
A Class of Solvable Consistent Labeling
Problems

Boris Flach1 and Michail I. Schlesinger2

1 Institute of Artificial Intelligence, Dresden University of Technology,
D-01062 Dresden, Germany, Phone +49 351 4638268, Fax +49 351 4638369

bflach@ics.inf.tu-dresden.de
2 International Centre of Information Technologies and Systems, National Academy
of Science of Ukraine, prospect Academica Gluchkova, 40, 252022 Kiev 22, Ukraine

schles@image.kiev.ua

Abstract. The structural description ansatz often used for representing
and recognizing complex objects leads to the consistent labeling problem
or to some optimization problems on labeled graphs. Although this pro-
blems are NP-complete in general it is well known that they are easy
solvable if the underlying graph is a tree or even a partial m-tree (i.e
its treewidth is m). On the other hand the underlying graphs arising in
image analysis are often lattices or even fully connected. In this paper we
study a special class of consistent labeling problems where the label set
is ordered and the predicates preserve some structure derived from this
ordering. We show that consistent labeling can be solved in polynomial
time in this case even for fully connected graphs. Then we generalize
this result to the “MaxMin” problem on labeled graphs and show how
to solve it if the similarity functions preserve the same structure.

1 Introduction

Structural description is one of the most general methods for representing and
recognizing complex real world objects and thus very popular in image analysis.
Especially attributed or labeled graphs are often used as an effective means
of structural description: A complex object is composed of primitives which
have to fulfil some neighbourhood constraints. The primitives are represented by
labels attached to the vertices of a graph whereas the constraints can be thought
as predicates on pairs of labels and are attached to the edges of the graph.
Recognition of objects modelled in this way could be divided into two stages:
First, some e.g. local features are measured in order to obtain the primitives
located in image fragments corresponding to the graph nodes r. Of course we
cannot expect to have unique answers by local measurements. So the answer
will be for instance a subset of possible primitives or some similarity function
for each vertex. In the first case the next stage of recognition is equivalent to a
consistent labeling problem, in the second case – to some optimization problem
on labeled graphs.

A well known and popular example of this kind of recognition are Hidden
Markov Models used in speech recognition, where primitives are phonemes or
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phoneme groups. Obviously almost all problems can be solved in linear time for
these models because the underlying graph is a simple chain [8]. In contrast, the
situation in image analysis is much harder: the graphs under consideration are
often lattices or even fully connected. In general consistent labeling and most
optimization problems on labeled graphs1 are NP-complete. Therefore all known
algorithms for solving these problems in the general case (i.e. without further
assumptions) scale exponentially with the number of vertices of the graph [3].

The aforementioned problems are easy solvable if the underlying graph is
a tree or even a partial m-tree (i.e. its treewidth is m): then algorithms of
complexity n |K|m+1 are known, where K is the set of used primitives and n is
the number of vertices of the graph [6,1]. On the other hand these algorithms
are not very useful in image analysis: an n × n rectangular lattice is a partial
n-tree!

Despite the importance of the consistent labeling problem its long history
lacks attempts to investigate how its complexity depends on used predicates i.e.:
Do there exist classes of predicates, so that the aforementioned problems are
solvable in polynomial time even for fully connected graphs?

In this paper we study a special class of consistent labeling problems where
the label set K is ordered and the predicates preserve some structure derived
from this ordering.2 We show that consistent labeling can be solved in polynomial
time in this case even for fully connected graphs. Then we generalize this result
to the “MaxMin” problem on labeled graphs and show how to solve it if the
similarity functions preserve the same structure.

2 Consistent Labeling and Related Optimization
Problems

In this section we introduce a formal notion of the consistent labeling problem
and some related optimization problems arising in image analysis for the sake of
completeness and self consistence of this paper.

Let G = (R, E) be an undirected graph with vertices R and edges E. Let
K be a finite set of labels (often called symbols in the context of structural
recognition). A labeling or symbol field is a mapping y : R 7→ K assigning a
symbol y(r) to each vertex r ∈ R. The set of all symbol fields is denoted by
A(R, K).

Neighbourhood constraints are represented by predicates χij : K × K 7→
{0, 1} attached to edges (ri, rj) ∈ E of the graph. These predicates define allowa-
ble pairs of symbols on the edges: Only symbol pairs (k1, k2) with χij (k1, k2) = 1
are allowed on edge (ri, rj) ∈ E. The field of all predicates χij(., .) attached to

1 From our point of view the stochastic relaxation labeling introduced by Hummel,
Rosenfeld and Zucker [4,5,2] does not represent a realistic optimization problem,
because they redefine consistence by some particular kind of local stability after
transition to real valued similarity functions.

2 First results on a narrower class were reported in [7].
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the edges (ri, rj) ∈ E of the graph G is denoted by χ̂ and called a local conjunctive
predicate (LCP) on G.

A symbol field y ∈ A(R, K) is a solution of χ̂ if

χij [y(ri), y(rj)] = 1 (1)

for each edge (ri, rj) ∈ E. It is of course very easy to verify whether y is a solution
of χ̂ by proving (1) for each edge of G. In contrast the consistent labeling problem
is much harder: We have to prove whether a given χ̂ has solutions. A typical
situation in image analysis is that given G and χ̂ describing the model, local
measurements “narrow” the set of possible symbols for each vertex: We obtain
a subset Ki ⊂ K for each ri ∈ R and have to prove whether χ̂ has solutions y
where y(ri) ∈ Ki, ∀ri ∈ R.

Often we are in a “weaker” situation where local measurements give similarity
values for symbols or symbol pairs, expressing fuzzy subsets rather than sharp
subsets. In this case the predicates χij are replaced by real valued functions
fij : K × K 7→ R and some optimization problem is to be solved. Often it is the
MaxMin problem:

max
y∈A(R,K)

min
(ri,rj)

fij [y(ri), y(rj)] (2)

i.e. find the symbol field where the smallest similarity on some edge is as big as
possible. Another typical problem is to find the symbol field with the highest
sum of similarities:

max
y∈A(R,K)

∑
(ri,rj)

fij [y(ri), y(rj)] . (3)

3 Closed Predicates on Ordered Sets

In this section we introduce the class of closed predicates which then will be used
to form a class of consistent labeling problems. We split the definition of these
predicates into two parts: First, we endow the symbol set K with an additional
structure. Closed predicates are then those which preserve this structure.

Suppose the set K of symbols is ordered. Let U be the system of all intervals
of K i.e. subsets of the type {k ∈ K | k1 6 k 6 k2}. Then U meets the definition
of a hull system as used in universal algebra, because

1. K is an interval, i.e. K ∈ U .
2. U is closed under intersections, i.e. if U , U ′ ∈ U then U ∩ U ′ ∈ U .

Usually subsets which are elements of a hull system, are called hulls or closed
subsets. The closure of an arbitrary subset A is defined as the smallest closed
subset containing A:

Cl(A) =
⋂

{U ∈ U | A ⊂ U}
Examples of other hull systems are closed sets of a topological space or convex
sets of a vector space. Our special hull system has another striking property:
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3. Whenever B ⊂ U is a set of intervals with pairwise nonempty intersections
i.e. U∩U ′ 6= ∅, ∀U , U ′ ∈ B, then their intersection is not empty:

⋂
U∈B U 6= ∅.

The structure of this hull system is inherited to every subset of K: Let K1 ⊂ K
be an arbitrary subset, then

UK1 = {U ′ ⊂ K1 | ∃U ∈ U : U ′ = U ∩ K1}
is a hull system fulfilling 1–3.

Let χ : K×K 7→ {0, 1} be a predicate on K×K. We interprete χ equivalently
as a subset χ ⊂ K × K: {(k1, k2) | χ(k1, k2) = 1}. A third equivalent meaning is
to interprete χ as a relation on K. Therefore the set of all predicates on K × K
can be endowed with the operations χ ∩ χ′ and χ ◦ χ′, where

(χ ◦ χ′) (k1, k2) = 1 ⇔ ∃ k3 : χ(k1, k3) = 1 and χ′(k3, k2) = 1

denotes multiplication of relations.
Now we are ready to define the class of closed predicates, i.e. predicates pre-

serving the structure of the hull system U . Let π1 and π2 denote the projections
from K × K onto the first resp. second component: If M ⊂ K × K, then

π1(M) = {k1 | ∃k2 : (k1, k2) ∈ M} and π2(M) = {k2 | ∃k1 : (k1, k2) ∈ M} .

Let χ be a predicate on K×K considered as a subset with K1 = π1(χ) and K2 =
π2(χ). Then χ induces the mappings Fχ : P(K1) 7→ P(K2) and F−1

χ : P(K2) 7→
P(K1) where P(K) denotes the power set of K. They map subsets of K1 ⊂ K
on subsets of K2 ⊂ K and vice versa. These mappings are defined as follows:

Fχ(V1) = π2 [ (V1 × K2) ∩ χ ] and F−1
χ (V2) = π1 [ (K1 × V2) ∩ χ ]

where V1 ⊂ K1 and V2 ⊂ K2 (see Fig. 1). Please remark that F−1
χ means

the inverse of Fχ only if it is invertible. Nevertheless V1 ⊂ F−1
χ (Fχ(V1)) and

V2 ⊂ Fχ(F−1
χ (V2)) hold for every χ and every V1 ⊂ K1 and V2 ⊂ K2.

Definition 1. Let χ be a predicate on K × K where K is ordered and K1 =
π1(χ), K2 = π2(χ). Then χ is called closed if Fχ and F−1

χ map hulls of UK1 on
hulls of UK2 and vice versa.

Example 1. Let |K| = 4. The predicate depicted left in Fig. 2 is closed, whereas
that on right is not.

Lemma 1. Let K be ordered and χ, χ′ be closed predicates on K × K. Then
χ ∩ χ′ and χ ◦ χ′ are closed predicates.

Proof. In order to simplify subsequent steps of the proof we remark that inters-
ections of closed predicates with product subsets are again closed predicates:
Let χ be a closed predicate on K × K and K1, K2 ⊂ K. Then the predicate
χ ∩ (K1 × K2) is closed.
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Fig. 1. Illustration of the mapping Fχ: The intersections of the dotted lines with the
components depict the borders of K1 = π1(χ) and K2 = π2(χ). The vertical grey bar
depicts V1 × K2. Its intersection with χ projected on K2 gives Fχ(V1).

Fig. 2. Two predicates on K × K depicted as subsets. The left is closed, the right is
not.

Let χ′, χ′′ be closed predicates on K × K and χ = χ′ ∩ χ′′. Without loss of
generality we assume that π1(χ) = π2(χ) = K. Let F , F ′ and F ′′ denote the
assotiated mappings from P(K) into P(K).

Let us assume now that χ is not closed. Then there must be an interval
A1 ⊂ K, so that A2 = F (A1) is not closed. Let k be an element of Cl(A2) not
contained in A2 i.e. (A1 × k) ∩ χ = ∅. We consider the sets

B1 = F ′−1(k) = π1 [(K × k) ∩ χ′] and C1 = F ′′−1(k) = π1 [(K × k) ∩ χ′′] .

According to our assumptions it follows then, that

− B1 and C1 are nonempty and B1 ∩ C1 6= ∅.
− Cl(A2) ⊂ F ′(A1) holds and therefore B1 ∩ A1 6= ∅. Similarly C1 ∩ A1 6= ∅.

Because A1, B1 and C1 are closed (i.e. intervals) and hence A1 ∩ B1 ∩ C1 6= ∅,
k ∈ A2 follows on contradiction. Hence χ = χ′ ∩ χ′′ must be closed.

Let us prove now that χ = χ′ ◦ χ′′ is closed whenever χ′ and χ′′ are closed.
Without loss of generality we assume that π1(χ′) = π2(χ′′). But in this case

F (A) = F ′′ (F ′(A)) and F−1(A) = F ′−1(
F ′′−1(A)

)
and therefore χ is closed. ut
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4 Consistent Labeling with Closed Predicates

In this section we consider LCP with closed local predicates. We will show that
consistent labeling for such LCP can be solved in polynomial time without any
restrictions on the underlying graph. We present a parallel algorithm that solves
the problem and generates a weak description of the solution set. A sequential
version of this algorithm is presented as well.

Theorem 1. Let G = (R, E) be a fully connected graph with n vertices and K
be an ordered symbol set. The consistent labeling problem for a LCP χ̂ on G can
be solved in polynomial time if χ̂ is closed i.e. all local predicates of χ̂ are closed.

Proof. Consider the following iterative algorithm:3

χ
(0)
ij = χij

χ
(t+1)
ij = χ

(t)
ij ∩

[ ⋂
k 6=i,j

(
χ

(t)
ik ◦ χ

(t)
kj

)]
(4)

The series of LCP χ̂(t) reaches a fixpoint χ̂∗ after at most n2|K|2/2 iterations.
This is because there are n2/2 predicates each one with |K|2 binary entries and
after each iteration at least one of this n2|K|2/2 entries changes from 1 to 0
(They never change from 0 to 1).

The solution set of χ̂ is nonempty if every χ∗
ij is nonempty in the fixpoint.

If at least one χ∗
ij is empty, then χ̂ has no solutions. This is true because each

solution of χ̂(t) is also a solution of χ̂(t+1). Hence χ̂ has solutions only if χ̂∗ has
solutions.

Let us consider the situation where all χ∗
ij are nonempty. Then all sets π1(χ∗

ij)
are nonempty. Furthermore, these sets coincide for fixed i: Suppose there is a
pair j, k for which π1(χ∗

ij) 6= π1(χ∗
ik). Then either

χ∗
ij ∩ [

χ∗
ik ◦ χ∗

kj

] 6= χ∗
ij or χ∗

ik ∩ [
χ∗

ij ◦ χ∗
jk

] 6= χ∗
ik .

But this contradicts (4) which is an equality for the fixpoint. Hence these sets
coincide for each i and we denote them by K∗

i = π1(χ∗
ij). So far we have shown

that if χ̂ and hence χ̂∗ have any solution y ∈ A(R, K) then y(ri) ∈ K∗
i holds for

all i.
In order to prove the existence of solutions we will show that each solution

of χ̂∗ on a subgraph of G can be extended to a solution on the whole graph G:
Whenever G1 = (R1, E1) is an induced subgraph of G and y ∈ A(R1, K) is a
solution of χ̂∗ on G1, then y can be extended to a solution of χ̂∗ on G. It suffices
to prove this for the case that R1 = R \ r1, i.e. G1 is obtained from G by deleting
the vertex r1. Let y ∈ A(R1, K) be a solution of χ̂∗ on G1, i.e.

y(ri) ∈ K∗
i , ∀ri ∈ R1 and χ∗

ij

[
y(ri), y(rj)

]
= 1, ∀ri, rj ∈ R1 . (5)

3 See Remark 1 for a more lucid explanation of the algorithm.



468 B. Flach and M.I. Schlesinger

Let Ui ⊂ K∗
1 be the sets

Ui = π1

[(
K∗

1 × y(ri)
) ∩ χ∗

1i

]
.

By Lemma 1 every χ̂(t) and therefore χ̂∗ are closed. Hence the sets Ui are hulls
of UK∗

1
. Let us assume that y cannot be extended to a solution on G, then⋂

i 6=1

Ui = ∅ .

Hence there must be a pair of vertices i, j 6= 1 for which Ui ∩ Uj = ∅ holds. But
then

χ∗
ij ∩ [

χ∗
i1 ◦ χ∗

1j

] 6= χ∗
ij ,

which contradicts the fixpoint equality. Thus y can be extended to a solution
on G. ut

Remark 1. In order to give a more lucid interpretation of (4) we start with a
closer look on the expression

χij ∩ (
χik ◦ χkj

)
.

It represents a new predicate on the edge (ri, rj) with the following property: A
pair of symbols (k1, k2) is allowed by this predicate only if

1. It is allowed by χij .
2. There is at least one k3 so that (k1, k2, k3) is a solution on the triangle

(ri, rj , rk).

Hence (4) can be interpreted in the following way: For the edge (ri, rj) and the
current predicate χ

(t)
ij we check whether each pair of symbols (k1, k2) allowed by

χ
(t)
ij can be extended to an solution on each triangle (ri, rj , rk) containing the

edge (ri, rj). If not, this symbol pair is not allowed by χ
(t+1)
ij . Therefore in the

fixpoint each symbol pair allowed on a edge can be extended to a solution on
each triangle.

At first glance it may seem that this condition is sufficient for the existence of
solutions in the general case (i.e. if K is not necessarily ordered and the predicates
are not necessarily closed). Therefore we give here a simple counterexample.
Suppose we try to color a fully connected graph with four vertices (tetrahedron)
with three colors. It is obviously impossible. But the initial predicates – the colors
of two vertices connected by an edge must be different – remain nonempty and
stable by applying (4).

Remark 2. The proof of Theorem 1 shows in particular that algorithm (4) gives
more than only a “yes” or “no” answer whether χ̂ has solutions: The sets K∗

i

describe the solution set in some weak sense. For each k ∈ K∗
i there is at least
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one solution y with y(ri) = k. And more generally, each solution on a subgraph
G′ ⊂ G fulfilling (5) can be extended to a solution on G.

The same result can be obtained using the following sequential algorithm.
This algorithm executes n − 2 steps (n = |R|). At each step a vertex ri is
removed from the actual graph Gi and the current LCP χ̂(i) is replaced by a
modified LCP χ̂(i+1) on the remaining graph Gi+1. The algorithm performs the
following operations in order to execute the i-th step:

χ
(i+1)
jl = χ

(i)
jl ∩ [

χ
(i)
ji ◦ χ

(i)
il

] ∀j, l > i . (6)

The graph Gn−2 obtained after executing n − 2 steps has two nodes (rn−1, rn)
and one predicate χ

(n−2)
n−1n . The LCP χ̂ has solutions on G if and only if χ

(n−2)
n−1n is

nonempty. In this case we can choose any solution of χ
(n−2)
n−1n on Gn−2 and extend

it step by step to a solution of χ̂ on G. It is easy to prove the existence of such
an extension by slightly modifying the proof of Theorem 1. The complexity of
the algorithm is less than n3|K|3.

5 The MaxMin Problem for Closed Similarity Functions

The consistent labeling problem considered so far assumes that symbol pairs
on neighbouring vertices have to fulfil some binary constraints. There are many
applications where symbol pairs are “ranked” by real and not boolean numbers
and local predicates are replaced by real valued functions fij : K × K 7→ R

associated with the edges (ri, rj) of G. The MaxMin problem is then

max
y∈A(R,K)

min
(i,j)

fij

[
y(ri), y(rj)

]
. (7)

We will show how to generalize the results obtained for consistent labeling in
order to solve this problem. This is possible if all functions fij fulfil a closeness
property.

Let Bεf be the binarization of a function f with threshold ε:

(
Bεf

)
(k1, k2) =

{
1 if f(k1, k2) > ε
0 otherwise .

By binarizing real valued functions fij we obtain predicates on K × K. Let us
assume that K is ordered and binarizations of all fij are closed predicates for
each threshold ε. Then the MaxMin problem can be solved as follows:

1. Choose a threshold ε and binarize all fij : χij = Bεfij .
2. Solve the consistent labeling for χ̂.
3. If χ̂ has solutions, then increase ε, else decrease ε. Go to 1.

This algorithm is not very “nice” and the question arises whether it is possible
to “commute” binarization and consistent labeling. This is indeed possible. In
order to verify this we use the following operations on functions f : K ×K 7→ R :[

f ⊕ g
]
(k1, k2) = min

[
f(k1, k2), g(k1, k2)

]
[
f ⊗ g

]
(k1, k2) = max

k
min

[
f(k1, k), g(k, k2)

]
.
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It is easy to prove that:

f, g@ > ⊕ >> f ⊕ g

@V BεV V @V BεV V

Bεf, Bεg@ > ∩ >> (Bεf) ∩ (Bεg) = Bε(f ⊕ G)

and
f, g@ > ⊗ >> f ⊗ g

@V BεV V @V BεV V

Bεf, Bεg@ > ◦ >> (Bεf) ◦ (Bεg) = Bε(f ⊗ G)

are commutative diagrams. This leads to the following iterative algorithm solving
(7)

f
(0)
ij = fij

f
(t+1)
ij = f

(t)
ij ⊕

[⊕
k

(
f

(t)
ik ⊗ f

(t)
kj

)]
(8)

It is clear that this algorithm reaches a fixpoint: f
(t+1)
ij = f

(t)
ij ∀(i, j). It follows

from (8) that
max
ki,kj

[
f∗

ij(ki, kj)
]

= c ∀(i, j)

holds for the fixpoint f∗, where c is the optimum of (7). Choosing the the sets

K∗
i = {ki | f∗

ij(ki, kj) = c}
we obtain the solution of (7) as described in the proof of Theorem 1.

Remark 3. As well as in case of consistent labeling we can solve (7) equivalently
by an sequential algorithm. Both algorithms coincide up to substituting (6) by

f
(i+1)
jl = f

(i)
jl ⊕ [

f
(i)
ji ⊗ f

(i)
il

]
.

Again the complexity is less than n3|K|3.

6 Conclusion

We have shown that consistent labeling can be solved in polynomial time on
fully connected graphs if the symbol set is ordered and the local predicates are
closed, i.e. preserve a structure derived from the ordering. These results were ge-
neralized in order to solve an important optimization problem on labeled graphs
– the MaxMin problem. It is also solvable in polynomial time if its similarity
functions preserve the aforementioned structure. Whether assumptions of this
kind are sufficient in order to solve another prominent representative of opti-
mization problems on labeled graphs – maximization of the sum of similarities
(3) – remains an open and very intriguing question.

Applications using the obtained results are subject of forthcoming publicati-
ons.
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