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Abstract. This paper deals with the optimum classifier and the perfor-
mance evaluation by the Bayesian approach. Gaussian population with
unknown parameters is assumed. The conditional density given a limi-
ted sample of the population has a relationship to the multivariate ¢
distribution. The mean error rate of the optimum classifier is theoreti-
cally evaluated by the quadrature of the conditional density. To verify the
optimality of the classifier and the correctness of the mean error calcu-
lation, the results of Monte Carlo simulation employing a new sampling
procedure are shown. It is also shown that the Bayesian formulas of the
mean error rate have the following characteristics. 1) The unknown po-
pulation parameters are not required in its calculation. 2) The expression
is simple and clearly shows the limited sample effect on the mean error
rate. 3) The relationship between the prior parameters and the mean
error rate is explicitly expressed.

1 Introduction

The Bayesian approach deals with unknown parameters as random variables and
assumes their a priori distributions. The essential role of the a priori distribution
has not been well known, and the validity of the Bayesian approach and its
application has been long argued [I]. The fact that the Bayesian approach enables
us to design the optimum classifier based on limited sample and to evaluate the
mean error rate using known parameters alone is the essential attractiveness of
this approach.

This paper deals with the optimum classifier and the performance evalua-
tion by the Bayesian approach. Gaussian population with unknown parameters
is assumed. The conditional density given a limited sample of the population
has a relationship to the multivariate #distribution. As a result, the obtained
optimum classifier is different from the quadratic classifier known to be optimum
for Gaussian distributions with known parameters. Especially when the sample
size of classes are not equal, the optimum discriminant function is not quadratic,
and the decision surface is not hyperquadratics.

The mean error rate of the optimum classifier is theoretically evaluated by
the quadrature of the conditional density. For univariate case, the mean error
rate of two-class problem with different sample size and different sample cova-
riance matrixes is evaluated (not presented in this paper become of the page

F.J. Ferri et al. (Eds.): SSPR&SPR 2000, LNCS 1876, pp. 591-[600] 2000.
© Springer-Verlag Berlin Heidelberg 2000



592 X. Han, T. Wakabayashi, and F. Kimura

limit). For multivariate case, the one with common sample size, common sample
covariance matrixes, and common a priori probabilities is evaluated. Since these
mean error rates are obtained by taking the expectation of the error rate over
unknown population parameters dealt as random variables, they only depend on
known parameters such as sample parameters, sample size, and the dimensiona-
lity. In this point, the Bayesian mean error rate has its own interpretation and
significance different from those of non-Bayesian mean error rate which requires
the unknown population parameters in its calculation. To verify the optimality
of the classifier and the correctness of the mean error calculation, the results of
Monte Carlo simulation employing a new sampling procedure are shown.

The optimum classifier based on the Bayesian approach was first derived by
Keehn [2]. He studied the asymptotic properties of the optimum classifier and
calculated type I error, which is the rejection rate for a given threshold value
of the likelihood. However the mean error rate for two-class problem was not
evaluated, and the properties of the optimum classifier except for the asymptotic
properties were not studied.

In subsequent sections, a case with unknown covariance matrix (with known
mean vector) is described in Section 2 to 4. A new sampling procedure and the
result of Monte Carlo simulation are described in Section 5.

2 Sample Conditional Density of Gaussian Population

Sample conditional density of d-dimensional feature vector X of Gaussian po-
pulation with unknown covariance matrix given a sample x = {X1, Xs,..., X, }
is expressed by

P(X]x) = /5 P(X|K)p(K ) dK. (1)

where K is the inverse of the population covariance matrix and S is d(d +
1)/2 dimensional subspace on which K is positive definite.The density p(X|K)
is the d-variate Gaussian distribution, and the density p(K|x) is the Wishart
distribution of n,, degrees of freedom [2l[5].

Performing the integration (1), we have
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where M is the population mean vector, and Yy and ng are an initial estimate
of the population covariance matrix and the confidence constant, respectively.
When ng is set to zero, n,, and X, coincide to n and X' respectively, and no
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knowledge about the prior distribution is utilized. The notation I'(z) denotes
the gamma function.
By variable transformation

T

X-M=,—"—
ny, —d-+1

T. (3)

T leads to the multivariate elliptical #-distribution with n, — d + 1 degrees of
freedom [0].

3 Optimum Discriminant Function

The optimum discriminant function for general case is derived from (2) as

9(X)

—2log{p(X|x)P(w)}

(n, + 1) log {1 + ni(X - M) ZH (X - M)}

+log | Xy| — 2log D — 2log P(w)

_% T (n”;rl)

e=ca <“>

4 Evaluation of Mean Error Rate

The sample size, the covariance matrixes and the a priori probabilities are assu-
med to be common to two classes. The logarithm of the likelihood ratio is given

by
. In,—d+1
hX) = (MQ—Ml)tEnH/niX

1 n—d+1 _ _
o P (M M — MES M), (5)

ez

The distribution of ((n, —d-+1)/n,)*/?X is d-variate elliptical ¢-distribution
with n, —d+ 1 degrees of freedom, and the distribution of A(X) is univariate ¢-
distribution with the same degrees of freedom.The means of h(X) are given by

1 /n,—d+1
=, 772
n 2 Ty, "
1 /n,—d+1_,
= — 76
2 2 N n

Op = (My — My)' 5, (My — My) . (6)
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The variances of h(X) is given by

_ n, —d+1 _
o = (My— M) X' E{—"———(X — My)(X — My)" w1 } 2,1 (Mo — M)
n, —d+1 P np,—d+1 ,
— (M, — M) X " (My — M) = ————§
nn—d—l( 2 DR v Np—d—1"
2_nn—d—&—l 9
02_nn_d_15n' (7)

Using these parameters the mean error rate is given by

e = P(w1)e1 + P(wa)es

1 1
e ) e (2)
1 d—1
1—®, gr [ =4/(1- 2 )
- (2 (1-2= )5) ®

e=1—&p_giq G (1—d;1)52> . (9)

The function @,,(x¢)is defined by

When ng =0,

&, (20) = / " @)z (10)

o0

where t,, is the univariate t-disrtibution with n degrees of freedom.
The Bayesian formulas of the mean error rate [8) and (@) have the following
characteristics when compared with the non-Bayesian formulas.

1. The unknown population parameters are not required in its calculation.

2. The expression is simple and clearly shows the limited sample effect on the
mean error rate.

3. The relationship between the prior parameters ng, Xy and the mean error
rate is explicitly expressed.

It should be noted that the Mahalanobis distance ¢ in (@) is an apparent
one which is calculated using the known population mean vector and the sample
covariance matrix. (@) reveals two causes which increase the mean error rate due
to the limited sample effect. One is that the area of the tail of ¢-distribution
increases due to the reduction of the degrees of freedom. The other is that the
apparent squared Mahalanobis distance between two classes shrinks by (d—1)/n,
and increases the mean error rate (Fig. [[)). The affection of the former is marginal
and is negligible if n — d 4+ 1 is greater than 20 or so, because the t-distribution
with this degrees of freedom can be approximated by the Gaussian distribution,



Optimum Classifier and Performance Evaluation by Bayesian Approach 595

which is the t-distribution with infinite degrees of freedom. On the other hand,
the affection of the latter is so severe and is not negligible unless the sample
size is much larger than the dimensionality. Such shrinkage of the apparent
Mahalanobis distance has its origin in the variable transformation by (3), and
causes a problem so called " peaking phenomenon” or ” curse of dimensionality” [3]
4lf7]. This undesirable phenomenon is caused and aggravated by neglecting the
prior distribution by setting ng = 0. The case for ng # 0 is discussed in Section 6.

N(0,1)

Ly (x)

NI

Fig. 1. Increase of mean error rate due to limited sample effect

5 Computer Simulation

5.1 Bayesian Sampling

In the following computer simulation, a new sampling procedure called Bayesian
sampling is employed together with the ordinary sampling procedure. Fig. [2 il-
lustrates the relationship between the ordinary sampling (a) and the Bayesian
sampling (b). In the ordinary sampling, specified size of sample are drawn from
a specified population and the sample parameters are calculated. Fig. [ (a) il-
lustrates the case with a Gaussian population N(0, ) and three samples of size
five with the sample covariance matrixes X, , Xy, and X.. The classifiers are desi-
gned using these sample parameters and the mean error rate for the population
is evaluated. Since the sample parameters are random variables, the expecta-
tion of the error rate is taken by repeating the sampling for designing and test
of the classifier. On the contrary the Bayesian sampling generates populations
from which a sample with specified parameter, e.g. N(0,1), is extracted. When
a sample of specified size is drawn from a temporal population N(0,I), and
the sample covariance matrix is Y, the actual population is determined to be
N(0,X;1). Since the population parameters are random variables in this case,
the expectation of the error rate is taken by repeating the Bayesian sampling for
the test of the classifier. The design of the classifier need not be repeated because
the design sample is fixed through the experiment. In this example, the sample
mean vector and the sample covariance matrix are assumed to be zero vector
and identity matrix, respectively. The general procedure is described below.
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Fig. 2. Relationship between ordinary sampling (a), and Bayesian sampling (b)

The population parameters are determined so that the parameters of a sample
drawn from the population is (p2, X2). The parameters of a sample of size n
drawn from a temporal population N(0,I) are denoted by (u1, X7), i.e.

1 n
1251 ZEZZ;XZ

= S ) (X =)' (1)

n—1
By setting

_1
Y = &1 A, 20X — 1) (2191 = P1 1) (12)

the sample parameters are transformed to (0, 1), i.e.

STVY = 6 A P DA = 0y = (13)
=1

n—1
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and the population parameters of Y are given by
_1
B(Y) = ~@, A, * @,
VY)=E[{Y - EX)MY — EW)}| =0 A 20, A7 20t = 571, (14)

where A; and @, are the eigenvalue matrix and eigenvector matrix of X7, res-
pectively.
Further by setting

1
Z =By AZY + piy
1 _1 1 _1
= @2/122 @1/11 2¢t1X + Mo — @2/122 @1/11 2@5#1 (22@2 = @2/12) (15)

the sample parameters are transformed to (uz2, X2), i.e.
~ Zi=al3 - Vit pz = po
[t [

1
n—1

STV = B Af LA BY = By Aabh = T (16)
=1

and the population parameters of Z are given by

1 _1
B(Z) = py — $2031 A * By

V(Z) = Go A3 D1 AT P DLy AT BN DL = By NS STVAS B, (17)
When the population mean vector M is known, ([[Z) is replaced by
EZ)y=M
V(Z) = 0o A 57 A 0
1 n
Di=—) (X;— M)(X; — M) 18
L= S (X = M)(X - M) (19)

i=1
In the following experiments, ng is set to zero and the population is assumed
to have known mean vector and unknown covariance matrix.

Multivariate Case with Common Sample Covariance Matrix. Table. [
and Fig. Blshow the results of experiments for multivariate case where the sample
size, the sample covariance matrixes, and the a priori probabilities are all com-
mon to two classes. The rows sim. are the results by the Monte Carlo simulation
employing the Bayesian sampling, where the size of test sample is 1000, and the
number of iteration is 5000. The row t shows the mean error rate by (@I).

The optimum discriminant function employed in the simulation is derived
from (@). The sample covariance matrix is d x d identity matrix, and the popu-
lation mean vectors are

Ml = (0,0,0,"',O),
My =(1,1,1,---,1). (19)
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Table 1. Mean error rate (%) v.s. dimensionality in multivariate two-class problem
with common sample covariance matrixes

n 10 15 20
d opt.(qdf.) opt.(qdf.) opt.(qdf.)
2 stm. 25.97 25.29 24.95
t 25.96 25.28 24.95
4 Sim. 21.49 19.44 18.45
t 21.52 19.43 18.47
6 Sim. 21.26 16.94 15.17
t 21.30 17.04 15.28
8 Sim. 24.65 16.49 13.58
t 24.75 16.59 13.74
10 Sim. 35.32 17.65 13.22
t 35.24 17.80 13.29
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Fig. 3. Theoretical mean error rate (%) v.s. dimensionality

For these parameters, the Mahalanobis distance 62 = n and (@) is minimized
when d = (n+1)/2.

Because the sample size and the sample covariance matrixes are common to
classes, the optimum classifier and the quadratic classifier give the same results.
The mean error rates predicted by the t-distribution is well coincident to those
by Monte Carlo simulation.

Multivariate Case with Different Sample Covariance. Fig. @l shows the
mean error rates of the optimum classifier and the quadratic classifier for two
classes with different sample covariance matrixes. The mean error rates were
evaluated by Monte Carlo simulation employing the Bayesian sampling, where
the size of test sample and the number of iteration are 5000. The size of design
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sample and the a priori probabilities are common to the classes. The sample
covariance matrix of classl is 8 x 8 identity matrix, and the one of class2 is 8 x 8
diagonal matrix with diagonal elements

diagXy = (8.41,12.06,0.12,0.22,1.49,1.77,0.35,2.73) . (20)
The mean vectors are given by

Ml = (_1a0a07"'?0)7
My = —M;. (21)
The mean error rates of the quadratic classifier approach to those of the

optimum classifier as the sample size n increases, however the optimum classifier
outperforms the quadratic classifier for all sample size.
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Fig. 4. Mean error rate of quadratic classifier and optiomum classfier v.s. sample size
in 8-variate two-class problem with individual sample covariance matrixes

6 Conclusion and Discussion

iThis paper dealt with the optimum classifier design and the performance eva-
luation by the Bayesian aproach. To verify the optimality of the classifier and
the correctness of the mean error calculation, the results of Monte Carlo simu-
lation employing the Bayesian sampling were shown. It was also shown that the
Bayesian formulas of the mean error rate have the following characteristics.

1. The unknown population parameters are not required in its calculation.
2. The expression is simple and clearly shows the limited sample effect on the
mean error rate.
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3. The relationship between the prior parameters and the mean error rate is
explicitly expressed.

In the Monte Carlo simulation, the property of the optimum classifier was
studied when ng was set to zero and the prior distribution was completely neglec-
ted. When ng is not zero, the mean error rate is expressed by (§) and is further
minimized by selecting optimum ng which maximizes

d—1 ¢ n ng -1
fno) = (1— n+n0> (Mz — My) {n+n02+ n+n020} (Mo — M) .
(22)

The increase of ng has similar effect as the increase of the sample size to
add the degrees of freedom of the #-distribution, and to reduce the shrinkage of
the apparent Mahalanobis distance. Therefore complete ignorance of the prior
distribution by setting ng to zero does not lead the best possible classifier.

In most of the real world application, given sample parameters are fixed and
the population parameters are unknown. The Bayesian sampling agrees better
with these realities than non-Bayesian sampling, and provides us a new way of
the Monte Carlo simulation such as the analysis of multi-category classification
problems beginning with real world sample parameters at hand.
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