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Abstract: We present a practical implementation of a structural matching
algorithm that uses the generalized deterministic annealing theory. The problem
is formulated as follows: given a set of model points and object points , find a
matching algorithm  that brings the two sets of points into correspondence. An
“energy” term represents the distance between the two sets of  points. This
energy has many local minima and the purpose is to escape from these local
minima and to find the global minimum using the simulated annealing theory.
We use a windowed implementation and a suitable definition of the energy
function that  reduces  the computational effort of this annealing schedule
without decreasing the solution quality. 
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1   Theoretical Framework

The problem of finding a correspondence   between object and model features is an
important part of object recognition. It can be  formulated as one of graph matching
and there are many approaches to solve it such as : probabilistic relaxation, neural
networks.

The neural networks methods are not restricted to looking for right isomorphism.
They use a “energy”, or distance measure between graphs , that  is minimized by
finding a correct correspondence between vertex labels of model graph with respect to
object graph.

Our algorithm applies the generalized deterministic annealing framework,
formulated in [1], to the problem of structural matching between  2D model and
object features. The problem is to find a correspondence between points of interest
(high curvature or zero crossing points). If we have N object points and K model
points, the solution space has cardinality ¢KN¢. It is a complicated combinatorial
optimization problem . These problems have often multiple conflicting constraints,
and have typically numerous local minima in the energy function.

The method of simulated annealing allows the solution to escape from local
minima . Thermal noise is added to neural network by simulating high temperatures ,
then temperature is slowly reduced so that the amount of thermal noise decreases.

Generalized deterministic annealing utilizes N local Markov chains of K states..
These are K states neurons , representing the state probability density of local Markov

mailto:ldavlea@mail.dntis.ro


222 L. Davlea

chains. We have N variables that have K possible states. For each variable , we
assigna K-state neuron.  We define a matrix D(i,j,T) whose lines computes the
distribution for each local Markov chain. We note each line of the matrix with Dn,

n=0.. N-1.. Generalized deterministic annealing (GDA), iteratively computes the
distribution of each local Markov chain. For each temperature , after a number of
iterations, these distributions  converge to a state of thermal equilibrium (stationary
distribution), caracterized by the uniform convergence to within a e- ball. As the
temperature is lowered, the distributions become singular, all of the N local Markov
chains are frozen, and the solution is complete. In simulated annealing (SA) theory ,
the probability of a transition from solution i to solution j is computed by :

              P(i,j,T)=G(i,j,T)A(i,j,T)  i�j
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N(i) is the solution neighborhood, G(i,j) is the generation function and A(i,j,T) is
the acceptance function . We can assume a uniform generation function

N(i)

1
j)G(i, = , ¢N(i)¢ is the cardinality of the solution neighborhood. In our case

G(I,j)=1/K. The acceptance function can be sigmoidal :
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 E(i) is the energy with respect to solution i. The distribution Dn of each local
Markov chain is updated using the formula
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The matrix Pn is constructed from the SA transition probabilities defined by (1).
The acceptance function is defined as:
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for neuron n, and temperature T.
En(i) is the local energy function with respect to neuron n in the state i,
 I=0..(K-1)
 Using the expression (1) ,(2) and (3),  it can be demonstrated [1] that the

distributions can be updated using the formula:
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The local energy function depend on the state of the neighboring neurons. We
estimate the state of the j neuron as:
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In GDA the convergence of the neurons is demonstrated and the final value of the

temperature , where the elements of )( jDt
n  have converged to zero or one is

deterministic. The final temperature is:
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DEmin is the minimum change on the local energy associated with one update,e is
the radius of the ball to within Dt

n converges. The starting temperature is defined for
the condition that all solutions have equal probability, and the next update remain
close to initial solution. Using the expression

Amax=[1+exp(-DEmax/T]-1 , it can be demonstrated that  the starting temperature for
the annealing schedule must satisfy the condition:
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As a conclusion ,for high  temperatures GDA can “climb” and escape local minima
, and for low temperature , GDA settles into the best locally minima.

2   Implementation

Our object model uses points of high curvature, or  zero curvature crossing, as
points of interest to be matched. The points are identified using three unary features
and two binary features. The unary features are:

- U1 curvature of interesting points
- U2 summation of lengths adjacent to points
- U3 the absolute value of the variation of curvature on the segments adjacent to

interesting points.
 The binary features are:
-B1 length of the line connecting two  points
-B2   length along the contour between two interesting points.

The energy function encodes the compatibility between model and object features.
For the curvature we have used the following formula :
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u is the length parameter along the contour.
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The local energy function is defined  by the formula:
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E(i,j) is the local energy of point i that has the label j.

K2=0,1  addresses the binary features

K3=0,1,2 addresses the unary features

WBk2,WUk3 are weights representing the strength of each attribute.

   f is the compatibility function and is expressed as:

 f=tanh(c|u|), c is a constant.
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The weight coefficients  sum is equal to 1, and we take all these weights=0.2

Bk2 and Uk3 are object and model unary and binary features.

The purpose of the algorithm is to find the best solution without searching the
entire solution set, and has the following steps:

1) Set the temperature T=T0 and Dn(i,j,T)=1/K

2) Use (4) to update Dn(i,j,T)

3) If |Dnt+1(i,jT)-Dnt(i,jT)|<e for all i,j , then set T=0.9T, else return to 2

4) If all Dnt(i,jT) have converged to 0 or 1 then all the neuron have reached
saturation and the annealing schedule stops, else return to 2.

 The local neighborhood of a point in the formula of the energy function is
defined by taking into consideration only a few points around the interesting point in
the formula of the local energy. KN1 represent the number of these points , and we
have taken for our models KN1=7.This local structure reduces the execution time and
has a good behaviour  to partial object occlusion.

A windowed implementation can reduce the wasteful execution time . For
every object point we consider a window of model points that have the same sign of
curvature. Taking into account a standard deviation of 10% of corruptive noise for our
experiments, we have used a few points window size (Kw=10).

Another approach for time reduction can be a suitable choice of e. The
expression (7) shows that when e�0, T0 is very large and the annealing schedule is
very long. We have tested this algorithm using object models like fig. 1-4.
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Some experimental results are presented in the table 1.

Table 1

Object
model

Nr.
Of

iterations

e Windowed
implementation
time reduction

1 137 0.01 45%
2 162 0.01 56%
3 141 0.01 61%
4 152 0.01 52%

3  Conclusion

The algorithm utilizes the major benefit of the simulated annealing algorithms ,
that is the possibility to escape from local minima of the energy function. A
windowed implementation , a suitable choice of decreasing temperature and a suitable
expression for the energy function can provide an important reduction time in the case
of applications with a large number of variable
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