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Abstract. Graph matching is an important class of methods in pat-
tern recognition. Typically, a graph representing an unknown pattern is
matched with a database of models. If the database of model graphs is
large, an additional factor in induced into the overall complexity of the
matching process. Various techniques for reducing the influence of this
additional factor have been described in the literature. In this paper we
propose to extract simple features from a graph and use them to eli-
minate candidate graphs from the database. The most powerful set of
features and a decision tree useful for candidate elimination are found
by means of the C4.5 algorithm, which was originally proposed for in-
ductive learning of classification rules. Experimental results are reported
demonstrating that efficient candidate elimination can be achieved by
the proposed procedure.
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1 Introduction

In structural pattern recognition, graphs play an important role for pattern re-
presentation. Typically, objects or parts of objects are represented by means of
nodes, while information about relations between different objects or parts of
objects is captured through edges. Thus structural relationships can be repre-
sented in an explicit way. When graphs are used for pattern representation, the
recognition problems turn into the task of graph matching. I.e., a graph extrac-
ted from an unknown input object is matched to a database of model graphs to
recognize or classify the unknown input [I2l3]. Application examples of graph
matching include character recognition [4J5], schematic diagram interpretation
[6]7], shape analysis [§] and 3-D object recognition [9].

Structural pattern recognition by means of graph matching is attractive be-
cause graphs are a universal representation formalism. But on the other hand,
graph matching is expensive from the computational complexity point of view.
Matching two graphs with each other requires time and space exponential in
the number of nodes involved. An additional problem arises if the database of
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model graphs is large because straightforward, sequential comparison of the un-
known input with each graph in the database results in an additional factor in
the complexity, which is proportional to the database’s size.

Various indexing mechanisms have been proposed to reduce the complexity
of graph matching in case of large databases [B[12[I0TT]. In this paper we pro-
pose a new approach based on machine learning techniques. For the purpose
of simplicity, only the problem of graph isomorphism detection is considered.
The main idea of the proposed approach is to use simple features, which can be
efficiently extracted from a graph, to reduce the number of possible candidates
in the database. Examples of such features are the number of nodes or edges
in a graph, the number of nodes or edges with a certain label, the number of
edges (with a certain label [) incident to a node (with a certain label '), a.s.o.
Obviously, a necessary condition for a graph in the database being isomorphic
to the input graph is that these features have identical values in both graphs.
Therefore, it can be expected that certain graphs in the database can be ruled
out by a few fast tests using only these simple features. Consequently, the num-
ber of candidates that have to undergo an expensive test for isomorphism can
be reduced.

A potential problem with this approach is that there may exist a large number
of simple features. Hence the questions arises which of these features are most
suitable to rule out as many candidates from the database as quickly as possible.
To find the best feature set, we propose the application of machine learning
techniques in this paper. In particular, the well-known C4.5 algorithm will be
used in the context of this paper [13].

In the next section, a brief introduction to C4.5 will be provided. Then the
application of C4.5 to reducing the number of candidate graphs in a database will
be described. Experimental results will be presented in Section[4], and conclusions
drawn in Section [3.

2 Introduction to C4.5

C4.5 is a program that generates decision trees [13]. The reason for selecting
C4.5 for this work is because it is one of the best known programs of this kind.
C4.5 is based on the divide and conquer paradigm described in the following.
Let S be the set of training instances and let the classes be C1, Cy,C5, ..., Cp.
There are 3 cases:

— S contains one or more instances which all belong to a class C';. The decision
tree for S is a leaf identifying C}.

— S is empty. The decision tree for S is a leaf, but the class associated with
the leaf must be determined from information other than S. For example,
the class is chosen based on background information of the domain such as
the overall majority class.

— S contains instances that belong to a mixture of classes. In this case, S is
refined into subsets of instances that are or seem to be heading towards a
single-class collection of cases. A test T is chosen, based on a single attribute,
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that has one or more mutually exclusive outcomes O1, Oz, Oz, ..., O; and
S is partitioned into subsets Si, S2, S3, ..., S; where S; contains all the
instances in S that have outcome O; in the chosen set. The decision tree
for S now consists of a decision node identifying the test and one branch
for each possible outcome. The same process is applied to each subset of the
training cases so that the j-th branch leads to a decision tree constructed
from the subset S; of the training instances.

In the particular application considered in this paper, each graph in the
database corresponds to exactly one class C;, and § = C;UCyU...UC, is
the set of prototype graphs in the database.

Partitioning at each level in the decision tree is achieved by finding the attri-
bute that maximizes the information gained from choosing that attribute. C4.5
uses a normalized gain criterion to select which attribute should be used. The
definition of the gain ratio used by C4.5 is defined below:

gain(X)

iratiof X) — _ san(X)
gain-ratio(X) split-info(X)

, where

1
T;
split-info(X ( || T|| )

gain(X) = info(T") — info, (T) ,

1
info(T) = Z 7freq(Cj,T) x logy (frengf,T)) ,

n

info, (T Z

=1

T;)

and T is the set of instances, split into I outcomes based on the test X with C;
being some random class. The frequency ratio — freq(C},T)/|T| — represents the
probability that given the case in which a training instance is taken at random
from the training set 7', that training instance belongs to class Cj.

Attribute values can be discrete or real-valued and C4.5 can handle cases
involving unknown or imprecise values. C4.5 always attempts to develop the
simplest decision tree that is representative of the data and when necessary, it
can apply sophisticated pruning techniques to reduce the size of the tree. For
further detail see [I3].
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3 Graph Candidate Elimination Using C4.5

Given an input graph g and a database with n model graphs ¢1, g2, . - . , g, Where
each g; represents a pattern class C;, we consider the problem of finding a graph
g; in the database that is isomorphic to g. Formally, g and g; are isomorphic
if there exists a bijective mapping f from the nodes of g to the nodes of g;
such that the structure of the edges and all node and edge labels are preserved
under f. As described in the introduction, we are interested in a procedure that
efficiently reduces the number of potential candidate graphs in the database.

Our method for graph candidate elimination has three stages. In the first
stage we extract the features from the graphs. There are many features that can
be potentially used, ranging from simple features such as the number of vertices
or edges per graph to complex ones such as chains of vertices and edges with
given labels. For our research we have selected the three types of features listed
below:

— number of vertices with a given label (feature—type 1).
— number of incoming edges per vertex (feature—type 2).
— number of outgoing edges per vertex (feature—type 3).

The reason for selecting these features is that they are easy and computatio-
nally inexpensive to extract. For a graph with m vertices, the extraction takes
only O(m?) time and space. On the other hand, as will be shown later, these
features are very efficient in ruling out potential candidate graphs. For example,
if the input graph has three vertices of a given label A, then the search for iso-
morphic graphs can be restricted only to those graphs in the database that have
exactly three vertices with the label A. Once the features have been extracted,
they are passed on to C4.5.

The second stage involves the use of C4.5 to build the decision tree based on
any combination of the three types of features mentioned above.

The third stage is to determine which graphs can possibly match a given input
graph. Obviously, a necessary condition for input graph g being isomorphic to
model graph g; is that all features extracted from g have values identical to the
corresponding features extracted from g;. The processing is as follows. First,
we extract from the input graph the same features that were extracted from the
graphs in the database. Then we use the values of the features extracted from the
input graph to traverse the decision tree. There are only two possible outcomes.
The first outcome is that we reach a leaf node. In this case the graphs associated
with the leaf node are possible matches to the input graph. Each of these graphs
is tested against the input for graph isomorphism using a conventional algorithm,
for example the one reported in [I4]. The second outcome is that we do not
reach a leaf node. In this case there are no graphs in the database that can be
isomorphic to the input graph.

The cost to extract any of the features mentioned above from a graph with
m vertices is O(m?). The cost to traverse a decision tree of depth k is O(k)
while the cost to match a given input graph against a set of ¢ candidate graphs



240 M. Lazarescu, H. Bunke, and S. Venkatesh

is O(c-m™). Hence, for a database consisting of n graphs of size m each, the
cost to find a match for an input graph is [O(c-m™) + O(m?) + O(k)] given that
the decision tree has k levels and the maximum number of graphs associated
with a leaf in the decision tree is ¢. The graphs associated with a leaf node in
the decision tree will be called a cluster in the following. We observe that the
expression

O(c-m™) + O(m?) + O(k) 1)

has to be compared to

O(n - m™) (2)

which is the computational complexity of the straightforward approach, where
we match the input graph to each element in the database. Because ¢ < n or
¢ << n, asignificant speedup over the straightforward approach can be expected.

4 Experimental Results

The two parameters that are related to decision trees and have a significant
impact on the overall efficiency of the method are the cluster size ¢ and the depth
of the decision tree k. We have investigated the two parameters by conducting
a number of experiments on a database of randomly generated graphs. The
parameters used in the graph generation process were the number of vertices,
the number of vertices, the number of edges per graph and the number of graphs
in the database.

As the influence of edge labels can be expected similar to the influence of
node labels, no edge labels were used. The experiments were conducted as fol-
lows. First a database of random graphs was generated. Then the features were
extracted from the graphs and passed on to C4.5 which constructed a decision
tree to classify the graphs in the database. In the final step of the experiment,
the decision tree was analyzed and the average cluster and largest cluster size
recorded along with the depth of the decision tree.

In the first set of experiments we focused on the first type of feature extracted
from the graphs, i.e. the frequency of the various vertex labels in the graphs.
Therefore the decision tree classifying the graphs in the database was built using
information from only this type of feature. To extract the feature we used a
simple histogram that recorded the occurrence of each given vertex label. We
started with only 5 vertex labels and then gradually increased the number of
labels to 100. We also varied the number of vertices per graph from 5 to 50. At
the same time, the number of edges was varied from 8 to 480. The number of
graphs in the database was 1000 in this experiment. All graphs in the database
had the same number of nodes and edges. Figure [1l shows the average cluster
size. The results indicate that as the number of vertices increases, the average
cluster size decreases. In the majority of the experiments, the average cluster
size converged to the value of 2 which means that in general only 2 graphs out
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Fig. 1. (left) Using the vertex feature (1000 graphs).
Fig. 2. (right) Using the incoming/outgoing edge features (1000 graphs).

of a 1000 will be needed to conduct a test for graph isomorphism. The fact that
the size of the cluster decreases as the number of vertices or labels increases
was expected since the greater the number of vertices/labels per graph is, the
more easily identifiable a graph becomes. Hence C4.5 is able to develop better
classification trees with a smaller cluster size.

The second set of experiments were done using the frequency of edges inci-
dent per vertex. Both incoming and outgoing edges were considered in separate
experiments. Again, the number of vertices was increased from 5 to 50. At the
same time, the number of edges was varied from 8 to 480. The database’s size
was 1000. No label information was used in these experiments. Figure [2| shows
the average cluster size for both the case in which the incoming and outgoing
edges were used. The results are similar to those obtained from the case in which
feature—type 1 was used, in the sense that the greater the number of vertices,
the smaller the cluster size.

In the third set of experiments, we used pairs of features to build the decision
tree classifying the graphs in the database. Three pairs of features were used:
(feature—type 1,feature—type 2), (feature—type 1,feature—type 3) and (feature—type
2 feature—type 3). We used the same parameters as for feature—type 1: 1000
graphs per database, 5-50 nodes per graph with all graphs in the database having
the same size, and 5-100 vertex labels. The results obtained from combining
feature—type 1 and feature—type 2 are shown in Fig. B The average cluster size
has value of 2 for all cases except when the graphs were of size 5 (the average
cluster for this case was 3). These results are better than those in the case in
which any of the three single features were used for classification. The reason for
this is that by using two features more information about the graphs becomes
available, and C4.5 was able to classify the graphs with more accuracy. The
results for the last 2 pairs of features (feature—type 1,feature—type 3) and (feature—
type 2,feature—type 3) were very similar. In both cases the average cluster size
was 2 and in both cases the results are better than in the case where only a
single feature was used to classify the graphs. In the fourth set of experiments,
we combined all three types of features. The results obtained are shown in Fig. [l
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Fig. 3. (left) Using the feature combination 1-2 (1000 graphs).
Fig. 4. (right) Using the feature combination 1-2-3 (1000 graphs).

Note that this time the average cluster size had a constant value of 2 regardless
of the size of the graphs. Therefore the results are better than those obtained for
the cases in which single features or pairs of features were used by C4.5 to build
the decision tree. This result matches our expectation since more information is
available and this leads to more accurate decision trees being built.

For each of the experiments described previously, we not only recorded the
cluster size but also the depth of the decision tree. When feature—type 1 was
used, the depth of the decision tree varied as shown in Fig.[H. In this case, when
the number of vertices is small (5 vertices per graph) and the number of vertex
labels is high (100 labels), the depth of the decision tree is large (over 40). As the
number of vertices increase and the number of vertex labels decrease, the depth
of the decision tree decreases until it finally converges to an average depth of
11. When feature—type 2 and feature—type 8 were used, the depth of the decision
trees was more constant and not influenced by the number of vertices in the
graphs (see Fig.[f). The average decision tree depth is 11, which is the same as
in the case of feature-type 1.
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Fig. 5. (left) Using the vertex feature (1000 graphs).
Fig. 6. (right) Using the incoming/outgoing edge features (1000 graphs).
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Fig. 7. (left) Using the feature combination 1-2 (1000 graphs).
Fig. 8. (right) Using the feature combination 1-3 (1000 graphs).

The results obtained from using pairs of features are shown in Figs. [7][§ and
In all three cases there is a substantial improvement when compared with
results obtained using feature—type 1. The depth of the tree converges faster
to an average value of 11 and in the worst case (small number of vertices, high
number of labels) the decision tree depth is only 25. Therefore combining features
together not only helps in reducing the average cluster size but also helps reduce
the depth of the tree. The results also show that there were no substantial
differences between the three pairs of features.

More improvement can be obtained by using more types of features. This is
indicated by the results produced when using feature-types 1-3 together (see
Fig. [M0). In this case the depth of the tree converges faster to an average depth
of 11. Also when more features are used, the depth of the tree in the worst case
scenario (small number of vertices, high number of labels) is less than 25. This
is a reduction of almost 50 when one considers the case of feature—type 1.

To give some concrete hints about the computation time that can be saved
by the method proposed in this paper, we measured the quantities in eqs. ()
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Fig. 9. (left) Using the feature combination 2-3 (1000 graphs).

Fig. 10. (right) Using the feature combination 1-2-3 (1000 graphs).
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and on a set of graphs with 20 vertices each. On a standard workstation, it
takes about 20s to match an input graph with a database of 1000 graphs using an
implementation of Ullman’s algorithm [14]. Traversing a decision tree of depth
11 takes 0.3s, and feature extraction takes 0.08s. Thus if we neglect the time
needed off-line for decision tree construction, only 0.4s are needed by our method
as compared to 20s for a full search. Because of the exponential complexity of
graph matching, a higher speedup can be expected for larger graphs.

5 Conclusions

In this paper we have presented a novel approach to graph matching that involves
the use of decision trees. The method offers the advantages that it significantly
reduces the number of candidate graphs in the database and it requires features
that are easy to extract. It involves building a decision tree that classifies the
graphs along selected features and, in order to find a match for a given graph one
simply needs to go down the decision tree. In the best case scenario the leaf node
(cluster) of the decision tree will contain just one graph while in the worst case
it will contain several graphs. The complexity of the method is determined by 3
parameters: the size of the cluster associated with the leaf node in the decision
tree, the size of the graph and the depth of the decision tree.

We have conducted numerous experiments to investigate the average cluster
size at the leaf node and the depth of the decision tree. We used a database size
of 1000 graphs. The graphs in the database had between 5 and 50 vertices and
the set of vertex labels varied between 5 and 100 labels. The results indicate
that the average cluster size is directly affected by the number of vertices and
vertex labels in the graphs. The higher the number of vertices per graph, the
smaller is the average cluster size. Also the higher the number of vertex labels,
the smaller is the average cluster size. Another way of keeping the size of the
clusters minimal is to use combinations of features. Combinations of two and
three features generally produce increasingly better results.

The method proposed in this paper can lead to substantial savings in com-
putation time when matching a graph to a database of models. Both feature
extraction and decision tree traversal are very fast. At the same time they are
suitable for eliminating a large portion of candidates from the database, leaving
only a few graphs that have to undergo expensive isomorphism test.

The method presented in this paper is suitable to search for graph isomor-
phisms. Future work will investigate if this method can be applied to the sub-
graph isomorphism and the approximate graph matching problems. Future work
could also involve the use of more complex features for classification. The fea-
tures used for the work described in this paper are simple and easy to extract.
However, there are other types of features such as vertex-edge chains that could
be used to build the decision trees. Such features are more complex and harder to
extract from graphs, but they offer the benefit that they provide a more unique
description of each graph in the database.
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