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Abstract. In this paper, a procedure which computes error-correcting
subgraph isomorphisms is proposed in order to be able to take into ac-
count some external information. When matching a model graph and a
data graph, if the correspondance between vertices of the model graph
and some vertices of the data graph are known ’a priori’, the procedure
is able to integrate this knowledge in an efficient way.
The efficiency of the method is obtained in the first step of the proce-
dure, namely, by the recursive decomposition of the model graph into
subgraphs. During this step, these external information are propagated
as far as possible thanks to a new procedure which makes the graphs
able to share them.
Since the data structure is now able to fully integrate the external infor-
mation, the matching step itself becomes more efficient.
The theoretical aspects of this methodology are presented, as well as
practical experiments on real images. The procedure is tested in the field
of 3-D building reconstruction for cartographic issues, where it allows to
match model graphs partially, and then perform full matches.

Keywords : Graph matching, error-tolerance, external information, 3-D
building reconstruction, cartography, stereoscopy.

1 Introduction

This research work1 is part of a project aiming at automating the process of
3-D reconstruction of buildings from high-resolution stereo-pairs. The goal is to
reconstruct the structure of the roofs. The strategy is model driven. By now, the
model corresponding to one building is supposed to be known (some models are
shown in Fig. 5).

The models are attributed relational graphs, each vertex standing for a 3-D
feature (a 3-D line segment, or a 3-D planar region, or a facade of a building),
1 This work is supported by the french national cartographic institute, IGN.
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each edge standing for a geometric property (such as parallelism, orthogona-
lity, ...). The building reconstruction is based on the computation of a subgraph
isomorphism between a model G and a graph GI built on a set of 3-D fea-
tures derived from the images. Since under detection and geometrical errors are
hard to avoid, the subgraph isomorphism computation has to be error-tolerant.
Among the existing graph matching techniques ([3][10][13]), the error-correcting
subgraph isomorphism detection (ECD) presented in [10] is well suited in our
case. More precisely, the shapes of the buildings have usually common subparts,
and the ECD is able to take benefit of the common subparts of the model graphs
in order to reduce the combinatorial complexity of the problem. This is why the
ECD is used in this work to match the model and the data. The ECD uses the
concept of edit distance functions, and proposes an efficient method to find the
subgraph isomorphism which minimizes an edit distance. This work extends the
ECD, so that some major points of the ECD will be first recalled in Sect. 2.
However, for more details about the ECD, and the edit distances, see [10], [11].

In this paper, the key point is a modification of the ECD in order to take
benefit of an external information (e.g. a user input or a pre-computed informa-
tion). More precisely, if the correspondance between some vertices of the model
and some vertices of the data is already known before the matching, the search
space of the matching problem can be pruned by integrating the external infor-
mation in the main data structure of the ECD, which is called decomposition.
This integration has to be done carefully, as shown in Sect. 3.

Experimental results about the use of partial matches as external information
for the matching procedure will be described in Sect. 4.

2 Notations

This section mainly recalls some notations used in the ECD ([10], [11]).

– G = (V, E, µ, ν) or G = (V, E) denotes a graph. v ∈ V is a vertex, e ∈ E is
an edge. µ : V 7→ LV is the vertex labelling function, and ν : E 7→ LE is the
edge labelling function.

– A subgraph of G based upon a subset of vertices VS ⊂ V is denoted GVS
=

(VS , ES , µS , νS), and the difference of two graphs is G − GVS
= GV \S .

– The union of two graphs G′ = G1 ∪E G2 according to a set of edges E
and an edge labelling function ν : E 7→ LE is defined by : V ′ = V1 ∪ V2
; E′ = E1 ∪ E2 ∪ E ; µ(v) = µ1(v) if v ∈ V1 or µ(v) = µ2(v) if v ∈ V2 ;
ν(e) = ν1(e) if e ∈ E1, ν2(e) if e ∈ E2, ν(e) if e ∈ E.

– A subgraph isomorphism from G to G′ is a function f : V 7→ V ′ such that f
is an isomorphism from G to G′

f(V )
– A decomposition D is a set of nodes, each node being a 4-tuple (G, G′, G′′, E),

also denoted (G, G′, G′′), such that :
– G′ ⊂ G, G′′ ⊂ G, and G = G′ ∪E G′′ : G can be split into its two sons.
– If (G, G′, G′′, E) ∈ D, there is no other (H, H ′, H ′′, F ) such as G = H :

G appears only once in the decomposition.
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– If G′(resp.G′′) has more than one vertex, then there is a node (H, H ′, H ′′,
F ) in D such that H = G′ (resp. G′′).

– If G′(resp.G′′) has only one vertex, then there is no node (H, H ′, H ′′, F )
in D such that H = G′ (resp. G′′).

For a node (G, G′, G′′), G will be called the main graph.
Such a decomposition is a network. Each main graph of a decomposition can
be recursively split into subgraphs, in a unique way. Figure 1 is an example.
On this figure, each rounded rectangle represents the main graph G of a
node (G, G′, G′′) (E is not represented). Each rectangle is pointed by two
arrows which come from the two sons G′ and G′′ of the node. The figure
uses 3 labels (a, b, c), and each vertex is identified by a number. The nodes
themselves are identified by a number next to their bottom-right corner.
One can remark that the graph 6 is made of two subgraphs (1,2,3) and
(4,5,6) which are isomorphic, so that the two sons of this node is node 5,
which is stored only once. In [10], Messmer presents a method to insert a
model graph into the decomposition. This method is recalled Fig. 1.
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Decomposing G into a decomposition D :

1. In D, compute the largest graph Smax such
that Smax is a subgraph of G, and such that
there is a node (Smax, G′, G′′, E) in D.

2. If Smax and G are isomorphic (G has already
been decomposed), then exit.

3. If no Smax was found, then choose Smax as a
random subgraph of G, and decompose Smax.

4. Decompose G − Smax.
5. Add the node (G, Smax, G − Smax, E) where

E is such that G = Smax ∪E (G − Smax).

Fig. 1. Left : a decomposition. Right : the standard decomposition algorithm.

If the correspondance between some vertices and the data is well established
before the matching step, the method is not able to take this knowledge into
account. In the next section, a modification of the method in order to use this
knowledge is proposed. More precisely, we will add some labels to the model
vertices, and modify some definitions of the graph theory, and then propose a
new decomposition procedure, which propagates this knowledge throughout the
decomposition.

3 Introducing External Information in the Decomposition

Here, the aim is to integrate some a priori information about the matching.
Namely, we consider that for some nodes of a model graph G, the matching with
the nodes of the input graph is already known : for example, the vertex 4 (resp.
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5) of graph 6 of Fig. 1 is known to correspond to the vertex 17 (resp. 23) of the
input graph. We will first present a first approach to take this into account in
the decomposition process. Then, a decomposition method leading to efficient
match will be proposed.

3.1 First Approach

The first approach is to add some labels to the vertices of the model graphs in
order to use the external information. Formally, the graphs with a priori matches
(AP-graphs) are defined :

– An AP-graph is a graph Gap = (V, E, µ, ν) where Lap
V = LV × ({3, $} ∪ VI

) where VI is the set of vertices of the input graph.
For a vertex v ∈ V , we have µ(v) = (l, la) where :
– la = 3 means that there is no a priori match for v. This vertex will be

called a strict vertex.
– la = $ means that the vertex is not matched with any vertex of the input

data. This may happen if a partial match of graph G has already shown
that v has no correspondance in the data GI .

– la = vi (with vi ∈ VI) means that v is matched with node vi of GI .
With this definition, an AP-graph can also be written as Gap = (V s∪V ap, E),
where V s ⊂ LV × {3} and V ap ⊂ LV × ({$} ∪ VI). V ap (resp. V s) is the set
of the vertices of Gap which are (resp. which are not) a priori matched.

– The definition of an AP-graph isomorphism between Gap = (V = V s ∪
V ap, E) and G′ap = (V ′ = V ′S ∪ V ′ap, E′) is the natural extension of the
isomorphism of two graphs. However, the equality between two labels of Lap

V

has to be defined : two labels (l, la) and (l′, l′a) are equal if and only if l = l′

and la = l′a. This means that to AP-vertices are isomorphic if their labels
are the same and if they share the same external information (i. e. if they
are matched with the same input vertex).
Thus, when there is a isomorphism f between Gap and G′ap, we have f(V s) =
V ′s and f(V ap) = V ′ap.
In our example, according to this definition, the problem is to match Gap

with the data, where the label of vertex 4 is (B, v17), and the label of vertex 5
is (C, v23). This graph is shown in the node 6 of Fig. 2.

According to these definitions, the decomposition procedure proposed in [11]
(Fig. 1) still works and takes the a priori matches into account. More precisely,
when looking for the largest subgraph of the model (step 1 of the algorithm of
Fig. 1), the graph 5 is found. The difference between graph 6 and graph 5 is
then graph 7 which has to be split recursively. The largest subgraph of graph 7
is graph 1, so that we now have to split graph 8 into 2 parts. Since 8 is based on
2 vertices which are both a priori matched, the method stops just after having
inserted graph 9 and 10 in the decomposition.

One can see that the edges between vertices 2 and 4 (and between vertices 3
and 5) are forgotten very early in the decomposition process. But it is clear that
when finding matches for graph 5 (which is the subgraph (1,2,3) of graph 6), it
would be useful to take advantage of this edge which holds much information,
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namely : the vertex 2 of graph 5 can only be matched with a vertex which is
a neighbor of the vertex 17 of the input. This is the key point leading to the
pruning of the search space. However, in order to make the matching process
of the ECD able to use this information, the information has to be inserted in
the whole decomposition. The next section shows that it is possible to use these
informations all through the decomposition process, which leads to an efficient
matching procedure.
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Fig. 2. Example of a decomposition using the AP-subgraph isomorphism

3.2 Efficient Knowledge Usage

The union of two AP-graphs has to be redefined :
– The union of two AP-graphs Gap

1 = (V s
1 ∪V ap

1 , E1) and Gap
2 = (V s

2 ∪V ap
2 , E2),

according to a set of edges E ⊂ V1×V2∪V2×V1 is the AP-graph Gap = (V, E)
such that : V = (V s

1 ∪ V s
2 ∪ V ap

1 ∪ V ap
2 , E1 ∪ E2 ∪ E). The only difference

here is that we do not assume that the intersection between V ap
1 and V ap

2 is
empty. More precisely, if two graphs share some a priori vertices, then these
vertices are merged together.
This definition is important here : since the union of AP-graphs is defined
for two graphs which share some vertices, the decomposition process will be
able to propagate some shared information between both sons of a node of
the decomposition, as shown in the next definition.

– For a graph Gap = (V s ∪V ap, E) and a subgraph Gap
S = (VS , ES) of Gap, we

define the extension of Gap
S in Gap as the following : E(Gap

S ) = Gap
VS∪E(VS)

where E(VS) = {v ∈ V ap|∃v′ ∈ V s such that v and v′ are neighbors }
: E(V s) is the set of AP-vertices of G that are neighbors of at least one
strict vertex of the subgraph Gap

S . Thus, E(Gap
S ) is the graph E(Gap

S ) itself,
plus the vertices that are on its neighborhood, and that hold some external
information. As an example, the graph 9 of Fig. 3 is the extension of graph
5 in graph 6, since the two vertices 4 and 5 are neighbors of the nodes 2 and
3 respectively. One can notice that Gap

S is a subgraph of E(Gap
S ), and that

E(Gap
S ) is a subgraph of Gap.
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3.3 The Decomposition Algorithm

The new decomposition algorithm propagates the a priori knowledge through
the decomposition. There is only one major change in the graph decomposition.
Namely, when the largest subgraph Sap

max of a graph Gap to be decomposed is
found, we try to see which external information could be added to Smax. This
is done by extending Sap

max in Gap. However, E(Smax) may not appear in the
decomposition. This is why it has to be added first. Moreover, there is a second
trick : E(Sap

max) may be isomorphic to Gap itself : in that case, Gap is made of
Sap

max plus some a priori vertices. This means that the decomposition of the strict
part of Gap has already be done once, but without any ’a priori’ information. In
that case, we just redo its decomposition, but with external information. This
means : choose Smax as one of the sons S′

max of Smax.
Once that the first son of Gap is found, the second one is its complementary

Gap − Smax. Again, we extend this graph in order to complete it with some
external information. That way, the a priori knowledge is propagated through
the decomposition. It leads to the following algorithm :
1. In D, compute the largest graph Sap

max such that Sap
max is a subgraph of Gap,

and such that there is a node (Sap
max, G′, G′′, E) in D.

2. Let S′ap
max be the extension of Sap

max in Gap.
3. If S′ap

max is isomorphic to Gap then let S′ap
max be H ′ where (S′ap

max, H ′, H ′′, E)
is in D, otherwise, add S′ap

max into D.
4. Let S′′ap

max = E(Gap − S′ap
max).

5. Add S′′ap
max into the decomposition.

6. Add (Gap, S′ap
max, S′′ap

max).
In the case of graph 6 of Fig. 3, the largest subgraph is graph 5. Now, graph

5 is extend in graph 6. The result of this extension if graph 9, that is put in the
decomposition. The best subgraph of graph 9 is again graph 5 (because graph 9
is an extension of graph 5 that we have just computed), so that graph 4 (a son of
graph 5) becomes the best candidate. Its extension is graph 10 which then has
to be put into D. The whole run of the method leads to Fig. 3, which is more
complex, but which fully integrates the external information.

3.4 Analysis of the Algorithm Complexity

This section analyses the complexity of the matching process which takes place
after the decomposition itself 2. The worst case complexity of the error-correcting
subgraph isomorphism detection is O(Lmnn3) where L is the number of model
graphs, n is the number of vertices of the model graphs, and m is the number
of vertices of the input graph (i.e. the number of 3-D features extracted on the
images). In our case, since we know the match for |V ap| vertices, we only have
to match q = n − |V ap| vertices for a graph, so that the worst case complexity
of the first approach is O(Lmqq3). In the second approach, in the worst case,
2 The matching process is not described here, because it is a direct extension of the

standard error-correcting subgraph isomorphism computation method.
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we also may have to compute all the matchings from the models to the data.
In particular the neighborhood between the strict vertices and the AP-vertices
may not be useful because the edit distance functions consider edge deletion as
a possible edition : in the case of an edge deletion of a strict-AP edge there is
no gain because the information held by the AP-vertices is lost.
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Fig. 3. Example of an efficient decomposition

However, if we do not use the edge deletion as a possible edition (this happens
in our application), then let us consider a particular strict vertex vi. If vi is not
neighbor of an AP-vertex, then it could be matched with any input vertex. But if
it is a neighbor of at set of AP-vertices, then the possible candidates for a match
with vi is the set of input vertices which are neighbors of the corresponding input
vertices. Let’s assume that mi is the size of this set of vertices, then the worst
case complexity of the efficient approach is O(Lm1 . . . mqq

3). Depending on the
values of mi, this makes the combinatorics fall drastically down.

4 Application

The results of this study have been applied in the field of building reconstruction,
which is of great importance (see [2], [7], [8] for some particular automatic or
semi-automatic approaches, and [4], [12] for some collections of articles).

We are working on high-resolution aerial grey-level stereo-pairs (resolution
: 8cm / pixel). The building areas are extracted with an automatic procedure
which focuses on the raised objects ([1]). These focusing areas are derived from
a Digital Elevation Model (a regular grid representing the topographic surface),
see Fig. 4 .

After this focusing step, 3-D features are extracted from the images and the
DEM. We work with 3 types of features : 3-D lines segments, 3-D planar regions
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(see [5]), and 3-D facades. The procedures which compute these features will
not be described here. As an example, Fig. 4 (on the right) shows the 3-D line
segments.

After the detection step, the input graph GI is built : an edge (v1, v2) is
added if v1 and v2 have a geometric property (such as parallelism, intersection).

Fig. 4. Initial data : Left Image, Right Image, DEM, and 3-D line segments

The models describe the features we are looking for : their edges hold the
geometric properties typical to 3D objects. The matching process is then initia-
ted. It identifies the 3-D features which contribute to the final reconstruction of
the object. This procedure has already been described in [6].

Here, we will use 3 different models (see Fig. 5). On this figure, the numbers
under each model summarize the size of the model : they correspond to the
number of vertices for each type of feature : linear, planar, and facade. The
fourth number is the total number of vertices.

The first model (A) is a partial gabbled roof (one side is missing) : this model
has 2 surfaces, 5 line segments (1 ridge, 2 gutters, 2 gabled gutters), 3 facades.
B is a L-shaped building. C is a L-shaped building with a bevelled corner. It has
26 vertices, which leads to a very combinatoric problem.

The number of vertices for the input graph are : 40 linear vertices, 16 facades,
13 surfaces.

To avoid combinatoric problems for the complex models such as C, we expe-
rimented the method and used partial matches. These experiments are summa-
rized in Tab. 1. In this table the rows correspond to the model used, the amount
of external information, the CPU time needed with the initial approach, and the
CPU needed with the efficient improved approach (the procedure was run on a
standard 333 MHz PC).

First, the case 1 shows the CPU times needed for matching model A with the
data. It is very low. Second, case 2 shows the matching for a L-shaped (model
B) building. The CPU needed is still reasonable. Third, in case 3, the matching
for model C leads to a high cost (1 hour), which is not reasonable.

Thus, the experiment 5 is a match of model C with 2 a priori vertices, na-
mely the 2 planar regions found during the match of model A : this external
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information is helpful and makes the CPU times fall down. One should notice
that the external information in the described case is not a user input but a
computed data after a previous match. In case 6, we used the four planar faces
extracted from the case 2, which leads to a very low computation time.

After the matching step, the shape of th building is fully reconstructed. The
results of the reconstructions of model B and C are presented in Fig. 5 (right).
Since model C is a refinement of model B, the use of external information during
the match seems useful in a coarse-to-fine approach.

Case Model External information CPU 1 CPU 2
1 partial gabble roof none 0.5 s
2 L building none 5 s
3 L building with bevelled corner none 1h
4 L building 2 planar vertices 5s 1.7s
5 L building with bevelled corner 2 planar vertices >1h 22 s
6 L building with bevelled corner 4 planar vertices 1h 10 s

Table 1. CPU Times for the matching

A
(5, 2, 1, 10)

B
(14, 7,5, 26)
C

(12, 6, 4, 22)

Fig. 5. Left : The 3 tested models. Right : Reconstructions for model B and C.

Future Work and Trends

The objective of this research project is to select automatically the most suitable
model to describe a given scene. The simplest way would be, to generate a
database of models through the use of rules, to match the models, and then
to select the most relevant one. However, once the models are generated, the
computation times would be too important, especially for the most complex
ones. For this reason, we start by matching partially the models first, and then
we use the gathered information to extend the models, as shown in the previous
section.

Furthermore, the procedure shown here seems to be suitable for a coarse to
fine strategy : after having matched a coarse model (such as model B), a better
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model can be tested on the input data (such as model C). The main interest here
is to avoid testing model C (which is more complicated) if model B is already
known to misfit.

5 Conclusion

We have shown that the error-correcting subgraph isomomorphism detection
procedures can be extended in an efficient way to integrate some external infor-
mation. This extension uses an important change in the data structure involved
in the method. The method proposed tends to propagate the external infor-
mation as long as possible during the recursive construction of this structure.
Due to this propagation, the resulting matching procedure becomes really more
efficient than a naive one, which is ineffective.

This framework is applied in the field of 3-D building reconstruction from
aerial stereopairs, where it shows promising results, because it is possible to
match partial models and use the results of the matches to match more complex
models.
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