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Abstract. Visual object recognition is a difficult task when we consi-
der non controlled environments. In order to manage problems like scale,
viewing point or occlusions, local representations of objects have been
proposed in the literature. In this paper, we develop a novel approach
to automatically choose which samples are the most discriminant ones
among all the possible local windows of a set of objects. The use of Sup-
port Vector Machines for this task have allowed the management of high
dimensional data in a robust and founded way. Our approach is tested
on a real problem: the recognition of informative panels.
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sion, Object Recognition.

1 Introduction

Visual recognition of objects is one of the most challenging problems in compu-
ter vision and artificial intelligence. Historically, there has been an evolution in
recognition research from 3D geometry to 2D image analysis. Early approaches
to object recognition were based on 3D geometry extraction [4[6)7] but the pro-
cess of extracting geometrical models of the viewed objects leads to a difficult
problem and fragile solutions. Furthermore, these 3D geometry based techniques
can be made to work in a controlled environment but their application to real
environments generate several problems.

An alternative to 3D reconstruction is to remain in the 2D image space wor-
king with measurements of the object appearance. Turk and Pentland [T3] used
subspace methods to describe face patterns with a lower-dimensional space than
the image space. The appearance of a face is the combination of its shape, re-
flectance properties, pose in the scene and illumination conditions, and they use
the Principal Component Analysis (PCA) technique to obtain a reduced space.
Murase and Nayar [8] extended this idea using different instances of an object
captured in a wide range of conditions (several viewpoints and illumination con-
ditions) and used them to represent the object as a trajectory in the PCA space.
Recognition is achieved by finding the trajectory that is closest to the projection
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of an input image in the PCA space formed by all objects. Black and Jepson
[1] have addressed the problem of partial occlusion by using robust estimation
techniques in conjunction with PCA based projections. However, PCA based
techniques suffer from several difficulties. Mainly, an image projection to a PCA
based space depends on the precise position of the relevant objects, on the inten-
sity and shape of background zones, and on intensity and color of illumination.
Given that PCA technique treats its inputs (in our particular case, images) in a
global manner, the relevant objects must be detected, segmented and normalized
to manage them in the same way. This problem leads to a difficult process that
can be unsolvable in certain cases.

PCA analysis can be done on different image representation data. Hancock
[B] found that the results of applying a PCA projection over a set of natural
images was nearly the same as a set of Gaussian derivative filters. Rao and
Ballard [10] ascertained the results of Hancock with an extensive collection of
images containing equal proportions of natural and man-made stimuli. Thus, the
Gaussian derivative filters are natural basis functions useful for general-purpose
object recognition and objects can be expressed as a set of reduced response
vectors obtained as the result of an application of these filters.

Current research on visual recognition of objects is focused on the identi-
fication of physical objects from arbitrary viewpoints under arbitrary lighting
conditions and being situated in an undetermined scene with possible occlu-
sions. The presence of occlusions and different backgrounds can be minimized
using local measurements instead of global treatments [3]9]. Some recent appro-
aches [912] focus on the fact that an object can be divided into small windows
but only a subset of them are necessary to identify an object. The basic idea is
to process an object obtaining a set of reliable points (those that can contain
reliable information) and selecting some of them getting a discriminant subset.
Ohba and Tkeuchi [9] use a measure of trackability to obtain an initial set of
candidate points that are reduced with an eigenspace projection. Schmid and
Mohr [12] use the well-known Harris detector to obtain their candidate points.
However, some authors [3] consider the application of their descriptors on a pre-
defined grid instead of on a set of selected interest points. This criteria is justified
by the fact that objects captured in non controlled environments manifest some
inestabilities in the procedure of extracting interesting points.

Our approach is similar in spirit to the work of Ohba and Ikeuchi [9] who
extract a subset of local windows of an object to identify it. We select a subset
of local windows in a different way: using the Support Vector Machines (SVM)
technique that provides an optimal separating hyperplane between two different
classes with an intrinsic distance notion that can be exploited. Tkeuchi’s method
does not depend on the the classification task given that a threshold distance
must be defined in order to refuse similar local windows. The user must tune
this threshold according to the objects nature, i.e, if the database is composed of
similar objects, the threshold must be different from the one considered with a
database of several kinds of objects. Our approach does not need a tunning para-
meter that reflects the possible similarities of the training objects given that the
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SVMs technique can extract and detect those training points that are conflictive
(support vectors) without any external help. We have chosen a reduced set of
objects took in a non controlled environment to test the basis of our approach.
A set of local windows has been extracted from each object in order to minimize
the future effects of occlusions and possible background problems and a sorted
list of the local windows has been done to show the discriminant information
that each local window contains. Objects have been normalized in a constant
image size in order to consider their local windows in the same way.

2 Support Vector Machines

A two-class problem can be defined [T4] as:

(xlayl)v"'7(xn7y7l)axE%day€{+1?_1} (1)

where each example has an assigned value (4+1 or —1) depending on the class
that it belongs. In such particular case, SVM technique can be used to seek for
an optimal separating hyperplane D(x) defined as:

D (z) = (w-z)+ wo (2)

Where wy is a threshold value and w is a weight vector. Figure () [2] shows a
graphic representation of an optimal hyperplane.

Fig. 1. Optimal separating hyperplane versus different possible hyperplanes. The opti-
mal hyperplane is that hyperplane that defines a maximum margin between the support
vectors. Support vectors are indicated in grayvalues.

Depending on the number of support vectors, Vapnik [14] states a genera-
lization upper bound:

E,[Number of support vectors]

E, [Error] < (3)

n—1
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This expression estates that the expectation of the number of Support Vectors
obtained during training on a training set of size n, divided by n— 1, is an upper
bound on the expected probability of test error.

The difficulty of separating a certain class can be minimized if this class is
mapped to a higher dimensional space where the SVM technique can improve
its separability property. Such mapping can be done without affecting the com-
plexity of SVM decision boundaries given that SVM technique is independent of
the new space dimensionality, which can be very large (or even infinite). SVM
optimization takes advantage of the fact that all the operations that have to be
carried out in such new high dimensional space (feature space) can be done in
the input space via the evaluation of a kernel function k(z,y) defined by the
inner product between support vectors and vectors in the input space:

k(z,y) = (@ (x)- 2 (y)) (4)

where @ (z) is a mapping function that maps an input vector x to a feature space
vector. Different kernels can be used:

— Linear kernel: It is a simple inner product in the input space:

k(z,y)=z-y (5)

— Polynomial kernel of degree d: The optimal hyperplane will be defined
as a polynomial expression:

k(z,y) = [(x-y) +r]? (6)
— RBF's kernel: The optimal hyperplane will be defined as a radial basis
function: | 2
r—-y
k(xﬂy):exp{_a_g} (7)

Expression (2)) can be expressed in terms of support vectors and a kernel function
as:

D(z) = Z agyik (2, ) + w; (8)

where a are the lagrangian coeflicients of the quadratic optimization.

2.1 Multiclass Classification Using Support Vector Machines

Dealing with a k—class classification problem, a set of binary classifiers f1,..., f*
has to be constructed, each trained to separate one class from the rest, and com-
bine them by doing a multi-class classification according to the maximal output
obtained by expression (8), i.e by taking:

n
argmaxj:L.."ij (), where D7 (z)= Zyiozg k (z,2;) + w) (9)
i=1
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2.2 Hyperplane Distances

Our approach is based on the fact that each training point has a relative distance
to the optimal calculated hyperplane. The optimal hyperplane is defined by a
set of support vectors, which are the closest and the most conflictive training
points . Thus, extracting the most distant training points, we can obtain those
points with a low probability of being misclassified.

Figure () schematizes our approach. Given a distribution of training points
that have to be separated using Support Vector Machines, an optimal hyperplane
is calculated. Figure (@la) shows a complex distribution that it is not totally
separable with a conflictive region where reside points of different classes. In
such particular case, applying a linear kernel to obtain an optimal separating
hyperplane implies that 10 training vectors are considered support vectors (as
shown in figure [@Db)). Given that support vectors are conflictive points, we do
not consider them as relevant training points and we sort the rest of training
points depending on their distance to the optimal hyperplane.

Fig. 2. (a) Original Distribution. (b) Optimal Linear Hyperplane and Support Vectors.
(c¢) Training points that are not support vectors sorted depending on their distance to
the optimal hyperplane. The most distant point is the most important point.

3 Experimental Results

The main aim of our approach is the extraction of the most discriminant local
windows belonging to a set of objects. A local window division of an object is
justified by the fact that background and occlusion influences will be minimized.
However, this local window division leads to generate a very large database of
local windows and requires a prohibitive amount of memory to store all of them.
The basic idea is that not all the local windows of an object are necessary to
recover the identity of an object given that most of them can be redundant or
can not contain discriminant information. In our case, we divide each object in
a set of local windows (different divisions are considered) and we have sorted
all of them by considering their discriminant information. Depending on the
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final application and the memory space, the final user must select how many
discriminant local windows has to use.

In our particular case, we have chosen a reduced set of 8 panels situated on
the walls of our building captured in different viewpoints and lighting conditions.
We have done a panel mapping operation in order to obtain a set of panels with
a known size and we have divided each panel using a predefined grid [3]. This
grid defines a set of interesting points where we have applied a set of descriptors.
In our case, we have decided to use a set of Gaussian derivatives filters as local
image descriptors given that this image representation is speacially suited to
visual discrimination [I1]. Figure @) shows all the 8 different panels used in our
experiments.

(a) Panel 1 (b) Panel 2 (C) Panel 3 (d) Panel 4

'
R
-]

(e Panel 5 (f) Panel 6

Fig. 3. 8 different panels mapped to a standard window size of 175 x 250 pixels.

All panels have been randomly divided to make up the training and testing
set. The training and testing set are composed by 29 different instances of each
panel. We have considered 7 different scales for our Gaussian filters and used up
to third order derivatives. So, each interesting point has a response vector of 70
dimensions. The Gaussian window size applied to all the following experiments
is constant (37 x 37) and different sizes of panels are considered in order to study
how affect its neighborhood. Before obtaining a response vector, we have applied
an illumination intensity normalization that consists of substracting from each
local window its gray value mean and considering its variance as:

I(zx)="—"F (10)
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being w the region intensity mean and o its variance.

3.1 Semiglobal Experiment

Each panel is divided in 15 regions (3 horizontally and 5 vertically) obtaining a
training and testing set of 3480 vectors. Panels are resampled to a window size
of 85 x 125 pixels. Different kernels have been trained to separate each panel
from the rest obtaining the results shown in table ().

Table 1. Results obtained dividing each panel in 15 regions (8 panels with 29 instances
divided in 15 regions = 3480 different response vectors). Different kernels have been
tested obtaining a good performance using a RBF kernel o = 0.5 with a test error rate
of 4.87 %. Each table box has 3 different numbers: The number of Support Vectors
obtained, the number of misclassified training vectors and the number of misclassified
testing vectors. Last column shows the final test error obtained considering the maximal
output obtained from the eight classifiers (see expression (@)).

Kernel Analyzed|Panel 1|Panel 2|Panel 3|Panel 4|Panel 5|Panel 6|Panel 7|Panel 8| Error
Feature rate
# SVs 372 400 530 895 648 825 768 875
Linear Train Error 211 206 226 679 461 600 552 650(10.41 %
Test Error 241 187 194 524 320 502 429 520
Polynomial # SVs 128 66 171 304 123 306 301 246
degree d = 2|Train Error 116 0 149 313 47 425 378 213] 6.25 %
Test Error 166 35 189 327 122 402 365 258
Polynomial # SVs 127 75 145 277 127 265 277 238
degree d = 3|Train Error 227 0 227 359 8 224 355 242| 7.53 %
Test Error 316 28 275 392 98 270 370 298
# SVs 481 438 638 856 772 888 887 912
RBF Train Error 189 94 229 309 287 412 427 391 9.88 %
o = 0.0005 | Test Error 224 93 200 367 266 408 412 402
# SVs 411 158 521 841 498 828 716 868
RBF Train Error 116 19 166 246 117 377 270 332 6.03 %
o = 0.005 | Test Error 166 15 170 315 116 378 298 350
# SVs 230 78 313 525 227 554 505 450
RBF Train Error 28 2 37 122 15 93 122 90| 5.39 %
o = 0.05 Test Error 85 17 108 208 68 161 142 150
# SVs 133 97 155 240 179 205 249 227
RBF Train Error 0 0 0 12 0 1 8 9] 4.87 %
oc=0.5 Test Error 63 28 74 131 64 112 130 143

Choosing the best kernel (the one with less support vectors and a low error
rate), in such case the RBF Kernel with ¢ = 0.5, we have applied the idea
mentioned in section 2] to extract the most discriminant regions of each panel
(considering the distance of each region to the optimal hyperplane). Figure (@)
shows the sorted list of the discriminant zones from each panel according to the
distance of each region to the hyperplane obtained with the RBF kernel o = 0.5.
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Fig. 4. Sorted regions according to the best kernel calculated in table (). It can be
seen that the first discriminant regions of all the panels are those who belong to central
zones and the last ones are those who are homogeneous zones (bright zones that are
conflictive) or belong to the panel regions where the title is (given that all the panels

titles have a similar tonality).
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( ) Sorted reglons from panel 8.

3.2 Semilocal Experiment

In such experiment, each panel is divided in 45 regions (5 horizontally and 9
vertically) obtaining a training and testing set of 10440 vectors. Panels are re-
sampled to a window size of 125 x 175. In that case, each window contains less
information about its neighborhood than the previous experiment given that the
panel size is bigger than before. Different kernels have been trained to separate
each panel from the rest and for lack of space, table (B:2]) only shows the best
one.

Table (3.2)) shows that the final error rate and the number of support vectors
increase given that in this particular case, each region contains less informa-
tion than in the previous experiment. Having more local regions, white and
homogeneous zones increase because each local window considers a more local
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Table 2. Results obtained dividing each panel in 45 regions (8 x 45 x 29 = 10440
different response vectors). In this table, only the best kernel result is shown.

Kernel Analyzed|Panel 1|Panel 2|Panel 3|Panel 4|Panel 5|Panel 6|Panel 7[Panel 8|Error

Feature rate
# SVs 981 368 1291 1392 1232 792 601 912
RBF Train Error 218 16 356 871 812 281 210 304|6.8 %

o = 0.5| Test Error 387 140 509 903 874 393 415 544

neighborhood. However, discriminant zones are concentrated in the same regions

that in figure (H).

3.3 Local Experiment

In such experiment, each panel is divided in 153 regions (9 horizontally and 17
vertically) obtaining a training and testing set of 12240 vectors (only 10 instances
of each panel are considered). The panel window size considered in such case is
175 % 250. The neighborhood considered in that case is lesser than in the previous
experiment. Different kernels have been trained to separate each panel from the
rest and for lack of space, table (B3) only shows the best one.

Table 3. Results obtained dividing each panel in 153 regions (8 x 153 x 10 = 12240
different response vectors). In this table, only the best kernel result is shown.

Kernel Analyzed|Panel 1|Panel 2|Panel 3|Panel 4|Panel 5|Panel 6|/Panel 7|Panel 8| Error
Feature rate
# SVs 2201 1926 2039 1882 2109 2321 2552 2118
RBF |Train Error 854 781 832 698 864 917 1021 869(13.08 %
o = 0.5| Test Error 971 896 991 817 1005 1011 1221 1067

Table (3.3]) shows that the final error rate and the number of support vectors
increase much more than before. The reason is that there are a lot of regions that
are homogeneous or similar regions to other panels regions that have appeared
as a consequence of a more local neighborhood treatment. However, discriminant
zones are concentrated in nearly the same regions that in figure ().

4 Conclusions

An automatic discriminant method has been developed in order to extract di-
scriminant regions from a determined set of different objects. Objects have been
divided in various levels of regions considering different neighborhood hierarchies
and Support Vector Machines have been used to extract the most discriminant
ones. Despite of the several experiments performed using different neighborhood
hierarchies, all of them show that the most discriminant information is always
localized in the central regions of a panel leading to consider the method as a
robust one. The results are satisfactory enough to consider that Support Vector
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Machines is a reliable technique to be applied to such discrimination problems.
In our experiments, each object is divided in different regions considering several
neighborhood hierarchies. Our method sorts these regions according to their di-
stance to an optimal hyperplane calculated by the SVMs considering different
kinds of kernels. The final window size has to be selected according to the degree
of possible occlusions ( a major degree of occlusions will imply that the regions
with extensive neighborhoods can not be used given that they will surely be
partially occluded).
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