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Abstract. This paper considers how ambiguous graph matching can be
realised using a hybrid genetic algorithm. The problem we address is how
to maximise the solution yield of the genetic algorithm when the available
attributes are ambiguous. We focus on the role of the selection operator.
A multi-modal evolutionary optimisation framework is proposed, which
is capable of simultaneously producing several good alternative soluti-
ons. Unlike other multi-modal genetic algorithms, the one reported here
requires no extra parameters: solution yields are maximised by removing
bias in the selection step, while optimisation performance is maintained
by a local search step.

1 Introduction

In realistic settings graph-matching is invariably frustrated by structural error,
and as a result it is not possible to locate an exact isomorphism. Early attempts
at inexact matching used heuristics to reconcile dissimilar structures [I]. These
heuristics have been augmented by information theoretic and probabilistic crite-
ria [2]. Over the last ten years, there has been more interest in using statistical
methods for inexact attributed graph-matching, instead of adopting a purely
structural approach [3]. However, these methods invariably assume that there
is a single best match. This approach works best where each of the attributes
is distinctly located in the feature space, when it is possible to make a single
minimum risk assignment. However, when the attributes are poor in the sense
that there is considerable overlap in the feature space, restricting attention to
the most probable assignments incurs a substantial risk of ignoring alternatives
which are only slightly less good. For example, in a situation where there are two
possible assignments with probabilities close to 0.5, it would be unwise to ignore
the less likely one. This paper will demonstrate how to overcome this difficulty
for graph matching using a multi-modal hybrid genetic algorithm.

The idea that genetic algorithms can be used to simultaneously find more
than one solution to a problem was first mooted by Goldberg and Richardson
in [4]. They attempted to prevent the formation of large clusters of identical
individuals in the population by de-rating the fitness function. Other techniques
include crowding [5], sequential niching [6], and distributed genetic algorithms
[7]. A common feature of these approaches has been the necessity for extra pa-
rameters. Niching and crowding strategies typically require two or three extra
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parameters to be controlled. These parameters are needed, for example, to deter-
mine when to de-rate the fitness of an individual, by how much, and the distance
scale of the de-rating function. In distributed algorithms, it is necessary to de-
cide how to arrange the sub-populations, their sizes, and under what conditions
migration between them may occur. In [8], Smith and co-workers demonstrated
a situation in which niching could occur in a standard genetic algorithm, without
the need for any extra parameters.

The main conclusion that can be drawn from this literature is that the choice
of selection operator plays a key role in determining the solution yield in multi-
modal or ambiguous optimisation problems. However, most of the reported work
is focussed on toy or contrived problems. Our sim here is to undertake a syste-
matic study of selection mechanisms for the problem of inexact graph matching.
In particular, we will show how suitable algorithm modifications can improve
solution yield without introducing any new parameters. We work with a hybrid
genetic algorithm which incorporates a hill-climbing step, since Cross, Wilson
and Hancock [9] have found that graph matching was only feasible with such an
algorithm.

2 Bayesian Matching Criterion

The problems considered in this paper involve matching attributed relational
graphs. An attributed relational graph is a triple, G = (V,E, A), where V is
the set of vertices or nodes, E C V x V is the set of edges, and A C V X RE is
the set of measurement k—vectors relating to the original scene. Graph matching
is the problem of establishing a correspondence between a data graph, Gp =
(Vp,Ep,Ap), and amodel graph, Gps = (V s, Epr, Aps). This correspondence,
f:Vp = Vay U{é}, is a labelling of the nodes in Vp with nodes from Vj; or a
special null label, ¢, for unmatchable nodes.

In [I0], Wilson and Hancock described a framework in which both neigh-
bourhood structure and node attributes were combined in a single measure of
matching consistency. The goal is to optimise the following a posteriori proba-
bility criterion

P(fAD,AM)_{ 11 P(u,vxu,xv)}[vlm S S expl—k D(I, S)]

(uvv)ef u€EVp S, €60,
(1)

where the posterior matching probability, P(u,v|xy,x,), is the probability of
node u from the data graph matching node v in the model graph given their
measurements, z, and x,. Structural constraints are captured by a dictionary
of legal assignments, ©,,, over the neighbourhood of each node, v, in the data

graph. The constant k. = In (1;,56

) is defined in terms of the probability of

matching error P,. The distance function D(I,,S,) measures the similarity of
the current matching assignment to the data-graph neighbourhood I, and the
consistent matching configuration S, drawn from the dictionary. In [I1], Myers,
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Wilson and Hancock have shown that the Levenshtein distance is a good choice
for the distance function D.

2.1 Measurement Ambiguity

The measurement information contributes to the matching criterion via the po-
sterior matching probability, P(u, v|x,, ©,), which has yet to be defined. In [10],
Wilson and Hancock defined it in terms of the Euclidean distance between at-
tribute pairs for non-null mappings:

Py if v=¢

6xp|:*(”-';;127~'u) :| (2)

P(u,v|zy, ) = } otherwise

(1-Py) Ry
wevy P [;ai?uw
where P, is the prior probability of a null match, f(u) = ¢, which may be
[Vo|-|Vum|
[Vol+|Va|
is the estimated variance of x,. This effectively regards the model graph node
measurement, x,, as a mean about which the data graph node measurement,
T, varies with estimated variance 62, under the null hypothesis that the two
measurements are the same (because the nodes match). This approach requires
the assumption that a data measurement is only likely to be statistically close to
one of the model measurements. This is ideal when there is little overlap between
classes, e.g. for possible angles of line-fragments segmented from a radar image.
However, if there is significant overlap, e.g. in the average intensities of regions,
such a scheme will not reflect these ambiguities in its classification of features.

The alternative is to compare the data measurements to the model measu-
rements using an artificial scale. This can be done by considering the number of
standard deviations separating the data measurement from its class mean under
the null hypothesis that the nodes match. Table [[] gives an example of such a
scale for the arbitrary classes “similar”, “comparable”, and “different”.

computed using the size difference of the graph to be 2’ and 62

)

Table 1. Example Scale for Measurement Comparisons.

Class Range of standard deviations from x,
Similar [0,1.0]
Comparable (1.0,2.0]
Different (2.0,00]

Consider the standardised distance, Ay, = ||y — #4]||/F,. The probability
that A,, lies within the interval [a, b] is twice the standard Normal integral from

a to b:
P(a< Ay, <b) = \/Z/b e 3% dzerf (2) — orf <\j§) (3)
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Each of the classes in table [[]corresponds to a separate interval which must
be considered. Rather than introduce so many extra parameters, it is better to
simplify the classification to “similar” if A, € [0,a] and “dissimilar” otherwise.
Thus, P(u,v|z,,z,) can be defined as follows

P¢ if’l):¢

2
exp[;“;;ﬁ’ }
u ifa=0

(mu—zmz} (4)

weVyy CXP[_ 25
(1 —Py)P[Ayuw < qa] if Ayy <a
(1—Py)(1 — PlAyy < al) otherwise

For convenience, the original unambiguous definition is used when a = 0. At
the cost of an extra parameter, a, ambiguous measurements can now be handled.
The important property of equation M is that when a > 0, it assigns the exact
same probability to sets of mappings, thus enabling different alternatives to be
considered.

P(u,v|Ty, x,y) = (1-Fy)

3 Genetic Algorithms

Having defined an attribute model which captures the ambiguous nature of the
raw image attributes, in this section we consider how to use genetic algorithms to
recover multiple solutions to the graph-matching problem. In a standard genetic
algorithm, selection is crucial to the algorithm’s search performance. Whereas
mutation, crossover and local search are all “next-state” operators, selection
imposes a stochastic acceptance criterion. The standard “roulette” selection al-
gorithm, described by Goldberg in [12], assigns each individual a probability of
selection, p;, proportional to its fitness, F;. The genetic algorithm used here al-
lows the population, ¥, to grow transiently and then selects the next generation
from this expanded population. Denoting the expanded population by ¥., the
selection probability of the i*® individual, p;, is given by
7
_ 5
b Zj ev, F J ( )
The algorithm then holds selection trials for each “slot” in the new popula-
tion, for a total of |¥| trials. Since selection is with replacement, the constitution
of the new population is governed by the multinomial distribution, and the copy
number of a particular individual, N(4), is distributed binomially:

Pv) =) = (Y1) st =y ©

and so the expectation of N(i), is E[N(i)] = |¥|p;, and its variance is
Var[N(i)] = [¥[pi(1 — p).

The search power of the standard genetic algorithm arises from the fact
that if the individual in question is highly fit, p; will be much larger than the
average, and hence the expectation will be that the copy number will increase.
This approach has two disadvantages. The first is that for small populations,
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sampling errors may lead to copy numbers very much higher or lower than the
expected values. This can lead to premature convergence of the algorithm to a
local optimum. In [13], Baker proposed “stochastic remainder sampling”, which
guarantees that the copy number will not be much different from the expectation
by stipulating that |E[N(i)]|] < N(i) < [E[N(i)]]. However, the larger the
population, the less need there is for Baker’s algorithm. The second disadvantage
is that less fit individuals have lower expectations, and that the lower the fitness,
the lower the variance of the copy number. In other words, less fit individuals
are increasingly likely to have lower copy numbers. When E[N(i)] falls below 1,
the individual will probably disappear from the population. In general, the copy
number variance decreases with decreasing fitness. Only when p; > 0.5 does the
variance decrease with increasing fitness. This occurs when the fitness of one
individual accounts for at least half the total fitness of the population, i.e. when
it is at least |®¥.| — 1 times as fit as any other individual.

In short, the problem with roulette selection is that it imposes too strict an
acceptance criterion on individuals with below average fitness. Several alternative
strategies have been proposed to avoid this problem. “Sigma truncation”, rank
selection and tournament selection [12] all seek to maintain constant selection
pressure by requiring individuals not to compete on the basis of their fitness, but
on some indirect figure of merit such as the rank of their fitness, or the distance
between their fitness and the average in standard units. Taking rank selection as
a typical example of these strategies, the selection probabilities are assigned by
substituting the rank of the individual for its fitness in equation B with the best
individual having the highest rank. The implication of this is that the expected
copy numbers of the best and worst individuals are given by:

E[N (best)] = oty } -

E[N(worst)] = %

So, the expected copy number of the fittest individual differs from that of
the least fit by a factor of |W.|. Moreover, if |¥.| is even moderately large,
E[N (worst)] will be much less than 1. Indeed, E[N(4)] will be less than 1 for
about half the population. Thus, under rank selection, less fit individuals are
highly likely to disappear, even if they are quite good.

A second alternative to roulette selection is Boltzmann selection [T4YT5]. This
strategy borrows the idea from simulated annealing, that at thermal equilibrium
the probability of a system being in a particular state depends on the tempe-
rature and the system’s energy. The idea is that as the temperature is lowered,
high energy (low fitness) states are less likely. The difficulty with this analogy
is that it requires the system to have reached thermal equilibrium. In simulated
annealing, this is achieved after very many updates at a particular tempera-
ture. However, in a genetic algorithm this would require many iterations at each
temperature level to achieve equilibrium, coupled with a slow “cooling”. Within
the 10 or so iterations allowed for hybrid genetic algorithms, equilibrium cannot
even be attained, let alone annealing occur.
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It would appear, then, that there is a tradeoff between premature convergence
and the strength of the selection operator. The problem arises from the fact that
expected copy numbers of fit individuals may be greater than one, while those
of unfit individuals may be less than one. One way of preventing the increase in
copy number of highly fit individuals is to use “truncation selection”, as used
in Rechenberg and Schwefel’s evolution strategies [I6/17]. Truncation selection
would simply take the best |¥| individuals from the expanded population, ¥,
to form the new population. The copy number of each individual is simply 1 or
0, depending on its rank. Although no individual may increase its copy number,
the selection pressure might still be quite severe, since for the algorithm used in
this paper, |¥.| can be as large as 3|¥|. In other words, less fit individuals still
disappear at an early stage. The fact that individuals never increase their copy
number makes this a relatively weak search operator, and probably unsuitable
for a standard genetic algorithm. However, the gradient ascent step is itself a
powerful optimiser [10], and may be mostly responsible for the optimisation per-
formance of the algorithm. If this is so, selection would be a much less important
search operator for this hybrid algorithm than it is for standard genetic algo-
rithms. It may therefore be beneficial to trade search performance for greater
diversity.

3.1 Neutral Selection

The benefits of stochastic selection can be combined with the evenness of trun-
cation selection by selecting without replacement. This strategy can be called
“biased selection without replacement”, since it is biased first in favour of fitter
individuals, although it may also favour less fit ones.

The alternative is to abandon fitness based selection altogether, and rely on
the local search step to do all the optimisation. If the genetic algorithm’s role is
explicitly limited to assembling a good initial guess for the local search operator,
the selection probabilities can be assigned uniformly, i.e. View, pi = ﬁ This
operator is called “neutral selection”. Neutral selection without replacement can
be implemented very efficiently by shuffling ¥, and choosing the “top” |¥|
individuals. This strategy shares the advantage with truncation selection, that
the minimum number of individuals are excluded from the new population, but
also maintains the global stochastic acceptance properties of standard selection
operators.

3.2 Elitism

Elitist selection guarantees that at least one copy of the best individual so far
found is selected for the new population. This heuristic is very widely used in
genetic algorithms. In [I8], Rudolph showed that the algorithm’s eventual con-
vergence cannot be guaranteed without it. The elitist heuristic can be modified
in two ways to help maintain diversity. First, it seems natural that if the goal
is to simultaneously obtain several solutions to the problem in hand, several of
the fittest individuals should be guaranteed in this way. This is called “multiple
elitism”. Second, if one wishes to avoid losing too many unfit individuals, the
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worst individual can also be granted free passage to the new population. This
is called “anti-elitism”. These heuristics, together with the selection strategies
discussed earlier, are evaluated at the end of section [4l.

4 Experiments

This experimental study establishes the suitability of the hybrid genetic algo-
rithm for ambiguous graph matching, and compares the selection strategies di-
scussed in the previous section. The algorithm was tested on 30-node synthetic
graphs Data graphs were generated by randomly perturbing the node attributes,
and then duplicating 10% of the nodes and perturbing their attributes. The in-
tention was to simulate segmentation errors expected of region extraction, such
as the splitting of one region into two similar ones.

4.1 Comparative Study

A comparative study was performed to determine the best algorithm for ambi-
guous matching. The algorithms used were the hybrid genetic algorithm with
and without mutation, crossover or both (hGA, hGA-m, hGA-x and hGA—xm)
a hybrid version of Eshelman’s CHC algorithm [T9] (hCHC), and plain gradient
ascent (HC). The experimental conditions are summarised in table 21

Table 2. Algorithms for Graph Matching. Each algorithm, apart from HC, made
approximately 700,000 fitness evaluations. Abbreviations: hGA = hybrid genetic algo-
rithm, hGA-m = hGA without mutation, hGA-x = hGA without crossover, hGA-xm
= hGA with neither mutation nor crossover, hCHC = hybrid CHC, and HC = gradient
ascent (hillclimbing).

hGA  hGA-m hGA-x hGA-xm hCHC HC
Population |50 50 120 120 100 1
Iterations |5 5 5 5 5 10
Crossover |Uniform Uniform Uniform Uniform HUX n/a
Cross rate 0.9 0.9 0.0 0.0 1.0 n/a
Mutate rate|0.3 0.0 0.3 0.0 0.35 n/a

Each of the algorithms listed in table 2] except HC, was run 100 times. Since
HC is deterministic, it was only run once per graph. The results for the different
graphs were pooled to give 400 observations per algorithm. Algorithm perfor-
mance was assessed according to two criteria. The first was the average fraction
of correct mappings in the final population. The second was the proportion of di-
stinct individuals in the final population with more than 95% correct mappings.
The results are reported in table Bl

! These should be regarded as different algorithms, not merely different parameter sets
for a genetic algorithm, because a genetic algorithm with no crossover or mutation
is fundamentally different from one which has these operators. For example, the
hGA-xm algorithm is really just multiple restarts of gradient ascent with a selection
step.
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Table 3. Graph Matching Results. Standard errors are given in parentheses. Abbre-
viations: hGA = hybrid genetic algorithm, hGA-m = hGA without mutation, hGA-x =
hGA without crossover, hGA-xm = hGA with neither mutation nor crossover, hCHC
= hybrid CHC, and HC = gradient ascent (hillclimbing).

Algorithm|Average Fraction Correct Average Fraction Distinct
hGA 0.90 (0.0044) 0.078 (0.0019)

hGA-m |0.88 (0.0051) 0.040 (0.0012)

hGA-x 0.84 (0.0052) 0.044 (0.00094)

hGA-xm |0.76 (0.0068) 0.013 (0.00036)

hCHC  0.92 (0.0042) 0.012 (0.00033)

HC 0.97 (n/a) n/a

At first sight, pure gradient ascent appears to outperform all the other algo-
rithms. The reason for this is partly that the gradient ascent algorithm starts
from an initial guess in which about 50% of the mappings are correct, whe-
reas the other algorithms start with random initial guesses. More importantly,
the final population of a genetic algorithm typically contains solutions much
better and worse than the average. Thus, this comparison is not really fair: a
fairer comparison of optimisation performance comes from considering hGA-xm,
which is multiple random restarts of gradient ascent. Furthermore, gradient as-
cent is deterministic, and therefore always gives the same result, but the genetic
algorithm is stochastic and may do significantly better or worse than gradient
ascent. Indeed, the genetic algorithm occasionally found matches with 100% cor-
rect mappings. However, the performance of gradient ascent alone suggests that
for unambiguous problems, genetic algorithms may not necessarily be the me-
thod of choice. Apart from pure gradient ascent, the best optimiser was hCHC,
which is only slightly better than hGA. The results for hGA-m and hGA-x indi-
cate that crossover and mutation are playing an active part in the optimisation
process. Turning to the fraction of distinct individuals with over 95% correct
mappings, it is clear that pure gradient ascent is incapable of finding more than
one solution. The hCHC algorithm appears to converge to fewer solutions than
the hGA algorithm. In all, the hybrid genetic algorithm (hGA) combines strong
optimisation performance with the highest solution yield, and it is this algorithm
which will be the subject of the remainder of this study.

4.2 Selection

Two sets of experiments were conducted to evaluate different selection strategies
with and without elitism. In each case, a hybrid genetic algorithm was used, with
a population size of 20, and uniform crossover was used at a rate of 1.0. The
mutation rate was fixed at 0.4. The first set of experiments used 20, 30, 40 and 50
node graphs, and for these the population size was set to 10, and the algorithm
run for 5 iterations. The second set of experiments used four 30 node graphs,
with a population size of 20 and 10 iterations. Five different selection strategies
were compared: they were standard roulette, rank, and truncation selection, and
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neutral and biased selection without replacement. Five combinations of elitist
heuristics were considered: they were no elitism, single elitism, multiple elitism,
anti-elitism, and a combination of multiple and anti-elitism. The experimental
design was therefore a 5x5x4 factorial with 100 cells. The first set of experiments
had 40 replications for a total of 4000 observations; and the second set had 50
replications for 5000 observations. Figures[Ib and [[h summarise the results.

Both plots show that neutral selection without replacement produced the
best yields, and that truncation selection produced the worst. Biased and rou-
lette selection strategies gave similar results, and were both outperformed by
rank selection. Linear logistic regression analysis of both data sets confirmed
this ranking of selection strategies. The results for elitism heuristic were not so
convincing. It is questionable whether elitism has any overall effect: the regres-
sion analysis of the second data set found no significant effect of varying the
elitism strategy. The analysis of the first data set did show that either standard
(single) or multiple elitism gave significantly better yields, but that the effect
was small.

B
Selection  Pank Anteliist Eliism Anteliist Elitism
R Maiple Antslist oulette Multple Anti-olst

Fig.1. Average Yields versus Selection and Elitism . Data from all four graphs has
been pooled.

5 Conclusion

This paper has presented a method of matching ambiguous feature sets with a
hybrid genetic algorithm, which does not require any additional parameters to
achieve multimodal optimisation. The first contribution made was to develop
an attribute process for ambiguous feature measurements. The second contribu-
tion has been to explore the hybrid genetic algorithm as a suitable optimisation
framework for ambiguous graph matching. If most of the optimisation is un-
dertaken in the gradient ascent step, the tradeoff between effective search and
maintenance of diversity, which must be made in choosing a selection operator
for standard genetic algorithms, can be abandoned. Neutral selection without
replacement maximises the diversity in the next generation with no regard to
individuals’ fitnesses.
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