directed graph. The depen-
dence of node v on its children chlv] can be expressed by pointer matrices
A,(k) € R™™, k = 1,...0. Likewise, the information attached to the nodes
can be propagated by weight matrix B, € R™™. Hence, the first-order connec-
tionist assumption yields

X,=0 <Z A,(k)-q;' Xy + B, - UU> . (2)
k=1

Like for list processing the output can be computed by means of Y, = 0(C-X,).

The strong consequence of this graphical representation for f and g is that,
for any input graph, an encoding neural network can be created which is itself
a graph with neurons as nodes. Hence, the connectionist assumption makes it
possible to go one step further the general independence constraints expressed by
means of the concept of recursive network. The corresponding encoding network
turns out to be a graph whose links arise either because of the graph topology
or because of independence between variables or because of the connectionist
representations of the functions f and g themselves. The encoding networks
associated with equation[2 and equation Blare depicted in Fig.Blin the particular
case of stationary models, in which the parameters are independent of the node
v. Encoding neural networks turns out to be weighed graphs, that is there is
always a real variable attached to the edges (weight). Note that the architectural
choice expressed by equation Blcan be regarded as a way to produce a multilayer-
based map of the state which, however, transforms the input U, by means of
one layer only. Obviously, one could also adopt a multilayer-based architecture
for implementing f(X cp), Uv, Oz). Likewise, the function g(X,,0,) can be
implemented by a multilayer perceptron. In Figure Bl this function is created
by means of one layer of sigmoidal neurons only. Finally, in the framework of
supervised learning, we can easily extend backpropagation to adjust the shared
parameters of the encoding neural networks. The backpropagation takes place
on neural nets which inherit the data structure and, therefore, the corresponding
learning algorithm is referred to as backpropagation through structure.

5 Facing Pattern Recognition Problems

The term adaptive graphical pattern recognition was firstly introduced in [9],
but early experiments using this approach were carried out in [I4]. Graphs are
either in the data or in the computational model, since the adopted connectio-
nist models inherit the structure of the data graph and, moreover, have their
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Fig. 3. The construction of a first-order recursive neural network from the encoding
network. The construction holds under the assumption that the frontier states are null.

own graphical structure which expresses the dependencies on the single varia-
bles. Basically, graphical pattern recognition methods integrate structure into
decision-theoretic models. The structure can be introduced at two different le-
vels. First, we can introduce a bias on the map (e.g. receptive fields). In so doing
the pattern of connectivity in the neural network is driven by the prior kno-
wledge in the application domain. Second, each pattern can be represented by
a corresponding graph. As put forward in the previous section, the hypothesis
of directed ordered graphs can be profitably exploited to generalize the forward
and backward computation of classical feedforward networks.

The proposed approach can be pursued in most interesting pattern recogni-
tion problems.

— classification

Recursive neural networks seem to be very appropriate for either classifica-
tion or regression. Basically, the input structured representation is converted
to a static representation (the activation in the hidden layer), which is sub-
sequently encoded into the required class. This approach shares the advan-
tages and disadvantages of related MLP-based approaches for static data. In
particular, the approach is well-suited for complex discrimination problems,
but it is not very adequate for verification purposes. Methods like growing
and pruning can be successfully used for improving the learning process and
make the trial and error approach more systematic. It’s worth mentioning
that recursive nets can profitably be used for classification of highly struc-
tured inputs, like documents using XY-tree representations. Unfortunately,
in this particular kind of application the major limitation turns out to be
that the number of classes is fixed in advance. More appropriate models in
this case can be based on the preliminary ideas reported in [I7].
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— wverification
Neural networks in structured domains can be used in verification problems,
where one wants to establish whether a given pattern belongs to a given
class against any possible input. Unlike pattern classification, one does not
know in advance the kind of inputs to be processed. It has been pointed out
that sigmoidal multi-layered neural networks are not appropriate for this
task [I8] and, consequently, also recursive neural networks which represents
the natural extension to the case of structured domains are not appropriate
for verification tasks. However, like for multilayer networks, the adoption of
radial basis function units suffices to remove this limitation.
— retrieval

The connectionist models introduced in this paper and the related exten-
sions are very good candidates to deal with many interesting image retrieval
tasks. In particular, the proposed models introduce a new notion of similarity
which is constructed on the basis of the user’s relevance feedback. In most
approaches proposed in the literature, the queries either involve global or
local features, but disregard the pattern structure. The proposed approach
makes it possible to retrieve patterns on the basis of a strong involvement
of the pattern structure, since the graph topology plays a crucial role in the
computation. On the other hand, since the nodes contain a vector of real-
valued features, the proposed approach can also potentially exhibit retrieval
capabilities which arise from the sub-symbolic nature of the patterns.

6 Discussion

The renewal of interest in neural networks raised an impressive interest in the
community of pattern recognition, where many people were stimulated by the
potential capabilities of these models to deal with any probability distribution.
Nowadays, there is theoretical and practical evidence to conclude that these
learning-based models cannot deal effectively with many interesting problems
in which patterns exhibit a significant structure. In this paper, we claim that
the new wave of connectionist models for processing in structured domains is
likely to offer many opportunities to face new complex pattern recognition tasks,
including the retrieval of images in visual data bases. Moreover, the basic ideas
behind the extension of connectionist models to structured domains also apply
to statistical models. There are, however, a number of limitations of the models
reviewed briefly in this paper.

— graph topology
The proposed models operates on directed ordered graphs. This hypothesis
makes it possible to carry out a forward computation and extend feedforward
networks and backpropagation straightforwardly. When dealing with cyclic
graphs, however, at the moment the only computational schemes that have
been devised are based on and relaxation methods [28].
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— causality
The proposed models represent a natural extension of the processing of se-
quences by causal dynamical systems. In pattern recognition, the hypothesis
of causality could be profitably removed, since there is no need to carry out
an on-line computation at node level.

— stationary
The homogeneous computation which takes place at node level may not
be adequate in many pattern recognition problems. This has been already
pointed out in [9], where a simple solution has been adopted to face the non-
stationarity. The graphs are partitioned into different sets depending on the
number of nodes and are processed separately. A more general and promising
computational scheme has been devised in [I3], where the non-stationarity
can be given a linguistic description.

The development of a systematic theory of connectionist and statistical mo-
dels to deal with structured domains is a new promising research field which has
already yielded interesting results. However, the actual application of this theory
to pattern recognition is still in its infancy and there are only a few preliminary
encouraging results. A massive comparative application to classical pattern re-
cognition problems is the only way to follow to assess the effectiveness of the
proposed approach.
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