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Abstract. . It is evident that the utility of an image or map will depend on the
quantity of the information we can extract from it by the analysis of the spatial
relationships of the phenomenon represented. For it, tools that describe aspects
such as spatial dependence or autocorrelation in patterns are used. The statistic
techniques that measure the spatial dependence are very varied, but all of them
provide only scalar information about the variation of spatial properties in the
pattern, without analyzing the possible directedness of the dependence
mentioned. In this work, we make a vector approach to the analysis of spatial
dependence, therefore, given a pattern, besides quantifying its autocorrelation
level, we will determinate if statistics evidence of directedness exists,
calculating the angle where the direction appears. For this we will use a
parametric method when the normality of population can be assumed, and a
non-parametric method for uniform distribution.

Keywords: Spatial Dependence, Anisotropy, Directional Trend, Circular
Statistics.

1  Introduction and Previous Works

The interpretation of the spatial distribution of a phenomenon, can only be done by
the evaluation of both the global (large scale trend or values in each point in the
space) and local scale effects due to the interaction of each point with its neighboring
points [1].

The absence of these local effects do that the values of the phenomenon vary
depending on the place, in other words, the values observed in a window change
systematically, hence, it does not exist spatial dependence among values, and the
process is heterogeneous or non-stationary. On the contrary, if the existence of local
effects is detected, the process is spatially homogeneous or stationary.

Spatial dependence is a particular case of homogeneity. In images whose elements
show spatial correlation, it is verified that the existence of a concrete value of the
phenomenon makes more credible this value to occur in near places. The existing
statistics for determining the existence of spatial dependence among elements of an
image are very varied [2][3], and they include non-spatial technics as ANOVA, error
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terms in spatial autoregresive systems, Moran's I, Geary´s c, Getis´ G*, variograms,
correlograms.... All of them determine the existence or absence of autocorrelation in
an image, but they do not provide spatial information about the direction in which it is
manifested, that is, the directional trend of the variation of parameters that define the
thematic characteristics of the image.

We propose in this paper a method, based on first and second-order bivariate
circular statistics,  that will allow us to study the spatial variability of the
phenomenon, establish the existence of spatial dependence in an image and calculate
the direction in which this appears, using a parametric procedure based on the
standard and confidence ellipses for normal samples, and a non-parametric test for
directionality for samples in which the condition of normality cannot be assumed.

2  Difference Vectors Matrix

Let Wn,n the matrix that keeps the values of a window obtained from an image. From
Wn,n, the difference vectors matrix Vn,n  or matrix of first order vectors is obtained. For
that, every element wi,j is compared with the element which is diametrically opposed
to it;  if wi,j  is greater tham w2k+2-i,2k+2-k we will assign the difference between these two
values (wi,j- w2k+2-i,2k+2-k ) to vi,j and zero value to v2k+2-i,2k+2-k . If  wi,j  is  not greater than
w2k+2-i,2k+2-k , the assignment will be inversely.
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The element vi,j of the matrix Vn,n represents a vector with length r = vi,j and angle
[ ]))1((

)1(ArcTan +--
+-=F ki

kj , that can be interpreted as a variation of the characteristic
with intensity vi,j in direction F . From the Vn,n, and taking values d = 1, 2, 3, ..., (n-
1)/2, we obtain V3,3(1), V5,5(2), ... Vn,n((n-1)/2), submatrix of Vn,n whose central element
(element that has d rows both up and down and d columns both right and left) is
v(2d+1)/2,(2d+1)/2. Each one of the matrix V2d+1,2d+1(d) will be formed by the elements vi,j

whose distance to the central element is less or equal to d.
Given V(d), its mean variation vector dm  (of length rd and mean angle dF ) is

calculated as follows [4]:
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If the mean variation vectors 
dm  [d = 1..8] are calculated from the image in Fig. 1 and

2, we will obtain respectively the values shown Tables 1 and 2.

Table 1. Mean variation vectors calculated from Fig. 1

222225237253270281290292

44.063.066.061.066.077.078.079.0

87654321

d

dr

d

F

Table 2. Mean variation vectors calculated from Fig. 2

216192541582319328143

26.006.007.003.010.006.023.035.0

87654321

d

dr

d

F

          Fig. 1. Pattern with Moran´s  I = 0.34                  Fig. 2. Pattern with Moran´s  I = 0.82

If we calculate the first-lag autocorrelation of Fig. 1 and 2 using Moran‘s Index [5]
examining the eight neighboring cells connected to each cell, we obtain the values
shown in Table 3. We can observe that Fig. 1 presents a certain level of heterogeneity
in the spatial distribution of the values. This fact is confirmed with a low index of
autocorrelation (0.34). Fig. 2, on the contrary, shows an index near to one (0.82), what
indicates a high spatial dependence.
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Table 3. Autocorrelation parameters of Fig. 1 and 2

82.00.34I   Moran´s

80.13.74     valuescell of )(  DeviationStandard

02.6791.82  included cells of Mean

289289included cells ofNumber 

2 Fig.1 Fig.

s

3  Bivariate and Second-Order Analysis

It is evident that, from observations made for a concrete spatial lag, we cannot draw a
conclusion about the behavior of values in the image for other lags no matter how
many data are available and how sophisticated the analysis is. For this reason the
statistical analysis must be performed in two steps called first and second-order
analysis or first and second stage of analysis [6]:

• For each k-lag [k = 1..d] we reduce the variation vectors by calculating the mean
variation vector km .

• We combine the mean variation vectors dmmm   ..., ,  , 21 of above step and test their

significance. Only then can we make statistical inference about the directional
behavior of data.

The vector dm is described by an angle dF and a module dr ; in other words, it has
to be considered both the angles and the amplitude of his module. Under this
condition, the pairs ),( , .... , ),( ),,( 2211 ddrrr FFF  become bivariate and second-order
sample, and his treatment is considered second-order analysis.

3.1  Standard Ellipse

Among the tools used for second-order analysis we find the standard ellipse [7]; it
serves exclusively for descriptive purposes. The tips of the vectors of a second-order
sample form a scatter diagram of data with standard deviations in the x and y
directions and a certain trend upward or downward. The standard ellipse describes
this behavior in a condensed form: assuming normality, roughly 40% of the data
points fall inside the ellipse and 60% outside. The parent population need not to be
normal, although it is desirable that it does not deviate too much from normality. For
drawing the standard ellipse two means, two standard deviations and a correlation
coefficient are required:

i Cos F= ii rx                        i Sin F= ii ry (5)

å= in xx 1                              å= in yy 1 (6)
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The equation of the standard ellipse is
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The midpoint of ellipse is at ),( yx ; the semi-axes a and  b (a < b) are
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where
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1

22 4BCAR +-= (12)

The sample shows the maximum variability in a direction of angle q . This is the
angle by which the major axis is inclined versus the X axis (-90º << q 90º).

[ ]RCA
B
--= 2ArcTanq (13)

The values of the parameters described, calculated from Table 1 and Table 2, are the
ones shown respectively in Tables 4 and 5. Fig. 3 and 4 show the representation of the
ellipses.

Table 4. Values of the standard ellipse calculated from vectors of Table 1

272189.0370.0101.0005.0036.0004.0137.0062.0004.0370.0189.0368.0073.0
21

---
qbaRDCBArCovssyx

Table 5. Values of the standard ellipse calculated from vectors of Table 2

332075.0329.0103.00006.0087.0042.0027.0860.0042.0164.0295.0596.0076.0
21

----
qbaRDCBArCovssyx

As we have commented in this paragraph, standard ellipse serves exclusively for
descriptive purposes. Nevertheless, from it, we can estimate whether is reasonable the
assumption of normality in the parent population. If the mean vector angles are
uniformly spaced around the coordinates origin, we can consider that the population
from which the sample is drawn do not differ from randomness or one-sideness,
avoiding normality. When this occurs, the origin falls into the ellipse. For this reason
we can consider, in a approximate way, that the parent population is normal if the
standard ellipse contains the coordinates origin.
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Fig. 3. Standard ellipse depicted from parameters contained in Table 4
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Fig. 4. Standard ellipse depicted from parameters contained in Table 5

3.2  Confidence Ellipse

By the standard ellipse, we have described the spatial behaviour of the mean variation
vectors quantifying, by the calculation of q , its directional trend. Nevertheless, we
must determine if the directional trend is caused by random fluctuations of the vectors
or whether, on the contrary, this is caused by the existence of directedness or
anisotropic variability [8]. For testing directedness, the confidence ellipse is used.

Confidence ellipse includes a region in the xy-plane that covers the unknown
population centre with a preassigned probability Q = a-1  being therefore, a tool for
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statistical inference. Assuming normality, this region has the shape of an ellipse
which has the same centre as the standard ellipse and the same inclination of the
major axis (q ). The problem of determining the existence of directedness is solve by
generating the confidence ellipse and testing if the origin in its interior. If this fact
does not occur, the population centre cannot coincide with the origin, and ),( yx  is
significantly different from it, concluding that the mean vectors as a group are
oriented in the direction y

[ ]x
yArcTan=y (14)

For the confidence ellipse, the coefficients A, B and C in Eq. (9) have the same values
for standard ellipse in Eqs. (10). Being the coefficient D

212
2
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2 )1( TnssrD --= (15)

where
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-= nn
n FT (16)

Here, )(2,2 a-nF  denotes the critical F value with 2 and n-2 degree of freedom and

significance level a . Confidence ellipse has the same center and the same q  value as
the standard, since it is independent on the variable D, as Eqs. (6) (13) reveal. In both
ellipses, principal axes coincide. Only the semi-axes are variable. Let be the semi-
axes with the special parameter D = 1. Then we obtain from Eqs. (11) for arbitrary
values D <> 0

2
1

1Daa =                               2
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1Dbb = (17)

Since a and b are proportional to 2
1

D , we obtain
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where sa , sb are the semi-axes of the standard ellipse. From Eq. (9) is deduced that

points which are inside the region limited by the confidence ellipse fulfil the
inequality

DyyCyyxxBxxA   )()))(((2)( 22 <-+--+- (19)

If the origin falls within the ellipse, the population centre could coincide with the
origin and the sample is not directed. In this case, inequality (18) is fulfilled with the
special values x = 0 and y = 0. From Eqs. (14)(18), the condition for the existence of
directedness with a level of significance a  is
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Analysing the standard ellipse (Fig. 4) obtained from Fig. 2, we observe that the
assumption of normality is reasonable, so that a confidence ellipse is applicable to it.
We want to determine the confidence ellipse at a level of significance %5=a or a
confidence coefficient of Q = 95% from Fig. 2. As a first step we calculate T 2 using
Eq. (15). From a table of the F-distribution we read F2,6 = 5.14. Hence T 2 = 11.99.
From Eqs. (14)(17) we obtain D, a and b parameters showed in Table 6. Our
confidence ellipse (dashed curve depicted in fig. 5) is somewhat biggest than the
standard ellipse. Since the confidence ellipse does not contain the origin in its interior,

),( yx differs significantly from the origin. Therefore, the mean vectors are oriented as

a group, being the direction at º25.97-=y .

Table 6.  Parameters of confidence ellipse calculated from vectors of Table 2

09.023.00.19

40.045.00.37

99.1111.998.07
0.5

2   Fig.
0.1
1  Fig.

0.5
1   Fig.

2

b

a

T

=== aaa

In Fig. 3 we observe that, although the standard ellipse does not contain the origin,
this is very close to it. Consequently, the assumption of normality must be done with
certain reservations. Fig. 6 shows the confidence ellipses with errors

1.0  and  05.0 == aa  drawn from the parameters of Tables 5 and 6. The inside
ellipse does not contain the coordinates origin, while the exterior one does, assuming
the existence of directedness ( º76.77-=y ) with Q =90%, but not with Q=95%.

3.3  Not Normal Bivariate Population

The procedure described in the paragraph bellow requires that the second order scatter
diagram be a sample drawn from a normal bivariate population. Nevertheless, there
are occasions in which, seeing the circular histogram of the sample, this condition of
normality cannot be assumed. When this happens, it is possible by the Moore´s test
[9], to know if the sample is directed or on the contrary, whether it presents a uniform
distribution. This test is non parametric because only the ranks of ri are used.

In this procedure, we must rank the ri from smallest to largest, letting ti denote the
rank of the ith mean variation vector. The null hypothesis for this test states the

iF are independently and uniformly distributed on the circle.  Let

å F= iitC Cos        å F= iitS Sin        )( 22 DCD +=        
2
3

*

n
DD = (22)

We reject the null hypothesis in favour of the hypothesis of directionality if

)(** aDD ‡ (23)

As we have commented in the paragraph below, the proximity of standard ellipse
to origin in Fig. 3, make us doubt about the suitability of considering the sample
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drawn from a normal bivariate population. Table 7 shows the critical values of
Moore´s Test and confidence ellipses for different errors a , being their statistic tests
respectively D* = 1.249 and T 2  = 8.749. With these values, according to the Moore´s
Test, a directedness with an error 0.010‡a  exists. If, on the contrary, we use the
confidence ellipse, we found directedness  with 100.0‡a . The difference between
both tests is due to the use of confidence ellipse supposes the assumption of
normality, and this is a strong constraint that we cannot clearly establish visualising
the standard ellipse.

Table 7. Critical values of D*  and T2

074.8990.11940.16480.25927.33000.63)(

949.0059.1148.1242.1300.1397.1)(

100.0050.0025.0010.0005.0001.0

2

*

a
a

a

T

D
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Fig. 5. Confidence (dashed curve) and standard ellipses depicted from values of Tables 4 and 5

4  Conclusion

Previous works about the evaluation of spatial dependence in patterns, based on
statistics of spatial autocorrelation, provide an acknowledge exclusively quantitative
about the topological structure and spatial relationships in the distribution of a spatial
phenomenon, but they do not analyze neither the existence of spatial anisotropy nor
the direction in which it manifest. In this paper we have described a method for:

• Visualizing the spatial variability of the pattern.
• Determining the normality of parent population.
• Testing the existence of spatial trend or directedness in patters that show spatial

dependence.
• Calculating the direction y where that anisotropy is revealed .
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Fig. 6. Confidence ellipses with errors 05.0=a  and 1.0=a

For that, we have used a parametric method (confidence and standard ellipses) when
the normality of population can be assumed, and a non-parametric method (Moore´s
Test) for uniform distribution. Both are based in first and second-order bivariate
circular statistics.
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