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Abstract. This paper develops a Bayesian mixture model approach to
discrimination. The specific problem considered is the classification of
mobile targets, from Inverse Synthetic Aperture Radar images. Howe-
ver, the algorithm developed is relevant to the generic classification pro-
blem. We model the data measurements from each target as a mixture
distribution. A Bayesian formalism is adopted, and we obtain posterior
distributions for the parameters of our mixture models. The distributi-
ons obtained are too complicated for direct analytical use in a classifier,
so a Markov chain Monte Carlo (MCMC) algorithm is used to provide
samples from the distributions. These samples are then used to make
classifications of future data.
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1 Introduction

This paper describes a Bayesian mixture model approach to discrimination[14].
The generic discrimination problem that we consider is one where we are given a
set of training data consisting of class labelled measurements (and possibly some
unlabelled measurements), and then want to assign a previously unseen object
to one of the classes, on the basis of the measurements made of that object.
Specifically, in this paper, we illustrate the approach by considering automatic
target recognition (ATR) of Inverse Synthetic Aperture Radar (ISAR) images
from 3 main classes of mobile targets.

The mixture model approach to ATR aims to initially provide, for measure-
ment data x, and classes j, estimates of the class-conditional probability densities
of the data, p(z|j). We can then produce estimates for the posterior probabilities
of class membership, p(j|z), using Bayes’ theorem, p(j|z) o p(x|j)p(j), where
p(j) are the prior class probabilities.

Estimating the posterior probabilities of class membership offers a number of
advantages over producing class membership decisions only. These advantages
include giving a measure of confidence for our class predictions, and the ready
ability to combine the probabilities with additional information, such as intel-
ligence reports. Furthermore, since after classifying a target we need to decide
upon a course of action, we can incorporate the probabilities into a multilevel
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model that reflects the whole decision making process. For instance, by con-
sidering the expected posterior loss of decisions, we can take into account the
different costs involved in making a classification.

Estimation of the class-conditional probability densities, p(x|j), is complica-
ted by the high-dimensionality of our radar target data. Non-parametric methods
of density estimation, such as kernel-based methods, would require unrealisti-
cally large amounts of training data for accurate density estimates|[13], while
parametric methods, such as a simple Gaussian classifier, might impose a speci-
fic form on the density that is too rigid for the problem. Mixture models provide
a compromise between the two methods; attempting to provide enough flexibi-
lity to accurately estimate the densities, but imposing enough structure that we
can train with realistic amounts of data.

Further motivations for the mixture model approach[415] in this application
arise from the following observations:

1. The probability density function of the radar returns for a single target can
be expressed as an integral over the angle of illumination of a conditional
density of a simple form (e.g. Gaussian, gamma), with the mixture distribu-
tion arising as the approximation of this integral by a finite sum.

2. Additional effects, such as robustness to offsets in position, and amplitude
scaling, can be readily incorporated into such a model.

Previous work[15] uses the Expectation-Maximisation (EM) algorithm to
estimate the parameters of class distributions that are gamma mixture models.
Hastie and Tibshirani[d] use an EM-algorithm on class distributions that are
Gaussian mixture models, making the assumption of a common covariance ma-
trix across all the mixture components. Laskey[I(] formulates a Bayesian ap-
proach to modelling classes as mixtures of Gaussian distributions, but uses the
EM algorithm to estimate the maximum a-posteriori parameter values only. The
approach presented here is a generalisation of the work of Lavine and West[IT],
who look at a Bayesian approach to classification, where each class is distributed
as a single multivariate Gaussian.

2 The Bayesian Mixture Model Approach

2.1 Introduction and Notation

We consider classification of an object into one of J distinct classes, on the basis
of a d-dimensional data measurement of that object. The probability density
function for the d-dimensional data, x, can be written as:

J
p(z) = > O;p(alj) (1)

where § = (64, ...,07) is a vector of the prior classification probabilities for each
class, with components satisfying ijl 0; =1, and p(x|j) is the class-conditional
probability density for data from class j.
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The class-conditional densities are also modelled by mixture distributions,
with the j-th class having R; components, which we refer to as subclasses:

R;
plali) =Y map(alir) . (2)

mj = (mj1...,7jR,) represents the prior subclass probabilities within class j;
i.e. m; is the mixing probability for the r-th subclass of the j-th class, satisfying
Efil mjr = 1. We denote the complete set by 7 = {m;,1 < j < J}.

The distribution p(z|j, ) represents the probability density of the data within
a given subclass 7, of a class j. We make the initial assumption that we have
independence between the components of the data vector x, conditioned on the
class and subclass. For ISAR images this corresponds to making an assumption
of independence between the Radar Cross-Section fluctuations of any pair of
pixels[6]. Note that this independence assumption for each component does not
extend to an independence assumption for the mixture distribution as a whole.
We take Gaussian forms for these distributions, with means f;,.; and variances
0]2% ;» where [ = 1,...,d. For a given class and subclass these are represented by
the vectors p;, and X ,. The sets of all means and variances are represented
by @ and X', respectively.

We have n observed d-dimensional independent training data samples y =
{y1,...,Yn}, and introduce two types of classification variable for these data. The
overall class allocation variables are denoted Z = (Z1, ..., Z,), and the subclass
classification variables, z = (z1,...,2,). These are such that (Z; = j,z; = r)
implies that the observation indexed by i is modelled to be drawn from subclass
r of class j. Z; is known for our labelled training data, but unknown otherwise.
z; will always be unknown, and is physically unimportant.

2.2 Our Approach

The Bayesian approach to estimating the parameters of mixture models offers a
number of advantages over methods based on maximum likelihood, such as the
EM algorithm. Not least is the elimination of the problem of unboundedness of
the likelihood function, that is frequently ignored in maximum likelihood tech-
niques. There are also the standard arguments in favour of Bayesian techniques,
such as the ability to cope with additional prior information, perhaps elicited
from expert knowledge, and the production of confidence intervals for the para-
meters estimated. There is also the potential for using hyper-parameters in our
prior distributions for the mixture model parameters, to account for differences
between training and test data, such as variations in the vehicle fit, or different
types of vehicle from the same generic class.

In the work presented here, the number of components to use in each class
mixture distribution, has still to be addressed in a full Bayesian manner. At
the moment we hold the number of subclasses fixed throughout the algorithm.
Reversible jump Markov chain Monte Carlo techniques[I2] would be extremely
complicated due to the high-dimensionality of our data.
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2.3 Model Details

Prior distributions. The complete prior distribution for the mixture model
parameters is:
J
plp, 2,0,7) = p(u, 2)p(0) [ ] p(r;) - (3)

j=1

As well as making an assumption of independence between the components
that make up the vectors p;, and X;,, we also make the assumption that
(j,r, Xjr) are mutually independent over all classes and subclasses. The com-
ponents ft; ,; and a ', are given independent normal-inverse gamma priors:

(irtl0F 1) ~ N (000,05 0/ hiri0) s 05ny ~1/GaWjri0, Vieio) 5 (4)

for fixed means m; 0, precision parameters h;,; o, degrees of freedom v; ;o
and scale parameters Vj ;0. The inverse gamma distribution is parameterised
so that the expectation is Vj i 0/(Vjri0 — 1).

The values of these hyper-parameters are partially chosen with the aid of the
training data, and for our specific application also the known angles of illumina-
tion for the labelled data, giving a combination of priors from expert knowledge,
and data dependent priors.

We further assume independence of the priors for # and 7;, j =1,...,J. For
both cases we take Dirichlet priors, with 6 ~ D(ao), where ag = (a1,0,...,a70);
and 7; ~ D(bj0), where bj o = (bj1,0,...,bjR;,0). The hyper-parameters ag and

bj.0 are held fixed.

The posterior distribution. The likelihood function for the problem is writ-
ten:

(y|,u,2 9 7T H Ze ZWJTHNyzlnu]rla ]rl) . (5>

=1 | j=1 r=1

Bayes’ rule gives the following relationship between the posterior, prior and
likelihood:

p(p, 2,0, mly) o< p(ylp, 2,0, m)p(p, X,0,7) , (6)

which due to the multiplication of summations in the likelihood function, gives
a posterior distribution on which exact analytical inference cannot be made.

In particular, calculation of the normalisation constant is computationally
infeasible, as are calculations of various statistics of interest, such as the means
and variances of the parameters. To maintain a full Bayesian approach to the
problem, we propose to draw samples from the posterior distribution. Since we
cannot sample directly from the distribution, we use a Markov chain Monte
Carlo (MCMC) algorithm[7], known as a Gibbs sampler|[2].
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3 MCMC Algorithm

3.1 General

The Gibbs sampler is a means of sampling from a distribution that is too compli-
cated for direct sampling, but which is such that we can split the variables into
conditional distributions, each of which can be sampled from. To make use of the
Gibbs sampler in our problem, we extend our set of random variables (u, X, 7, 6)
to include the allocation variables (Z, z), and sample from the posterior distri-
bution p(u, X, 7,6, Z, z|ly). To do this we divide into three distinct groupings,
(1, X), (m,0) and (Z, z), obtaining posterior probabilities for each group, that
are conditional on the other two groups.

3.2 Conditional Distributions

The mixture components. Given the allocation variables (7, z), we can make
use of the fact that the data y consist of classified independent samples from the
k= Ry +---+ Rj subclasses, giving:

p(u, Xy, 0,7, Z,z) = p(p, Xy, Z, 2) . (7)

We define G;, = {i|(Z; = j,zi = r)}, the set of indices of data elements
that have been assigned to subclass r of class j, and g, to be the cardinality of

— _ 1 _ = 2
Gjr. We also define g1 = 7= icq, Yt and Sjri = Dicq, (Wit = Yjra)*

Our independent normal-inverse gamma priors then give rise to independent
normal-inverse gamma posterior distributions[4l5]:

151l (0F 059, Z,2) ~ N (myri, 05,0/ hjrt) (8)
and:
0?7,.7l|(y,Z,z) ~1/Ga(vjr1, Viri) (9)
where:
hjri=Nhjri0+gir
Mg = (N 1,0Mge0,0 + 95,0 Yiet) /P
Vil = Virl0 +9jr/2
Viea = Vipao+ Sirt/2+ Wjra09irUirg — Mjr10)°/(2h 1) - (10)

The allocation probabilities. Given the allocation variables (Z, z), the class
and subclass allocation probabilities, (6, 7), will be independent of (y, u, X).
Thus we have:

p(O0,7ly, . X, Z, z) = p(0| Z)p(n|Z, 2) . (11)
For the class allocation probabilities, defining g; = Zﬁl gj,r, we have:
0|Z ~ D(a), where a = (a1,...,ay), with a; =g, +a;0 . (12)

For the subclass allocation probabilities we obtain the following independent
distributions, for j =1,..., J:

Tl'j‘(Z, Z) ~ D(bj) where bj = (bj,la ey ij%j)7 with bj,r =Gj,r + bj,r,O . (13)
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The allocation variables. Since the data y; are conditionally independent
given (u, X, 0, 7), the pairs of allocation variables (Z;, z;) are conditionally inde-
pendent given (y, u, X, 0, 7), so

n

p(sz‘yvﬂv 230371—) = H {p(ZZ|Zzayu;u'7 27977)p(zi|yi7/~’47 279771—)} . (14)
i=1

If Z; is unknown for the i-th data vector, we have:

R;
p(ZZ = j|yi7/~La 2797’”) X gj Zﬂjﬂ”p(yi‘ﬂjﬂ“? 2]'»7") ) (15)

r=1

For the subclass allocation variable z;, we have:

p(zl = r|Z7, = j7 Yiy Ky 276771-) X 7Tj,’rp<yi|,uj,r72jﬂ‘) . (16>

3.3 Algorithm Specifics

To start our algorithm, we take initial allocation vectors, Z(©) = (Zfo), el Zr(lo))7
and 2(0) = (zﬁo), ce z,(lo)). Some or all of the elements of vector Z are actually

known, from our labelled training data, in which case we use these known values.
We describe the algorithm in terms of the i-th iteration, which updates the set of
parameters and allocation variables (M(Z D pt-1) gli=1) z(i-1) z-1) (- 1))
from the end of the (i — 1)-th iteration, to (,u(l E(l ,00 o) , @ Z( RIFIOME

1. Draw a sample (p(?, 2®)) from p(p, X|y, 201, 20-D) using @) and ().
This gives an updated set of parameters for the subclass distributions.

2. Sample (%), 7)) from p(8, |y, u®, @, 2= 6=1) using ([[2) and [IF).
This gives an updated set of the class and subclass allocation probabilities.

3. Sample (2@, 2)) from p(Z, 2|y, u», X® 9@ 7)) using (I5) and (I6), gi-
ving an updated set of class and subclass allocation variables. Note that for
our class labelled data, we set the class allocation variables to their known
values, and only re-estimate the corresponding subclass allocation variables.

After an initial burn-in period, during which the generated Markov chain re-
aches equilibrium, the set of parameters (p(?, 2 9@ 7 7® @) can be re-
garded as dependent samples from the posterior distribution p(u, X, 0,7, Z, z|y).
To obtain approximately independent samples we leave a gap, known as the de-
correlation gap, between successive samples (i.e. we only retain a sample every
I-th iteration of the algorithm, where [ is an integer greater than one). If we
are only concerned with ergodic averages, we actually obtain better variances
if we do not sub-sample the output of our Markov chain. However, if storage
of the samples is an issue, we may like to leave a decorrelation gap, so that we
can be sure to explore the full space of the distribution, without having to keep
thousands of samples.



Bayesian Approach to Mixture Models for Discrimination 497

3.4 Classification of the Observations

The training data. We now obtain formulae for the posterior classification
probabilities of the training data (i.e. already observed measurements, y), re-
membering that some of this training data may be unlabelled in class. For not-
ational ease we let D denote the combination of our data measurements y, and
any known class allocations for this data.

Rather than approximating the posterior distributions directly, as follows:

p(Z; = j|D) ~ ZIZ(m)_J : (17)

where N is the number of MCMC samples, we use Rao-Blackwellisation[3] to
provide more efficient estimates; by using an approximation to the posterior
marginalised distribution p(Z|D), based on our MCMC sampled values:

N
1
— E () 32(5)_g(s) 1 (5)
Z|D N port Z|y7/‘l‘ 72I 70 )ﬂ- ) ? (18)
where using ([H) we have:

p(Zi = jlys, 1), 560, S>o<es>27r”pyzw> zEh L (19)
r=1

Future observations. We now consider classifying a previously unseen obser-
vation, yy, by looking at the posterior probabilities:

P(Zg = j|D,ys) < P(Zy = jID)p(ys|D, Zs = j) (20)
where:
N
P(Z; = j|D) = E(0;|D) ~ Z (6,|D, 2 (21)
and:
plys| D, Zy = j) = Zp yslD, Zy = §, 29,2 . (22)
s=1

If we have reason to believe that the spread of future data between the diffe-
rent classes is likely to be different to that in the training data, we can replace
the expressions for P(Z; = j|D) in I with our modified beliefs. We write
p(ys|D, Zy = j, Z), 2(9)) as a mixture distribution:

R;

plys|D, Zp = §, 29,2 =y {plzy =v|D, 2y = j, 2, 2)
r=1

Xp(yle?Zf =J.zf =, Z(S)’Z(s))} ) (23)
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where:
p(zf =r|D, Z; = 5,2, 2)) = E(nj.|D, 2, 2y | (24)

and p(y¢|D,Zy = j,z5 =, Z) 2(9)) is the predictive density, for data drawn
from subclass r of class j, using component distributions determined by the
MCMC sample outputs, (Z(), 2(*)). Some calculations[d], show that this pre-
dictive density is given by a product of independent Student-t distributions,
with the [-th component having QI/J(-:?J degrees of freedom, location parameter

m!®)  and scale parameter \/V,(S) (h§-5) + 1)/(h(.5) p) ). The parameters being

3,0 7ol ,r,l g, U7 g,rl
defined in ([[0) using allocation variables (Z(*), 2(=)).

4 Experimental Results

We illustrate the use of the algorithm on real ISAR data (see Fig.[Il), consisting
of images of vehicles from 3 main types of battlefield target, which we denote
by classes 1, 2 and 3. Our training data consist of approximately equal amounts
of images from each of the 3 classes (about 2000 per class), collected over single
complete rotations of the vehicles, at a constant depression angle. Our test data
consist of 6 sets of approximately 400 ISAR images, collected from single com-
plete rotations of 6 vehicles. Of these, datasets B-hd and B-er are the vehicle
from dataset B imaged at a higher depression angle and with the engines running
respectively, while the remaining sets correspond to different vehicles within the
same generic class type. Unfortunately, we do not have an independent set of
test data for class 2, negating the possibility of obtaining a meaningful single
measure of performance from our test data.

Our ISAR data is, after some initial pre-processing, 38 pixels in range by
26 pixels in cross-range, giving an overall dimensionality of 988. To reduce this
down to a slightly more manageable level, a principal components analysis[14]
has been conducted on the data, and we actually use only the first 35 linear
principal components of each image vector. The algorithm has been run with
12 subclasses per class, to draw 1000 samples with a decorrelation gap of 10
iterations, after a burn-in period of 10000 iterations.

Fig.1. Typical vehicle and ISAR image from our data set.
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Table 2. Classification rates for test

Table 1. Classification rates for trai- datasets.

ning datasets. Data|True|Predicted class

i set |class| 1 | 2 3
Daia ’Il‘rue Piedlc;ed cl;ss B-hd| 1 162.6122.7] 14.8
set |class B-er| 1 |98.6/1.2| 0.2
B 1 199.1106| 0.3
D 1 |71.1]12.5| 16.5
A 2 10.698.2] 1.1
- 00T 05 8 E 1 183.6] 1.7 | 14.7
. . : F 3 17.9|55.2| 36.8
G 3 137.6/26.9| 35.5

Table [ documents the classification rates for the training data, and Table
for the test data. In both cases the classifications have been made by taking
the class which gives the largest posterior probability. A full set of results for
our algorithm, including a treatment of uncertainty in position of the vehicle
in the image, along with a comparison with other classification techniques|I4],
is given in [4]. The limited sets of results given here, show that we have been
able to train the classifier well on the training data (greater than 98% classifier
accuracy), and show the performance extending well to test data, when the
vehicle and imaging conditions are similar. However the extension to classifying
different vehicles to the same generic class, proves problematical, as illustrated
by data sets F and G in particular. In part this is due to there sometimes being
more similarity between two vehicles from different classes, than there is between
two vehicles within the same class. The comparisons in [4] show the Bayesian
mixture model technique to compare favourably with other classifiers, including
a mixture model classifier based on the EM-algorithm.

It should be noted, however, that classification rate does not give a true
indication of the overall performance of a classifier[§]. Not least is the fact that
it treats all misclassifications with equal weight. Where we have overlap between
classes, we will never be able to obtain perfect classification, and a good classifier
would indicate uncertainty between the classes for data in the overlapping region.
Thus rather than a classification rate, an assessment of the accuracy of our
estimates of the posterior probabilities is desirable. However, such an assessment
is extremely difficult for real data. As well as class overlap there is also the issue
of the possibly different misclassification costs involved[I].

5 Summary and Discussion

In this paper we have developed a Bayesian mixture model approach to discrimi-
nation. We have modelled the class-conditional densities as Gaussian mixtures,
and conducted a Bayesian analysis under the assumption of constant model or-
der of the mixtures. The use of the algorithm has been demonstrated on real
datasets, consisting of ISAR images of mobile targets. On this data we have
attempted the difficult task of classifying vehicles into generic classes, rather



500 K. Copsey and A. Webb

than specific examples of a class. Future work will need to address issues such
as whether this is actually feasible, the number of components per mixture (a
model selection problem), alternative methods for assessing the performance,
and the use of different component distributions in our mixture models, such as
gamma distributions. However, this work has established that the technique is
a viable and sound method for discrimination when test conditions are similar
(but not necessarily identical) to the training conditions.
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