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Abstract. We propose a randomized method for the detection of sym-
metry in planar polygons without assuming the predetermination of the
centroids of the objects. Using a voting process, which is the main concept
of the Hough transform in image processing, we transform the geometric
computation for symmetry detection which is usually based on graph
theory and combinatorial optimization, to the peak detection problem
in a voting space in the context of the Hough transform.

1 Introduction

In pattern recognition, the symmetry of an object is an important feature be-
cause symmetry provides references for the recognition and measurement of ob-
jects. The symmetry information enables the speeding up of the recognition pro-
cess and also the reduction of the space required for storage of the object models.
The symmetry properties of objects yield valuable information for image under-
standing and compression. For the utilization of the symmetry properties, it is
necessary to determine the symmetry axes or shape orientations.

In this paper, we propose a symmetry detection method based on the random
sampling and voting process. An object is said to be rotationally symmetric
if the object, after being affected an transformation, becomes identical to the
original object. If point set V is an n-fold rotationally symmetric object with
n ≥ 3, this point set V will be identical to itself after being rotated around
the centroid through any multiple of 2π

n . The voting process converts direct
geometric and analytical computation of features from data to the peak detection
problem in a voting space. The method proposed here is an extension of our
randomized method for motion detection, which we proposed previously [1,2].
In our previous papers [1,2], we derived algorithm for both 2D and 3D motion
estimation without the predetermination of point correspondences. If an object
is rotationally symmetrical, the result of a rotation which is determined by the
symmetry derives the same shape, that is, there are ambiguities in the solutions
obtained from the motion detection algorithm if the object has symmetry axes
and occlusion is not considered. In this paper, we use these ambiguities for the
determination of the symmetries of planar polygons.

Many methods have been proposed to determine the object orientation, such
as those involving principal axes [3], reflection-symmetry axes [4], and universal
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principal axes [5]. However, these methods are not suitable when the shape is
rotationally symmetries. Lin [6] proposed a method for the determination of
shape orientations by the fold-invariant introducing the concepts of the fold-
invariant centroid (FIC) and the fold-invariant weighted mean (FIRWM). In
this method, the rotational symmetry of a shape is defined as the direction of
the unique half-line which begins from the centroid and passes through FIC and
FIRWM. The number of folds n of a given rotational symmetry shape can be
determined by string matching technique [7]. Lin et al [8] proposed a method for
the determination the number of folds based on a simple mathematical property.
Recently, Lin [9] also proposed a modification of his previous method in which
the matching procedure is discarded. Additionally, we can find other approaches
such as the proposed by Yip et al [10], who use the Hough transform method to
determine the rotational symmetry of planar shapes.

The motion analysis algorithm which we proposed in references [1] and [2]
detects motion parameters for planar planar and spatial motions without any
assumption for the point correspondences among image frames. Therefore, if an
object is rotationally symmetrical, this algorithm yields ambiguities of soluti-
ons. Using this fundamental property of the motion analysis algorithm based on
the random sampling and voting process, we construct a common framework for
the detection of symmetry of both planar and spatial object. Our algorithm does
not require the predetermination of centroid since our motion analysis algorithm
does not require centroid. Never the less, our algorithm detects the centroid after
detecting symmetry of an object for both planar and spatial objects. Further-
more, the algorithm detects both rotation symmetry and reflection symmetry for
planar objects, simultaneously. Moreover, the algorithm estimates the centroid
of polyhedrons from surface information using symmetry. These properties are
the significant advantages of our new algorithm for the detection of symmetry.
In this paper, we assume that point set V is a polygonal set on a plane. Further-
more, we assume that points on the boundaries of these point sets are extracted
and sampled with an appropriate method.

2 Symmetry and Transformation

Symmetry indicates the congruence of an object under transformations. Here
we assume Euclidean transformations. The presence of an axis of symmetry in
an object is considered as the existence of rotational or reflectional symmetry.
In this paper, we only consider rotation symmetry and the number of axes of
rotation symmetry. The order of rotation symmetry is called the folding number
for planar figures.

For a set of vectors V in Euclidean space, we define F (V) = {y|y = Fx,∀x ∈
V } for linear transformation F . Let U be a rotation matrix such that Um = I,
for an appropriate positive integer m such that m ≥ 2. Setting g to be the
centroid of V, we define a set of vectors Vg = {x̄|x ∈ V} for x̄ = x−g. Setting
Uk(V) = {ȳ|ȳ = Ukx̄, x̄ ∈ V}, if V = Uk(V), then V has a symmetry axis
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with respect to g. Then, V is n-rotation symmetrical, and we call n the folding
number of an object V with respect to the axis of rotation k.

Let the rotation matrix on two-dimensional Euclidean plane to be

U =
(

cos 2π
n , − sin 2π

n
sin 2π

n , cos 2π
n

)
(1)

for a positive integer n. Setting Sk = {ȳ|ȳ = Ukx̄} for k = 1, 2, · · · , n, if
Sk = Vg , then V is rotation symmetrical and the folding number of V is n.

Furthermore, for orthogonal matrix M and rotation matrix R such that

M =
(

1, 0
0, −1

)
, R(θ) =

(
cos θ, − sin θ
sin θ, cos θ

)
, (2)

setting a set M to be the result of the application of matrix M and rotation R(θ)
to Vg , that is, M = {ȳ|ȳ = R(θ)Mx̄}, if the equality M = Vg is satisfied,
then point set V is reflectionally symmetrical with respect to a line such that
(ω⊥)>(x − g) = 0, for ω⊥ = (− sin θ

2 , cos θ
2 )>, which passes through g and

parallel to vector ω = (cos θ
2 , sin θ

2 )>.

3 Motion Analysis by Sampling and Voting

Setting {xα}n
α=1 and {yβ}n

β=1 to be points on an object on Euclidean plane
R2, which are observed at times t1 and t2, respectively, such that t1 < t2,
we assume that for arbitrary pairs of α and β, xβ and yβ are connected by
Euclidean motion If we do not know the point correspondences between frames,
the motion parameters R and t, which are a rotation matrix and a translation
vector, respectively, are obtained as the solution which minimizes the criterion

E = min
σR,t

|yσ(α) − (Rxα + t)|, (3)

where σ(α) is a permutation over 1 ≤ α ≤ n and R and t are a rotation matrix
and a translation vector, respectively.

Rotation symmetry and the folding number of an object define point cor-
respondences with respect to the rotation axes. Therefore, if we detect point
correspondences, we can determine symmetry and the folding number with res-
pect to an axis of rotation of an object. Since the random sampling and voting
method for the motion analysis detect both motion parameters and point cor-
respondences concurrently, we apply this method for the detection of symmetry
of an object.

Assuming that t = 0, motion analysis algorithms detect the rotation of an
object, if an object is rotationally symmetrical, the result of a rotation which
is determined by the folding number n derives the same shape. Therefore, if we
apply the motion analysis algorithms to an object which is rotationally symme-
trical, we can obtain all rotation matrices Uk, that is,

min
σ,R,t

|yσ(α) − (Rxα + t)| = min
σ,R,t

|yσ(i) − (UkRxα + t)|, k = 1, 2, · · · , n. (4)
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Therefore, our algorithm detects all UkR for k = 1, 2, · · · , n, where R is the
true rotation matrix. However, all estimated matrices have the same translation
vector. Using this ambiguity, we detect symmetry axes and the folding numbers
of spatial objects. After a sufficient number of iterations, this algorithm detects
all rotation matrices {Uk}n

k=1 such that Un(V) = V.
Figure 1 shows two hexagons which are connected by motion equation. Ho-

wever, if we do not know any point correspondences as the solution of motion
analysis algorithm we have

R = R(2πk/6)R(2π/12), k = 1, 2, · · · , 6. (5)

Therefore, there exist an ambiguities of solutions for rotationally symmetrical
objects. Here, the number 6 of R(2π/6) is the folding number of the hexagon.
Therefore, the ambiguity of the solutions derives the folding number of an planar
object. Furthermore, if a planar shape is reflectionally symmetrical, two shapes
V and M(V) are the same shape. Therefore points on V satisfy the relation

min
σ,R,t

|yσ(α) − (UkMxα + t)| = 0, k = 1, 2, · · · , n. (6)

for an appropriate rotation matrix U . This geometric property leads to the
conclusion that by applying our motion analysis algorithms, it is possible to
detect the reflection axes if we detect all peaks in the accumulator space.

Let {xi = (xi, yi)>}m
i=1 be a set of points which is moving on a plane. For

xi, and xk,

xik = (xi − xk, yi − yk)>, x⊥
ik = (yi − yk,−(xi − xk))>, (7)

which is orthogonal to xik, are invariant under a Euclidean motion of a set of
points. Furthermore,

uik =
xik

|xik| , u⊥
ik =

x⊥
ik

|x⊥
ik| (8)

form an orthogonal basis. Moreover, in the same way we define yik, y⊥
ik, vik,

v⊥
ik for the second image frame. These two sets of orthogonal base derive the

orthogonal expansions of vectors

xjk = αj
ik,uik + αj⊥

ik u⊥
ik, yjk = βj

ikvik + βk⊥
ik v⊥

ik, (9)

where

αj
ik = x>

jkuik, αj⊥
ik = x>

jku⊥
ik, βj

ik = y>
jkvik, βj⊥

ik = y>
jkv⊥

ik. (10)

Setting xγ and yγ , γ = i, j, k, to be noncollinear triplets of points in the
frames 1 and 2, respectively, if these triplet of pairs are coresponding points
which satisfy the same motion equation, the equations

αj
ik = βj

ik, αj⊥
ik = βj⊥

ik , |xp q| = |yp q|, (11)
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where p 6= q for p, q ∈ {i, j, k}, hold. Moreover, using these corresponding tri-
plets, we have

R =
(
vik,v⊥

ik

) (
uik,u⊥

ik

)>
. (12)

Although random sampling finds pairs of triplets of vectors which hold relations
in eq. (11), these relations do not conclude that a pair of triplet vectors are
connected by a Euclidean transform. Therefore, we solve this problem using the
voting procedure, since voting procedure collects many evidences and inference
the solution.

If a pair of triplets {xi,xj ,xk} and {yi,yj ,yk}, is connected by the relation

yij = R(θ)Mxij , (13)

the coefficients defined eq. (10) satisfy the relations

αj
ik = βj

ik, αj⊥
ik = −βj⊥

ik , |xp q| = |yp q|, (14)

where p 6= q, for p, q ∈ {i, j, k}. Therefore, applying motion motion analysis
algorithm to a pair of vector triplets {xi,xj ,xk} and {Myi,Myj ,Myk}, we
can detect the direction of the line of reflection as ω.

As shown in Figure 2, our planar algorithm first determines a triangle in each
frame, and second computes the rotation parameter between these two triangles.
In Figure 2, the algorithm determines the angle between line segments 13 and
1′3′, if we assume vertices i and i′ correspond for i = 1, 2, 3. Although there are
many possibility for the combinations of triangles and point correspondences,
for hexagons in Figure 2, the number of vertex-combinations which determine
the rotation angle

θ =
2π

6
k +

2π

12
, k = 1, 2, · · · , 6, (15)

larger than the number of combinations of edges which determine the angle such
that

θ 6= 2π

6
k +

2π

12
, k = 1, 2, · · · , 6, (16)

for 2 × 2 rotation matrix R(θ). If we apply motion analysis to an object by
sampling a pairs of simplexes, then θ = 2πk/6 for k = 1, 2, · · · , 6. Then we can
determine the folding number of planar polygonal objects.

4 Detection of Symmetry

In the followings, we assume that the boundary points on an object are extracted
using an appropriate methods. As we mentioned in the previous section, our
motion analysis algorithm based on the random sampling and voting process
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Fig. 1. Tow hexagons related by an Euclidan motion.
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Fig. 2. Trainagls and point correspondences on two hexagons.

detects all rotation matrices Uk, for k = 1, 2, · · · , n if the folding number of an
object is n, that is, an object V is n-rotationally symmetry.

The parameter θc, such that −π < θc < π, which is computed by

R(θc) = (v12,v
⊥
12)(u12,u

⊥
12)

> (17)

is an estimation of the rotation angle for a planar object. Therefore, our accumu-
lator space for the detection of rotation angles is a finite linear array equivalent
to the interval [−π, π], which is equivalent to [0, 2π]. Setting θmin to be the smal-
lest positive values which possess a peak in this accumulator space, the folding
number is 2π/θmin. Therefore, the detection of the folding number is achieved
by detecting peaks in accumulator space. We detect the folding number applying
the cepstrum analysis in the accumulator space for the folding-number detection,
since the peak distribution along cells in the accumulator space is considered as
a periodic function [11]. This property derives the following algorithm for the
detection of folding numbers of planar shapes.
Algorithm for the detection of the folding number

1 Compute the DFT (the Discrete Fourier Transform) of scor(θ) using the
FFT (the Fast Fourier Transform).

2 Compute the power spectrum of scor(θ) from the result of Step 1, and set
it as S(n).

3 Compute the logarithm of the power spectrum of S(θ) from the result of
Step 2, and set it C(n).

4 Detect the positive peak of C(n) for the smallest n and set it as n∗.
5 Adopt n∗ as the folding number.
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Once detecting rotation matrix R(2π
n ), it is possible to determine the corre-

spondences of points on the boundary of an object for a motion

y = R(2π/n)x + t. (18)

Therefore, we can determine t and the centroid of an object by

g = (I − R(2π/n))−1t. (19)

Therefore, for the detection of the folding number , we need not to prepare
vectors whose centriod is the origin of the coordinate system.

As mentioned in the previous section, if we apply motion motion analysis
algorithm to {xi,xj ,xk} and {Myi,Myj ,Myk} we can detect the direction
of the line of reflection as ωr. For the minimum values in the accumulator space
which is computed by

R(θr) = (v12,v
⊥
12)

{
M(u12,u

⊥
12)

}>
, (20)

a reflectionally symmetrical object satisfies the relation Vg = R(θr)(M(Vg)).
Therefore, the reflection axis of an object is line (ω⊥

r )>(x − g) = 0, for vector
ω⊥

r = (− sin θr

2 , cos θr

2 )>. This line passes through the centroid of xi and yi and
perpendiculat to vector xi − yi.

For a simple closed polygonal curve on a plane, the folding number is equi-
valent to or less than the number of vertices of this polygon, since matrix R(2π

n )
transform vertices to vertices. Therefore, the folding number satisfies the rela-
tion 2 ≤ n ≤ v(n), where v(n) is the number of vertices of a polygon. Setting
n̄ to be the folding number detected by R(θr), we call n̄ the number of folding
for reflection since number n̄ determines the number of reflection axes. If an
object is reflectionally symmetrical and rotationally asymmetrical n̄ = 1 and
n = 1. Therefore, using n̄ and n, we have the following classification criterions
for planar objects.

1. If n = 1 or n > v(n), and n̄ 6= 1 then an object is asymmetrical.
2. If n = 1 or n > v(n), and n̄ = 1 then an object is reflectionally symmetrical.
3. If 2 ≤ v(n) ≤ n, and n̄ 6= 1 then an object is rotationally symmetrical and

is not reflectionally symmetrical.
4. If 2 ≤ v(n) ≤ n, and n̄ = n then an object is rotationally and reflectionally

symmetrical.

5 Computational Results

For a planar object V, let k and m be the folding number and the total number of
sample points. We assume that m points are separated into k independent subset
whose number of sample points is n. Therefore, k, m and n satisfy the relation
kn = m. For this object, the total number of combinations for the selection of a
pair of triplets is mC3 ×m C3. The number of combinations for the selection of
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a subset is kC2, and the number of combinations for the selection of triplets of
sample points in each subset is mCk.

For a pair of triplets of sample-points, if thay are congruent triangles, the
rotation angles between them is one of 2π

q for q = 1, 2, · · · , k. This means that the
number of combination of pair of triplets of sample- points which is combined
by angles which are determined by the folding number is the same as the folding
number. Therefore, setting p to be the probability that a selected triples is not
collinear, the probability for the correct selection of noncollinear triplets is

P = p
1
k

kC2 ×n C3

mC3 ×m C3
. (21)

In the following, we deal with the case that O(m) = O(n) and O(k) = 10
Therefore, assuming that k � m, we have P−1 = O(m3) . Next, setting N
and e to be the total number of iteration and the threshold for the detection of
peaks, respectively, P , N , and e which is e = O(ms) satisfy the relation NP ≥ e.
Therefore, we have N ≥ O(m3+s). In the following examples, we set N = 107

for m ∼= 50 and s = 4.
During the computation of θc and θr, we also compute centroid g and line

(ω⊥
r )>(x − g) = 0, simultaneously. Furthermore, using the imaging plane on

which the original object is expressed as the accumulator space, we vote 1 to
vector g and the line for the estimation of the centroid and the reflection axes.
Using this procedure, we can superimpose the centroid and the reflection axes
on the original object.

From figure 3, we show the numerical results of symmetry analysis for planar
objects. Subfigures, (a), (b), (c), (d), (e), (f), (g), (h), and (i) show input data, the
peaks in the accumulator space for the detection of rotation, the cepstrum of the
peak-distributions for the rotation, the peaks in the accumulator space for the
detection of reflection, the cepstrum of the peak-distributions for the reflection,
the peaks for the detection of the centroids, the peaks for the detection of the
reflection axes, the centroids, the reflection axes, and the input objects, and the
reconstructed objects by folding the input using folding numbers for rotating
inputs. In these figures, small square blocks in figure (a) show sample points.
For the performance analysis of the algorithm, we assumed that the boundaries
of objects are extracted using appropriate algorithm and that finite numbers of
samples are extracted from boundaries. Here, the total number of sample points
on the boundaty is 54, and the times for iteration is 107.

A point set V, which is n-rotationally symmetrical, satisfies the relation

V =
n⋃

α=1

(
Uα(Vg ⊕ {g})

)
, (22)

where ⊕ expresses the Minkowski addition of two sets of points. This expres-
sion of the rotationally symmetrical object implies that if the algorithm is stable
against occlusions, for partially occluded objects, we can reconstruct the com-
plete object by first rotating the object around the estimated centroid by 2πk/n
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k = 1, 2, · · · , n and second superimposing all of them. In figure (i) shows recon-
structed object using this property of the rotationally symmetrical object. This
process is possible because our algorithm is stable against occlusions.
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Fig. 3. Numerical examples

6 Conclusions

In this paper, we developed a randomized algorithm for the detection of rota-
tional symmetry in planar polygons without assuming the predetermination of
the centroids of the objects. Our algorithm is simple because we converted the
matching problem for the detection of symmetry to peak detection in a voting
space. This result showed that the voting process is a suitable approach to sim-
plify matching problems. The numerical stability of the random sampling and
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voting process for motion analysis is disucussed in our previous papers [1,2,11].
We also determied the size of cells in the accumulator spaces for the detection
of motion parameters using this analysis.

References

1. Imiya, A., Fermin, I., Motion analysis by random sampling and voting process,
Computer Vision and Image Understanding, 73, 309-328, 1999.

2. Imiya, A., Fermin, I., Voting method for planarity and motion detection, Image
and Vision Computing, 17, 867-879, 1999.

3. Tsai, W., Chou, S., Detection of generalized principal axes in rotationally symme-
tric shapes, Pattern Recognition, 24, 95-104, 1991.

4. Atallah, M., On symmetry detection, IEEE Transactions on Computers, 34, 663-
673, 1985.

5. Lin, J., Universal principal axes: An easy-to-contruct tool useful in defining shape
orientations for almost every kind of shape, Pattern Recognition, 26, 485-493, 1993.

6. Lin, J., Detection of rotationally symmetric shape orientations by fold-invariant
shape-specific points, Pattern Recognition, 25, 473-482, 1992.

7. Leou, J.J, Tsai, W.H, Automatic rotational symmetry shape determination for
shape analysis, Pattern Recognition, 20, 571-582, 1987.

8. Lin, J.-C., Tsai, W.-H., Chen, J.-A., Detecting number of folds by a simple ma-
thematical property, Pattern Recognition Letters, 15, 1081-1088, 1994.

9. Lin, J., A simplified fold number detector for shapes with monotonic radii, Pattern
Recognition, 29, 997-1005, 1996.

10. Yip, R., Lam, W., Tam, P., Leung, D., A Hough transform technique for the
detection of rotational symmetry, Pattern Recognition Letters, 15, 919-928, 1994.

11. Imiya, A., Ueno, T., Fermin, I, Symmetry detection by random sampling and voting
process, Proceedings of 10th ICIAP, 400-405, 1999.


	Introduction
	 Symmetry and Transformation 
	 Motion Analysis by Sampling and Voting 
	 Detection of Symmetry 
	Computational Results
	 Conclusions 

