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Abstract. Many authors have already proposed linear feature extrac-
tion algorithms. In most cases, these algorithms can not guarantee the
extraction of adjacency relations between extracted features. Object con-
tours appearing in the analyzed images are often fragmented into non-
connected features. Nevertheless, the use of some topological information
enables to reduce substantially the complexity of matching and registra-
tion algorithms.

Here, we formulate the problem of linear feature extraction as an op-
timal labelling problem of a topological map obtained from low level
operations. The originality of our approach is the maintaining of this
data structure during the extraction process and the formulation of the
problem of feature extraction as a global optimization problem.
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1 Introduction

A structural description of an image, relevant for example in an architectural
context, is an issue of computer vision. Many algorithms use structural informa-
tion. Examples of such algorithms are registration algorithms in data bases of
images or three dimensional models [4], or calibration algorithms.

Elementary structural elements can be classified into three categories, accor-
ding to their dimension, i.e. interest points, linear features and regions. More
complex features, such as line pencils (vanishing points), collinear segments, etc,
may be pertinent in specific applications.

Although the different kind of elementary features are complementary, they
are usually extracted independently from each other. For example, some authors
proposed techniques of interest point detection, such as corners and multiple
junctions [8]. Other authors proposed linear feature extraction techniques from
independent point sets [3], chained points [I1], or thick point sets [I4]. Seg-
mentation algorithms, which partition an image into regions of homogeneous
properties, are numerous. The problem of consistency between the different ty-
pes of features is faced when one tries to organize those features into a global
adjacency structure.
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The perceptual grouping paradigm is widely used to solve this problem [15].
Techniques using perceptual organization are resistant to occlusions, but are
very sensitive to noise and to parameter values. More recently, Fuchs and al. [6]
proposed a multi-primitive extraction system where conflicts between features
extracted independently are detected, thanks to a structure that stores adjacency
relations between the different features.

Other coherent approaches are used in line drawing vectorization [9]. The
main interesting point of those approaches consists in using a skeleton of a
binary image obtained from the initial bilevel image. This skeleton is viewed as
a graph of discrete points, which guarantees the consistency of the adjacency
relations between the extracted line segments. Junction points and faces can be
naturally deduced from the graph structure. Line segments are extracted with
respect to local criteria, but the extension of these methods to other curves seems
problematical.

In this paper, we propose a new method for linear feature extraction that
enables the retrieval of topological relations between the extracted features. It
can be applied to bilevel images as well as on multilevel images. The first step
of the extraction process is the construction of a low level topological structure
called contour map (section 2)). The problem of linear features extraction is then
viewed as an optimal labelling problem, which is derived in the second section
of this article (section Bl), and a simple sub-optimal algorithm is presented. We
then propose an example illustrating the usefulness of the proposed contribution
(section M.

2 Contour Map

2.1 Definition

A contour map is a topological map embedded in the discrete plane : its vertices
are points of ZZ2, its Jordan arcs are 4-connected curves, and its faces are 8-
connected sets of points.

A topological map is a data structure representing a cellular decomposition
of a plane, that codes the faces and the edges of that decomposition, and that
permits to access efficiently to the adjacency relations between the different
kind of elements. Such a structure has already been used for the edition of
two-dimensional drawings [7], and for representing images with respect to an
inter-pixel topology [5/1].

2.2 Construction

A contour map can be obtained from a straightforward algorithm introduced
first by M. Pierrot Deseilligny and al. [I6]. We suppose that the crests of an
image I represents the contours of an original image. An image I is defined as a
function with a discrete support (pixels (z,y)), such as all its values are different.
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This condition can be fulfilled by defining I as a concatenation of functions. The
image of the figure 2.c is obtained using the following tabulated function :

I(‘T7y) = [|Grad(x,y)|,D_(9:,y),z,y] (1)

where |Grad(z,y)| is the norm of the gradient of the initial image, and D_(z, y)
is the shortest distance of a point (z,y) to a point (z/,y’) such as |Grad(z,y)| >
|Grad(2’,y")|.

The contour map is built thanks to a simple algorithm based on a local analy-
sis of the 8-neighborhood of each pixel p of I. Each neighborhood is decomposed
into sets of 4-connected components which values are greater than the value of
the central pixel. We construct the contour map by adding an edge that connects
the central pixel with the highest value pixel of each component.

Pierrot Deseilligny and al. demonstrated that a bijection exists between the
faces of the topological map and the local minima of I. A homotopic trans-
formation is then applied, which suppresses the pending darts of the previous
combinatorial map until stability. This operation conserves the number of fa-
ces and of connected components of the map. The resulting map is called an
elementary contour map. The edges of this map bind two 4-connected pixels.

On a real image, we obtain an over-segmentation of the initial image, as
shown on the image of the figure [Il This is due to noise, textures, ... The re-
levant curves are noisy, but well localized. The contour map can be simplified
with the use of pre-treatment such as a selective smoothing , or by applying a
segmentation algorithm. This kind of operations does not necessarily conserve
curves of interest.

3 Features Extraction and Labelling Problem

Feature extraction is viewed here as the segmentation of the contour map into
4-connected discrete curves, according to different models of curves. This gua-
rantees that the connectivity of the map is preserved during the segmentation
process and that no adjacency information is lost.

3.1 Model Selection

How can we choose the model which best fits a given sample of measured data
among a set of possible models ? To formalize it, let © = x + e be a vector of
measures, where e is the error vector and x is the vector of the exact values of
the measures. A statistical model is known when we know the law of e. A model
m of a feature (for example, a linear feature model) is a set of relations which
can be represented by a function f that verifies f(z,p) = 0 where p is a vector
of parameters describing this feature.

Let M = {m;,i = 1..N} be the set of all possible models and f; their
associated functions. We are then seeking the feature of model 7 of M that is
the most adapted to the data sample z. Let s(x, m;,p;) be a criterion of model
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Fig.1. Construction of a contour map. The upper left image is the initial image.
The upper right image represents the modulus of the gradient of the previous one. The
bottom left image shows the resulting contour map after the suppression of the pending
arcs. Each black point of the image corresponds to an edge. The bottom right image
was obtained by thresholding the locally maximal curves to suppress over-segmentation
problems

selection, which is a function that measures the appropriateness of the feature
of model m; and of parameter p; to the data x. For a given model m; and a
given data sample x, the minimization of this function gives an estimate p; of the
parameters of the most appropriate feature of m;. The best model m according
to the data x is the model realizing the minimum of s on M.

m:mi/s('xamivi)\i) :mjins(x,mj,pj) (2)

Note that the estimates p; of the different features are required to find the
model . An example of such a criterion is given by Rissanen’s Minimum De-
scription Length Principle (MDL) (see [17], for a clear introduction). It has
been largely used in the computer vision literature [2[TOJT3I1R]. According to
that principle, the feature which is the most adapted to the data is the one
that minimize the length of the code of the data which are described with that
feature. The model selection criterion is :

s(x,mi, p;) = —logy P(x/pi) + sizeof(m;) (3)
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where P(x/p;) is the a posteriori probability of « knowing the parameters p; of
the feature, and sizeof(m;) is the size of the code of the feature which is equal
to the amount of memory needed to stock the vector of parameters.

Note that for a given model, the description length criterion is similar to the
maximum likehood criterion.

3.2 Optimal Labelling of a Contour Topological Map

We seek to segment an elementary contour topological map into a set of cur-
ves following known models, in order to find a continuous representation which
”explains” the discrete map. Those curves can be represented by paths of the
map, each path being associated to a label and a model of a given model set. A
model selection criterion is used for selecting both the paths and their associated
models. It enables to give a label to each edge of the elementary contour map.
In order to simplify the problem, we impose that each edge must have only one
label.

Let G be an elementary contour topological map, C' the set of all possible
paths of G, and M the set of all admissible curve models. We associate to each
vertex of the elementary contour topological map some measures (coordinates,
gradient direction of the initial image ...). We can then construct a vector com-
posed of measures associated to each vertex of the path with a path ¢;. We will
use the abusive notation s(c¢;, m;, p;;) which is the model selection criterion built
with measures realized along the path c;.

The set F of all admissible linear connected features is defined as a subset of
C' x M which elements respect the following constraint : the parametric represen-
tation of each point with respect to the model and its estimated parameters must
conserve the order of the points along the path. This constraint is illustrated on
figure 2.

Fig. 2. Curve constraint. The drawings of this figure represent two 4-connected paths
and possible continuous analogs. The left drawing is a correct possible curve, while the
right drawing does not fulfill the constraint

Definition 1. A subset E of F' is independent if and only if the paths associated
to the elements of E do not share an arc.

Definition 2. An independent subset E of F is of mazimal size if and only if
Va € F, E U{a} is not independent.
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It is straightforward to figure out that the paths included in E contain every
edges of G. E is equivalent to a labelling of all the edges of G. Let define the
optimality criterion :

Definition 3 (: Optimal labelling). An optimal labelling of G according to a
model set M and a model selection criterion s is the independent subset E of F
of mazximal size minimizing :

> slegymap)

(cj,mi)€E

Note that there is not necessary an unique optimal labelling. Finding an
optimal labelling seems to be a NP-complete problem in the general case, if
no hypothesis on s, M, and G are made. Classical combinatorial optimization
algorithms, such as the A algorithm, or relaxation, can be used to solve this
problem, but the implementation of such algorithms is not efficient, partly due
to the amount of data required.

3.3 Sub-Optimal Labelling Algorithm

As the labelling problem is complex, we do not seek to obtain an optimal solution.
In this sub-section, we present an algorithm that can be used with any model
set. This algorithm can be decomposed into three steps.

This first step enables a substantial reduction of the amount of computation
required in the following steps. We construct a new topological map from the
contour map such that edges are discrete lines, with at most two adjacent faces.
Simple classical algorithms [I2] can be used.

For each arc of the new map, a local analysis is realized, that enables to find
the linear connected feature that minimizes the function

s(cj, mi, pij) — s(cj, mo, poj) (4)

where ¢; is a path that starts by the considered arc, m; is a model of M, my is
the model of independent point, and pp; is composed of the measures associated
to each point of ¢;. The model my is the noise model, and is implicitly used when
no model fits the considered path. The description length s(c;, mo,po;) equals
the code length of py;.

The local analysis is driven by a deep first strategy. Each of the ”optimal”
linear feature is inserted into a priority queue, ordered according to the previous
function.

An independent set F of curve of maximal size is then constructed, using
the extracted features. While the priority queue is not empty, the first curve
c; of the queue is extracted. If ' U ¢; is independent, then c¢; is included in
the set E. If it is not, ¢; is split into n curves c}; and n’ curves cj);, such that
EU{c;,1 <i<n}isindependent, and Vi'[l < i <n', EU{c},} is not. The

c ; are then inserted in the priority queue.
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This algorithm is clearly non optimal. The local analysis may result in a
curve that is locally, but not globally, optimum according to the model selection
criterion. Moreover, the complexity of this algorithm is very high, each admissible
curve being analyzed. To reduce the computational cost of this algorithm, the
deep first analysis is realized until all the possible estimated models of curves
fail a confidence test based on the the maximum residual distance between the
points and the estimated curve. The threshold value can be chosen in such a way
that it does not change the result of the algorithm.

4 Application

In this section, we give an example of application with a model set composed
of two models : a line segment model and a noise model (section ET)). We then
present some results obtained on real images (section F.2]).

4.1 Models

In this sub-section, we derive the two previous models. Let ¢; be a path of
an elementary contour map. The data vector constructed along the path ¢; is
composed of the coordinates of each vertex of the path, and of the initial image
gradient direction at each of those points. This direction is supposed to be close
to the normal vector of an object contour. This measure is used to discriminate
the real contours from the spurious ones.

The description length of the noise model is then :

s (Cj7 noise,poj) = 3njtreal (5)

where n; is the number of points along the path c¢;, and ¢,.eal is the amount of
memory needed to store the chosen representation of a real.

The line segment model is composed of sub-matrix (one sub-matrix per point
P) of the following form :

f(xp,yp,0p;0,d) = (xp 60899+_yg;1n9 - d) - <_T2’P> =0 (6)

—rip

where xp and yp are the coordinates of P, 6 the angle between the normal
vector of the line and the = axis, d the distance of the origin to the line, and
i p and 5 p are the residuals of f.

The estimation of the parameters of the line can be calculated by non-linear
constrained optimization [3]. In order to reduce the computation cost, we can
use a linear least square estimator, considering the set of equations ax+by = —1,
where a and b are the new parameters of the line, or an estimate obtained by
sampling the data points, using techniques such that the least median of squares
or RANSAC.
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Once the optimal parameters has been obtained, the description length of
the path by the line has to be computed. The residuals of the observations
(zp,yp,0p) must then be calculated, which is costly. We will use the residuals of
fs Tip and 5 pr We suppose that TIp follows a normal law of standard deviation
o4, and that 5 p follows a normal law of standard deviation oy. Moreover, we
suppose that residuals are independent. The description length of a curve c;

according to a line segment model is given, after a straightforward development,
by :

(ey.tine, (8 @) ~nylog, (29222 +

€d€p

1 Top 2 Top ? (7)
2109 Z ((ad) + Te +(2+ng)treal

Pec;

where €4 and €y are the resolution of the digitalization of 6 and d, t,..q; is the
code size in bits of a real, and n; is the number of points in the curve c¢;. The
coding length of the model is (24 n;)trcq because 2 reals are necessary to code
the parameters 6 and d, and a real is needed to code the parametric coordinate
of each point along the segment.

4.2 Results

In this section, we discuss the results of the algorithm of sub-section B3l on the
image of the figure [ (figure B)) .

We first estimate the standard deviations o4 and og. To do so, test lines can
be manually selected, and their estimates can be computed. Those estimates can
be used for an image sequence. In our example, 8 lines were used. o4 was lying
between 0.36 and 0.28 pixel, with a mean of 0.34 pixel and oy between 0.05 and
0.386 radian with a mean of 0.14 radian.

In our application, the linear estimator is more robust than the least median
of squares estimator. The used MDL criterion is strong enough to drop lines
with outliers in the linear least squares case, Whereas a large number of random
samples does not guarantee the repeatability of the extraction of local consi-
stent labellings. It is well known [I8] that the MDL criterion tends to accept
outliers. Although not especially addressed here, this problem is very sensitive
in our algorithm. The early acceptance of a feature with outliers (in this case,
points belonging to another feature) can give a global labelling result that is not
satisfactory. This problem is solved here by underestimating the standard devia-
tions. Experiments show that a low oy gives a stronger filtering criterion, while
a low o4 gives lines with well localized end points. The figure Bl demonstrates
the resulting labels with a low gg. The lower gy, the most powerful the filtering
effect is. The last figure gives an example of correct labelling.

This method is well adapted to images without contrasted random textures.
It can be applied on other types of images, and have been tested succesfully on
aerial images of urban environment. On any images, complex shapes of contours
are split in simple linear models from the initial model set. When the model
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Fig. 3. labelled lines (right column) and noise (left column). Upper images : 04=0.34
pixel and oy 0.14 radians, Lower images : 04=0.12 pixel and 09p=0.04 radians

set contains only the line segment model, the result is a polygonization of the
contours. Although the method presented here is less performant in term of time
than other methods dedicated to line detection, it can easily be extended to other
types of linear features. Moreover heuristics can be designed for each model of
the model set in order to reduce the amount of computation time.

5 Conclusion

In this contribution, we have presented the problem of linear feature extraction
as a combinatorial optimization problem. We have also proposed a sub-optimal
algorithm that has been applied to the extraction of lines segments in outdoor
photographs. Although it does not perform perfectly, it demonstrates the use-
fulness of our approach. Moreover, only two parameters, which values can be
estimated, are needed. Actual and future works concern the extension of this
approach to face features.
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