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Abstract. In the proposed paper, we investigate the combination of the
multi-expert system in which each expert outputs a class label as well
as a corresponding confidence measure. We create a special confidence
measurement which is common for all experts and use it as a basis for the
combination. We develop three combination methods. The first method
is theoretically optimal but requires very large representative training
data and storage memory for look-up table. It is actually impractical.
The second method is suboptimal and reduces greatly the required trai-
ning data and memory space. The last method is a simplified version of
the second and needs the least training data and memory space. All three
methods demand no mutual independence of the experts, thus should be
useful in many applications.

Keywords: Expert, classifier, combination methods, OCR, confidences,
Bayes rule

1 Introduction

In the area of pattern recognition, practical applications require highly relia-
ble classification which may be difficult for a single algorithm to achieve. Since
there are a number of classification algorithms in the literature, based on diffe-
rent theories and methodologies, a combination of these can be used to improve
the classification performance by taking advantages of their strengths and avoi-
ding their weaknesses. The task is quite challenging because the decisions of the
individual experts are conflicting.

The idea of combining the decisions of multiple experts has been explored by
many researchers [1]–[15]. In general, based on the output information, there are
three types of experts: Type I that outputs a unique class label indicating the
most probable class to which the input pattern belongs; Type II that outputs a
ranked list of part or all of class labels such that the higher a class label is in the
list, the more probable it is that the input pattern belongs to the corresponding
class; Type III that assigns to each class label a measurement value which indi-
cates the degree by which the corresponding class pertains to the input pattern.
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Combining Type III experts is the most challenging, because of the potentially
many possible combinations of measurement values and the complicated rela-
tions between these values and the experts performance. The problem is even
further complicated by the lack of standard measurements and in this sense, the
measurement values of different experts are usually not compatible.

Previous studies have developed many different approaches for expert com-
bination. For experts of Type I for which only labels are available, voting al-
gorithms are used ([1], [2], [3]). Label rankings are used with experts of Type
II ([4], [5], [3]). In case of Type III experts with measurement values interpre-
ted as posteriori probabilities, a Bayesian technique is often applied for experts
assemblies ([6], [7]). If the expert output is interpreted as fuzzy membership
or evidence values, fuzzy rules ([8],[9]) and Dempster-Shafer approach ([6],[10],
[11]) are used. Also there are cases of expert combination, where the output of
the expert is used as a new feature and a new expert (neural network) is built
to perform the combination ([12], [13], [14]).

In this paper, we focus on a simplified version of Type III multi-expert com-
bination. Each expert uses its own representation, i.e. measurements extracted
from the input pattern are unique to each expert. We create a new accuracy
measurement scale, uniform for all experts and use it as a basis for the expert
combination. We develop an optimal combination scheme which requires extre-
mely large amount of training data as well as memory space. So we introduce an
empirical scheme to approximate the optimal scheme so that the requirements
on the ammount of training data and memory is practical. We first develop the
accuracy measure which is common for all experts. Next, we characterize each
expert with a family of accuracy maps. Next, we build accuracy combination
maps with a special synthetic function. Finally, we construct synthetic accuracy
maps for the combined confidences. We also propose a simplified combination
scheme which requires less training data while sacrificing some accuracy. We
finally discuss the optimal rejection threshold for the final recognition decision.

In Section II, we state the problem formulation. In Section III, we introduce
the accuracy approximation method. We describe the optimal combination rule
in Section IV and an empirical combination rule in Section V. We derive the
optimal rejection threshold in Section VI. We give simulation results in Section
VII and finally draw conclusions in Section VIII.

2 Problem Formulation

Many classifiers are able to supply confidence information from the measurement
level. Bayes’ classifier supplies the a posteriori probabilities as confidence mea-
surements. Various distance related classifiers use the distance between a test
pattern and template/prototype patterns as confidence measurement.

In this paper, we assume that the given experts only supply the top choice
and the corresponding confidence. Specifically, let E(n) represent expert (clas-
sifier) n, where n = 1, 2, . . . , N , and N is the total number of experts. Λ =
{C(1), C(2), . . . , C(M)}, are mutually exclusive and exhaustive set of class la-
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bels. E(n)(x) = (E(n)
1 (x), E(n)

2 (x)) means that expert n assigns the unknown
pattern x to class label E

(n)
1 (x) ∈ Λ with confidence E

(n)
2 (x) ∈ [0, 1].

Our task is to approximate the conditional accuracy distribution function for
a multi-expert system P (E(i)

1 | (E(1)
1 , E

(1)
2 ), (E(2)

1 , E
(2)
2 ), . . . , (E(N)

1 , E
(N)
2 )), i =

1, 2, . . . , N by using the given training samples.

3 Accuracy Approximation

Recognizers usually differ in their confidence measures. A judicious combination
of these measures can be made only when they are on the same scale. We will
develop a way to transform confidence measures from different recognizers to
a “special” confidence, we call accuracy. For a given set of “large enough” as
well as “properly representative” training samples, the accuracy measure can
be obtained by transforming the confidence using sufficient training samples.
Usually, the accuracy is an increasing function of confidence.

Let us assume that the training set is adequately representative. Now let
us discuss the accuracy approximation by utilizing the training samples. We
assume that the confidence measures of all classifiers are continuous, that is, the
confidence values can be any point in [0, 1]. There are many methods that can
implement this transform. Here we introduce a simple and efficient method.

Let L patterns be classified to a certain class label by an expert and have
confidence between [a, b). Let t out of L patterns be correctly classified, then we
can assign the approximate accuracy over [a, b) as µ̃(r) = t/L, ∀r ∈ [a, b). For
a given error bound ε, we claim that L has statistical sense if the probability
that the approximate accuracy µ̃(r), r ∈ [a, b) is within the error ε from any true
accuracy value µ(r),∀r ∈ [a, b) is greater than 1 − ε, that is,

Pr( max
r∈[a,b)

{|µ̃(r) − µ(r)| < ε}) > 1 − ε. (1)

According to (1), the difference of two accuracy values between two adjacent
representative intervals [a, b) and [b, c) satisfies

Pr(|µ̃(r2) − µ̃(r1)| < 2ε) > 1 − 2ε, ∀r1 ∈ [a, b), ∀r2 ∈ [b, c). (2)

At the same time, the accuracy value is within [0, 1]. So the number of represen-
tative intervals over [0, 1] must be greater than 1/(2ε). Therefore, the number
of training samples to approximate accuracy is of the order of O(L/(2ε)) for a
class label. Since there are M labels, totally O(ML/(2ε)) samples are required
to capture the accuracy characteristic of an expert with error tolerance within
ε.

In the real implementation, for a given ε we are not able to estimate L
according to (1). Instead, we estimate L by making the difference of two accuracy
values between two adjacent representative intervals [a, b) and [b, c) less than 2ε,
that is,

0 ≤ µ̃(r2) − µ̃(r1) < 2ε, ∀r1 ∈ [a, b), ∀r2 ∈ [b, c). (3)
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4 Optimal Combination Rule

Let us assume we are given sufficient number of representative training samples
so that we are able to generate the conditional accuracy distribution function
for a multi-expert system, P (E(i)

1 | (E(1)
1 , E

(1)
2 ), (E(2)

1 , E
(2)
2 ), . . . , (E(N)

1 , E
(N)
2 )),

i = 1, 2, . . . , N . This “Behavior-Knowledge Space” scheme produces the optimal
combination performance [13].

However, such approach needs large number of samples. Let us find the lower
bound on the number of samples for the above accuracy approximation with error
bound ε. There are O(M/(2ε)) choices for each pair (E(i)

1 , E
(i)
2 ), i = 1, 2, . . . , N

and thus [M/(2ε)]N choices for {(E(1)
1 , E

(1)
2 ), (E(2)

1 , E
(2)
2 ), . . . , (E(N)

1 , E
(N)
2 )}. For

each choice, at least L samples are required. Therefore, a total number of
O(L[M/(2ε)]N ) samples are necessary to build the above “Behavior-Knowledge
Space”. Also, the memory of O(N [M/(2ε)]N ) are required to build the look-up
table of the joint accuracy distribution.

5 Empirical Combination Rules

5.1 Accuracy Combination Functions

The accuracy combination function is of the form F (a1, a2, . . . , an), where ai ∈
[0, 1], 1 ≤ i ≤ n are n accuracy variables. F (·) is supposed to be symmetric and
in [0, 1]. Moreover, F (·) must satisfy the following two special properties.

F (a1, a2, . . . , an) = 1, if ak = 1, ∃k; (4)
F (a1, a2, . . . , an) = 0, if ak = 0, ∃k. (5)

The justification of (4) and (5) is obvious. In fact, it is never the case that ai = 1
at the same time as aj = 0 (theoretically). Therefore, in this case the function
F (·) is supposed to be non-existent.
A family of functions satisfying the required conditions are:

F (a1, a2, . . . , an) = [h−1(
1
n

n∑
i=1

h(aλ
i ))]1/λ, λ > 0. (6)

where λ is a parameter and h(r), r ∈ [0, 1] is a strictly ascending function
satisfying

h(0) = −∞; (7)
h(1) = ∞. (8)

Here, we consider ∞ as an existent number. Four simple examples of h(·) are
listed as follows:

h(r) = tan(π(r − 1/2)), r ∈ [0, 1]; (9)
h(r) = (1/2 − |r − 1/2|)−1(r − 1/2), r ∈ [0, 1]; (10)
h(r) = (r − r2)−1(r − 1/2), r ∈ [0, 1]; (11)
h(r) = (r − r2)−1/2(r − 1/2), r ∈ [0, 1]. (12)
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5.2 Combination Scheme

For each classification distribution of the multi-expert system (C1, C2, . . . , CN ),
we build an accuracy map, called characteristic accuracy map for each expert.
We note that there are MN possibilities. So we build MN characteristic accu-
racy maps in total for each expert. In practice, we might not have all the MN

possibilities, since some of permutations do not exist. The required number of
training samples with error bound ε is O(MNL/(2ε)). We note the required trai-
ning samples is just linear in the number required to approximate an accuracy
map, thus greatly reducing the required number of training samples.

For a given distribution (C1, C2, . . . , CN ), we denote a set of training samples
by χ such that

(E(1)
1 (x), E(2)

1 (x), . . . , E
(N)
1 (x)) = (C1, C2, . . . , CN ), ∀x ∈ χ. (13)

Let Γ denote the expert indices set such that Ci = C,∀i ∈ Γ and |Γ | ≥ 2. Let
Ẽ

(i)
2 , i ∈ Γ denote the characteristic accuracy maps constructed from χ and

E
(i)
1 (x) = C, ∀i ∈ Γ, ∀x ∈ χ. We define the synthetic accuracy as

E
(Γ )
2 (x) = F (Ẽ(i)

2 (x) : i ∈ Γ ). (14)

When the combination scheme is given, we can easily get the combination
accuracy Ẽ

(Γ )
2 from the synthetical confidence E

(Γ )
2 using the data set χ. The

generated accuracy map is supposed to be an ascending function of the combi-
nation confidence.

Now let us discuss the maximum memory required for the look-up table
for all accuracy maps. For simplicity, we just consider the number of accuracy
maps. The number of synthetic accuracy maps which combines exactly n accu-
racies are M

(
N
n

)
(M − 1)N−n. The total number of synthetic accuracy maps is∑N

n=2 M
(
N
n

)
(M − 1)N−n = M(MN − N(M − 1)N−1 − (M − 1)N ). The maxi-

mum number of accuracy maps, including characteristic and synthetic maps, are
M(MN − N(M − 1)N−1 − (M − 1)N ) + NMN .

5.3 Simplified Combination Scheme

In the original scheme, we need to build O(MN ) accuracy maps for each expert.
Usually, M is a large number, e.g., M = 10 in numerical recognition; M =
10+26×2 = 62 in character recognition. So MN can be a very large number even
for N = 2. Thus this method still needs quite a large amount of training data. So
instead of collecting training data for each specific distribution (C1, C2, . . . , CN )
in the original scheme, we can collect training data for each case such that
Ci = C, ∀i ∈ Γ , where C ∈ Λ, and Γ is a set of expert indices such that |Γ | ≥ 2.
This method requires smaller set of training data, however this is gained by
sacrificing the performance. This method performance is inferior to the original
scheme when given sufficient representative training data.
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The synthetic accuracy map construction procedure is same as the original
scheme. For a special expert n, expert index set Γ including index n has 2N−1

choices and class label C has M choices. Thus we need to build 2N−1M characte-
ristic accuracy maps for each expert. Therefore O(2N−1ML/(2ε)) limit samples
are required. In return, we curtail the required number of training samples by
O((M/2)N−1) times. When M = 2, both schemes become identical.

Now let us discuss the maximum number of accuracy maps. The number of
synthetic accuracy maps which combines exactly n accuracies are M

(
N
n

)
. The

total number of synthetic accuracy maps is
∑N

n=2 M
(
N
n

)
= M(2N − 1 − N).

The maximum number of accuracy maps, including characteristic and synthetic
maps, are M(2N −1−N +N2N−1). In comparision with the original combination
scheme, we also reduce the necessary memory by O((M/2)N−1) times.

6 Optimal Rejection Threshold

In the final stage of making the recognition decision, we have to make one of two
decisions: acceptance or rejection. There is a cost associated with both error as
well as rejection. Trade-offs between the rejection and error ratio must be made.
We follow the optimization objective as in [15]

Robj = min{Rerr + αRrej}. (15)

where Rerr and Rrej are error ratio and rejection ratio, respectively, and 0 ≤
α ≤ 1 is a deterministic parameter.

A natural way to determine the recognition class is to choose the class which
has the maximum accuracy upon the proposed scheme. However, we need to
decide to discard or accept the recognition class according to the recognition
accuracy.

Let us determine the accuracy threshold which minimizes the objective de-
fined in (15). In fact, we can explcitly express both items Rerr and Rrej as
functions of a threshold θ as follows:

Rerr =
∫ 1

r=θ

(1 − r)dr = 1/2 − θ + θ2/2. (16)

Rrej =
∫ θ

0
1dr = θ. (17)

Hence, we have

Robj = min
θ∈[0,1]

{1/2 − θ + θ2/2 + αθ} (18)

Taking the derivative of both sides with respect to θ, we obtain

0 = −1 + θ + α (19)
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Thus the optimal accuracy threshold θ is given by:

θ = 1 − α. (20)

That is, when recognition accuracy is less than the decision threshold θ = 1 − α
we reject the result, otherwise we accept it.

When α = 1, rejecting an unknown pattern is equivalent to misclassification,
as we would like to accept all recognition. This verifies the optimal threshold
θ = 0. When α = 0, the objective is to minimize the error rate alone, so we
would accept an unknown pattern only if it has recognition accuracy 1, that
is, no error is made (theoretically). This again verifies the optimal threshold of
θ = 1.

7 Experimental Results

The training set used in the construction of the accuracy approximation and the
testing set were created using digit samples extracted from the US mail stream.
There are two reasons why we use our own database. First, the recognizers used
in the combinations schemes achieve almost 100% correct rate on databases
available publicly, such as NIST. Second, all classes are equally represented in
the training set which is not the case with other databases. The training set
contains 120,000 digit samples, and the testing set contains 30,000 digit smaples.

Table 1. Performances of binpoly and gradient experts

binpoly gradient
α err(%) rej(%) opt err(%) rej(%) opt

1/5 4.49 31.61 54.04 1.92 12.15 21.73
1/10 0.19 82.64 84.52 1.41 17.30 31.35
1/15 0.19 82.64 85.46 1.03 22.27 37.77
1/20 0.19 82.64 86.46 0.82 26.37 42.86

We used the simplified method exactly as it is described in section V.3 and
the thresholds given in the previous section. Table 1 shows the performance of
the “binpoly” expert [16] and the performance of the “gradient” expert [17].
The “binpoly” expert is a polynomial discriminant algorithm trained to extract
a relative weighting for each feature in each class. The “gradient” expert enco-
des local contour variations of the character image into a binary feature vector.

Table 2. Performance of binpoly-gradient combination

α err(%) rej(%) opt
1/5 1.44 9.34 16.54
1/10 0.97 12.88 22.63
1/15 0.76 15.42 26.88
1/20 0.69 17.20 30.92
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Table 3. Performance of kp and gsc experts

kp gsc
α err(%) rej(%) opt err(%) rej(%) opt

1/5 0.89 10.96 15.44 1.16 4.99 10.80
1/10 0.78 12.00 19.79 1.00 6.19 16.14
1/15 0.67 13.73 23.84 0.90 7.57 21.14
1/20 0.47 16.25 25.61 0.85 8.58 25.58

Table 2 shows the results of the combination of these two experts. As we can
see, for all values of α, the combination method got significant improvement of
the objective function - 23.93% for α = 0.2; 27.75% for α = 0.1; 28.86% for
α = 0.067; and 27.85% for α = 0.05 compared to the values of the objective
function for the better expert.
Table 3 describes the performance of the “kp” expert (unpublished) and the
performance of “gsc” expert [18]. Table 4 shows the results of the combination
of these two experts. The “kp” expert combines the merits of “binpoly” ex-
pert and “gradient” expert. “GSC” expert extracts features based on gradient,
struactural, and concavity. As we can see, these are much more accurate experts,
nevertheless for all values of α, the combination method improve the objective
function - 5.56.% for α = 0.2; 6.82% for α = 0.1; 13.71% for α = 0.067; and
17.20% for α = 0.05 compared to the values of the objective function for the
better expert.

Table 4. Performance of kp-gsc expert combination

α err(%) rej(%) opt
1/5 1.10 4.73 10.22
1/10 0.82 6.85 15.05
1/15 0.66 8.41 18.25
1/20 0.60 9.23 21.17

8 Conclusion

We have investigated the simplified version of type 3 multi-expert systems in
which each expert outputs a class label and a corresponding confidence. We
have developed a general theoretical framework for optimal posterior-probability
based combination scheme and have shown that it needs a huge representative
training set as well as large memory. This is impractical. We have therefore
developed an empirical approach to approximate the joint accuracy distribution
function. In this approach, we develop a special measurement, accuracy, which
is applicable to all experts. We characterize each expert with a class of accuracy
maps. We also develop a family of special combination functions. Finally, we
have discussed the optimal accuracy threshold for the recognition decision.
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This approach doesn’t require mutual independence of experts. In fact, [13]
is just a special case of our approach. However, all desirable properties exist from
the statistical point of view. A “large enough” and “well represented” training
sample set must be available. If only few samples are collected randomly and
carelessly, the desired properties of this method cannot be guaranteed [13].
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