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Abstract. The present work discusses what have been called ‘imperfectly
supervised situations” pattern recognition applications where the assumption of
label correctness does not hold for all the elements of the training sample. A
methodology for contending with these practical situations and to avoid their
negative impact on the performance of supervised methods is presented. This
methodology can be regarded as a cleaning process removing some suspicious
instances of the training sample or correcting the class labels of some others
while retaining them. It has been conceived for doing classification with the
Nearest Neighbor rule, a supervised nonparametric classifier that combines
conceptual simplicity and an asymptotic error rate bounded in terms of the
optimal Bayes error. However, initial experiments concerning the learning phase
of a Multilayer Perceptron (not reported in the present work) seem to indicate a
broader applicability. Results with both simulated and real data sets are
presented to support the methodology and to clarify the ideas behind it. Related
works are briefly reviewed and some issues deserving further research are also
exposed.

Keywords: Supervised methods, Nearest neighbor classifier, learning,
depuration methodology, generalized edition.

1. Introduction

Traditionally, pattern recognition methods have been sorted into two broad groups:
supervised and unsupervised, according to the level of previous knowledge about the
training sample identifications in the problem at hand. Much of the research work in
the frame of supervised pattern recognition has been almost entirely devoted to the
analysis of the characteristics of classification algorithms and to the study of feature
selection methods. Recently, however, an increasing emphasis is being given to the
evaluation of procedures used to collect and to clean the training sample, a critical
aspect for effective automatization of discrimination tasks.
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Supervised classifiers” design is based on the information supplied by the training
sample (TS), a set of training patterns or prototypes representing all relevant classes
and with correct classes labels. In several practical applications, however, class
identification of prototypes is difficult and very costly and, as a consequence, some
imperfectly or incorrectly labeled prototypes may be present in the TS, leading to
situations lying in between supervised and unsupervised methods, or as they have been
called: imperfectly supervised pattern recognition situations. Examples have been
reported in medical diagnoses, drawing of pronostic maps of mineral deposits and,
particularly, in the interpretation of remotely sensed data. In this later domain, training
field selection and the yielding of suitable training statistics have been the concern of
several researchers and practitioners, e.g. [1, 8, 10, 19, 29, 40]. Foody [17, 18]
discusses to some extent the difficulties introduced into the classification process by
those prototypes representing more than one class (e.g., those allocated on the border
between classes) or being members of a class not considered when collecting the TS.
Mather [32] refers to atypical elements in the TS that may belong to another class or
may be hibrid or mixed elements.

The Nearest Neighbor (NN) rule [12] is a supervised nonparametric classifier,
whose application does not require any assumption about probabilistic density
functions. Some of its main features are described in the next Section. The
performance of this classifier, as with any nonparametric method, is extremely
sensitive to incorrectness or imperfections of the training sample. The present work
introduces a methodology for decontaminating imperfect TSs while employing the NN
rule for classification. This methodology can be regarded as a cleaning process
removing some suspicious elements from the TS, or correcting the labels of some
others and retaining them. Although conceived specifically for the NN rule, initial
experiments with a Multilayer Perceptron seem to indicate a broader applicability.
Results with both simulated and real data sets are presented to support the
methodology and to clarify the ideas behind it. Related works are briefly reviewed
and some issues deserving further consideration are also exposed.

2. The NN Rule

This is a classifier that combines conceptual simplicity and an asymptotic error rate
bounded in terms of the optimal Bayes error. Let TS={(x, ,9, ), (X, ,®,), ..., (X_,¢,) } be
the training sample. That is, TS is the set of n pairs of random samples (X, ,9. )
(i=1,2,...,n), where the label ¢ may take values in {1,2,...c} and ¢, designates the class
of x, among the c possible classes. For classifying an unknown pattern X with the NN
rule, it is necessary to determine first the nearest neighbor x” of X in the TS. That is, it
is necessary to find x” in TS such that:

dX,x)=mind(X,x) x & TS 1)

where d( , ) means any suitable metric defined in the feature space. Then, the pattern
X is assigned to the class identified by the label associated to x”. Devijver and Kitler
[16] have expressed that "the basic idea behind the NN rule is that samples which fall
close together in feature space are likely to belong to the same class". A more
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graphical description is due to [14]: "it is like to judge a person by the company he
keeps".

Two other peculiarities of the NN rule have contributed to its popularity: a) easy
implementation, and b) known error rate bounds. The computational burden of this
classifier, very high with brute-force searching methods, has been considerably cut
down by developing suitable data structures and associated algorithms (e.g., [25]) or
by reducing the TS size (e.g., [2, 26]).

For improving the NN rule’s performance, Wilson [43] proposed a procedure
(Edition technique) to preprocess the TS. The algorithm has the following steps:

1. For every x; in TS, find the k (k=3 has been recommended) nearest neighbors of x,
among the other prototypes, and the class associated with the larger number of
patterns among these k nearest neighbors. Ties would be randomly broken
whenever they occur.

2. Edit the TS by deleting those prototypes x, whose identification label does not agree
with the class associated with the largest number of the k nearest neighbors as
determined in the foregoing.

The benefits of the Edition technique have been supported by theoretical and
empirical results (e.g., [3]). On the other hand, concerned with the possibility of
considerable amounts of prototypes removed from the TS, Koplowitz and Brown [31]
developed a modification of this technique, the Generalized Edition (GE). Here, for a
given value of k, another parameter k” is defined such that:

k+1)/2 <k <k )

For each prototype x, in TS its k nearest neighbors are searched in the remainder of
TS. If a particular class has at least k” representatives among these k nearest
neighbors then X, is labeled according to that class, independently of its original label.
Otherwise, x; is edited (removed). In short, the procedure looks for modifications of
the training sample structure through changes of the labels (re-identification) of some
training patterns and removal (edition) of some others.

Although none of these two techniques was particularly aimed at facing
contaminated training samples, both modify basically the structure of the TS and,
therefore, were included in the empirical evaluation to be explained in the Section 4.

3. Incorrections in the Training Sample and Related Works

Traditional approaches to supervised pattern recognition imply the fulfillment of
two basic asumptions concerning training samples in order to guarantee accurate
identification of new patterns:

1. the set of ¢ classes with representations in the training sample span the entire
pattern space

2. the training patterns used to teach the classifier how to discriminate each class are
actually members of that class.
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Practical experience has shown that in many real applications one or both of these
assumptions do not entirely hold and that violation of these requirements strongly
degrade classification accuracy. In accordance with this perception, the number of
papers and proposals for handling this subject has significantly increased in the last
years.

Outlier data is a concept that has been considered in Statistics for some time. It has
been defined [41] as: a case that does not follow the same model as the rest of the
data. Now the term has come to the fore also in the Pattern Recognition and Data
Mining areas. Reports about the effect of these "noisy" patterns when included in the
training sample and how to counteract it have been published in [20, 28, 34, 38]
among others. Even for unsupervised methods outlier data have been the concern of
several researchers, e.g., [22, 30].

However, this term is being employed to cover a broad range of circumstances
reflecting some confusion among disimilar situations and a lack of a rigurous and
unified concept of outlier data. In general, there are three of these potential situations:

1. noisy or atypical data that can be produced by errors (measuring, capturing, etc), an
unfortunate property of many large databases.

2. New unidentified patterns appearing in the classification phase and that do not
belong to any of the classes represented in the TS (partially exposed environments:
[13, 33]). These cases are usually handled by a reject option [15, 23].

3. Some authors employ the term outlier for denoting mislabed instances in the TS,
what constitutes the main focus of the present work. Brodley and Friedl [9] employ
a combination of classifiers to filter the training patterns looking for identification
and elimination of wrong labeled training cases prior to applying the chosen
learning algorithm. Basic differences with the procedure presented in the next
section:

i)  they do not consider correcting labes of some contaminated training data

ii) although they use real data for demonstration purposes, they modified
intentionally the labels of some training patterns to simulate a situation that
they state as very frequent in these applications (remotely sensed data).

iii) The filtering method they propose cannot fully overcome the error in the
data for noise levels of 30% or greater

4. Depuration of Training Samples

The NN rule, as any other nonparametric pattern recognition method, suffers from
an extreme sensitivity to the presence of contaminated training sets [36]. Hence, the
importance of building procedures to contend with imperfectly supervised
environments. Barandela [2] reports a considerable amount of Monte Carlo
experiments to assess some procedures usable for decontaminating training samples.
The procedures included were: a) Edition b) Generalized Edition c¢) Mutual
Neighborhood [21] d) Reidentification (after some ideas of Chitinenni [11]) and e) All
k-NN, a variant of the Edition technique proposed in [37].
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For comparing these procedures, experiments with simulated patterns from two
Gaussian populations with different mean vectors and equal covariance matrix were
carried out. In every experiment, the TS consisted of 200 prototypes and the
independent test sample (used for validation purposes) contained 500 elements, always
a half from each class. Five different levels (percentages) of members of the second
class were wrong labeled as belonging to class 1. For each of these cases and
combinations, 30 replications were done. The averaged results, misclassification
percents on the test set, are shown in Table 1. The effect of Generalized Edition on the
contaminated training samples was remarkable and its superiority over the rest of the
evaluated methods was recorded in more than 98% of the individual replications.

Table 1. Comparison of methods for decontamination (averaged misclassification rates).

Wrong labels in class 1

5% 15% 25% 35% 45%
Original TS 15.0 17.8 20.4 229 254
Generalized Edition 10.2 10.4 11.5 12.4 14.3

It should be noted that for the decision about the labeling of a prototype (and
perhaps the transference to another class or relabeling) or about its edition (elimination
from the TS), GE takes into account the labels of the k nearest neighbors of this
prototype. That is, for evaluating the correctness of this training pattern label, the
procedure is based on the information supplied by the labels of other prototypes
which, in turn, can be incorrectly identified. From the results in Table 1 it is clear that
the greater the percent of initially mislabeled prototypes the greater the percent of test
patterns erroneously classified after the GE application. Nevertheless, the method
produces an unquestionable improvement in the classifier’s performance, indicating
the achievement of a TS structure with an appreciably reduced amount of wrong
labels. This situation seemed to indicate that the reiteration or repetition of the
procedure is convenient, because in every further application the environment will be
less contaminated [2]. The idea was put into practice with the same simulated data
sets, yielding results that are showed in Table 2.

It was found unnecessary to carry out more than three succesive applications.
Already after the second application and more clearly after the third one,
misclassification rates tend to reach stability, notwithstanding (and that confirms how
proper this proposition is) the original amount of wrong labels. In this third application
very few remotions and no transferences at all are produced. These results and those
of the practical applications below indicate that the procedure will always stop after a
finite number ot iterations.
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Table 2. Reiteration of Generalized Edition — averaged error rates.

Wrong Original Generalized Edition

labels in

Class No. 1 Tr. Sample Ist app. 2nd app 3rd app
5% 15.0 10.2 10.1 10.1
15% 17.8 10.4 10.1 10.1
25% 20.4 11.5 10.2 10.2
35% 22.9 12.4 10.5 10.3
45% 254 14.3 10.8 10.6

Practical experiences with several real data sets in the geophysical domain [5] led
to a novel methodology for preprocessing and Depurating the TS. The Depuration
methodology involves several applications of Generalized Edition until stability has
been reached in the structure of the TS and in the estimated error rate (leave-one-out),
and then the application of Wilson’s Edition, eventually also reiterated. It has been
observed that after the first or second application of Generalized Edition, prototypes
elimination stops and transferences (relabelling) number decreases gradually. From
the second application onwards these transferences only affect a part of those
prototypes whose labels had been changed in the first iteration, producing an
oscillatory movement with some prototypes being passed from one class to another
and backwards. At each iteration, this "pendulum" effect influences upon an ever
decreasing number of prototypes until a steady situation with no more movements is
reached. At this point Edition has produced elimination only of those prototypes (or a
part of them) that had remained oscillating until the last iterations. These and other
characteristics of the Depuration methodology will become more distinct after a brief
outline of some of the mentioned practical applications.

Application No. 1 [4] Six features had been measured on a set of 268 unlabeled
patterns (strata belonging to a well log data). A clustering method sorted the data set
into 4 groups that, since the ultimate purpose was to explore possibilities of gas-oil
manifestations, have been regarded as:

— classes 1 and 3, conformed by nonprospective strata
— classes 2 and 4,presenting strong association with the prospective strata of the area

This configuration was taken as the initial TS to be used afterwards for classifying
additional strata, building up a semisupervised classification system ([24],[27]).
Obviously, this TS should be assumed as imperfectly supervised since, by the very
nature of clustering algorithms some prototypes have received unreliable labels. Hence
the necessity to employ Depuration process for structure improvement. Generalized
Edition was applied twice and the second application produced no remotions and only
a few transferences (about 4%). On the other side, the error estimate decreased more
than 75%. Edition got also a remarkable improvement in the performance, yet with a
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small size reduction. As a final task, the processed TS was used to classify, with the
NN rule, another 628 strata coming from three different well logs. Resulting
assignations were verified using ancillary information and evaluated as more accurate
than those got when employing the whole original TS.

Application No. 2 [35] This work was aimed to characterize the stratigraphic
sequences present in an oil deposit, on the basis of an evaluation of several
petrophysical and geophysical parameters, adding up to 12 features. A TS with 139
prototypes belonging to six classes was available. Peculiarities of the area under study
gave place to vagueness and ambiguity in the identification of the prototypes, while
skill and intuition of the interpreter played a decisive role in the decisions.
Consequently, the TS at hand was adopted as imperfectly supervised, requiring a
Depuration process. Most of the resulting transferences affected prototypes located on
the borders between classes, shifting them up or down. As already explained, accuracy
of these borders definitions had been mistrusted. Geophysicists in charge of the study
of the area accepted the depurated TS as more consistent and more convenient for
modeling purposes than the original one.

Application No. 3 [6] Data employed in this case came from a previous work [39],
aimed to study the processes conditioning the shape of an ophiolitic sequence. The
collected sample consisted of 187 prototypes sorted into four classes (according to the
lithology). Seven features were recorded for each pattern. Geophysicists well
acquainted with the data and with the procedures employed to collect and prepare
them, regarded this TS as perfectly supervised and pronounced themselves strongly
against any modification. When they accepted to collaborate in the evaluation of the
Depuration process (see Table No. 3) merely with exploratory purposes, they
demanded severe restrictions about amount and type of transferences to be allowed.
Nevertheless, after the process was applied, these same domain experts accepted the
depurated TS without hesitations as more accurate and better structured than the
original one. Here again, an important part of the transferences involved prototypes
located in the borders between different lithologies (classes). Besides, no undesirable
transferences were recorded or occured in a very low level.

Table 3. Practical geophysical applications

Applic. 1 Applic. 2 Applic. 3
Procedure No. Err est. | No. Patt. | Errest. | No. Patt. | Err est.
Patt. (%) (%) (%)
Original TS 268 34.0 139 42.4 187 52.9
GE (repeated) 130 1.5 136 2.9 134 6.7
Edition (repeated) 122 0.0 117 0.0 105 0.0

Concerning these applications, some issues may be remarked. Firstly, Depuration
has evidenced its benefits in the three possible environments: unsupervised (as a
complement to the cluster algorithm), imperfectly supervised, and supervised. In this
last case, success of Depuration could be explained by the lack of a precise and well
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defined distinction (physical and conceptual) among classes, a rather common
situation in the praxis, at least in the geoscience fields. As a byproduct, the Depuration
process yields a significant reduction of the TS size and, accordingly, of the
computational time required for subsequent works involving these data. With the
exception of Application No. 2 when the low ratio Dimensionality /T'S-size compelled
the elimination of superfluous features at the very beginning of the process, feature
selection was easier when implemented as an intermediate step. Employment of
estimate L for error probability as a guide for conducting the process showed itself as
suitable.

5. Discussion

Wilkinson et al. [42] mention adequacy of the training data as one of the factors
dictating the performance of any classifier and manifest that it is "very often outside
the control of the data analyst". The procedure here exposed evidences that an
important contribution can be done for amending some defficiencies of the available
TS and to increase its usefulness. The Depuration process has revealed, for both the
simulated and the real data applications, significant benefits. Although the above
explained real examples have been about classification of geophysical data, it should
be clear that the procedure is independent of the origin of the data set in question and
can be used in any application involving supervised classification. Actually, an
application with remotely sensed data has already been reported [7].

Importance of this decontamination issue deserves further research. Efforts should
be concentrated on the feasibility and the convenience of developing pertinent
methodologies according to the different possible causes for contamination in the TS.
The Depuration procedure manages quite well situations as those already highlighted
in the applications above: misidentification of some prototypes due to the difficulty
and high cost of collecting the data, or to some characteristics of the application
domain that induce vagueness and a lack of clear separation among classes. Inclusion
in the TS of prototypes belonging to not considered (untrained) classes and of mixed
prototypes (representing more than one class) would require additions to or
modifications of the procedure. Implementation of a classifier with a reject option and
fuzzy approach (as in [19]) could be useful in this respect. What seems to be evident is
that methodologies like the one here exposed lead to computer systems for
classification tasks, not only faster than human interpreters. It has also evidenced
ability to yield more accurate classification results and, at the same time, to provide a
better model for the phenomenon under study. The later advantage is got through the
relabeling of some of the training patterns.
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