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Abstract. Gibbs models with multiple pairwise pixel interactions per-
mit us to estimate characteristic interaction structures of spatially homo-
geneous image textures. Interactions with partial energies over a particu-
lar threshold form a basic structure that is sufficient to model a specific
group of stochastic textures. Another group, referred here to as regu-
lar textures, permits us to reduce the basic structure in size, providing
only a few primary interactions are responsible for this structure. If the
primary interactions can be considered as statistically independent, a se-
quential learning scheme reduces the basic structure and complements it
with a fine structure describing characteristic minor details of a texture.
Whereas the regular textures are described more precisely by the basic
and fine interaction structures, the sequential search may deteriorate the
basic interaction structure of the stochastic textures.
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1 Introduction

Spatially homogeneous image textures are represented as samples of a parti-
cular Gibbs random field by specifying a geometric structure and quantitative
strengths, or Gibbs potentials, of multiple pairwise pixel interactions [2,3]. The
interaction structure determines which pixels directly interact with a particular
pixel in the sense that they effect conditional probabilities of grey levels in the pi-
xel. The interacting pixels are usually called the neighbours, and the interactions
are described by a neighbourhood graph [2].

The spatially homogeneous interaction structure is represented by several
families of translation invariant pixel pairs, or second-order cliques of a neig-
hbourhood graph, each clique family having its own potential. Generally, the
potentials depend on grey level co-occurrences (GLC) in a pixel pair. The sum
of the potentials over a clique family is the partial interaction energy that de-
termines the contribution of the family to the probability of a particular image.

As shown in [3,4], the analytical first approximation of the maximum like-
lihood estimate (MLE) of the potential for a particular texture is proportional
to the centered GLC histogram (GLCH) for the corresponding clique family in
a given training sample of the texture. Therefore the characteristic interaction
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structure can be chosen by comparing the analytical estimates of the partial
energies for all clique families in a particular large search set.

Many spatially homogeneous textures belong to a specific class of stochastic
textures that can be efficiently described by only a basic interaction structure
consisting of interactions with the partial energies over a particular threshold.
The threshold depends on the relative frequency distribution of the energies for
the clique families in the search set [3,4].

Textures with a regular visual pattern can be only roughly modelled by such
basic structure because they have also a fine structure of pairwise pixel interac-
tions. The fine structure ranks below the basic structure in energy but describes
visually important repetitive minor details. Generally, the probability distribu-
tions of the GLCs for the various clique families are statistically interdependent.
But if the dependence between some families can be ignored, the clique fami-
lies in the search set can be separated into the two groups: (i) the independent
primary interactions with the top partial energies and (ii) the dependent secon-
dary interactions with the lower energies obtained by a statistical interplay of
the primary interactions. In this case the basic structure can be reduced in size
and the fine structure can be recovered by an empirical sequential choice of the
primary interactions that eliminates the secondary ones [5,6].

This paper compares the empirical sequential scheme of learning the inter-
action structure to the approximate analytical and the combined analytical–
empirical sequential schemes. Textures that can be efficiently modelled by the
sequentially chosen basic and fine structures form a specific group of regular
textures differing from the stochastic textures. In the same time the sequen-
tial choice based on partial energies may result in worse interaction structures
of stochastic textures with respect to the conventional thresholding of partial
energies.

2 Search for the Interaction Structure

2.1 Basic Notation

Let g = [gi : i ∈ R; gi ∈ Q] be a digital greyscale image with a finite set of
grey levels Q = {0, 1, . . . , qmax}. Here, R is a finite arithmetic lattice supporting
the images. A spatially homogeneous structure C = [Ca : a ∈ A] of pairwise
interactions between the pixels i ∈ R is specified by a particular subset of
the clique families Ca = {(i, j) : (i, j) ∈ R2; i − j = consta}. Every family
consists of the translation invariant cliques (i, j) with the fixed inter-pixel shift
i − j = consta ≡ (∆xa, ∆ya).

A partial interaction energy Ea(g) of a clique family Ca in an image g is

Ea(g) =
∑

(i,j)∈Ca

Va(gi, gj) = Va • Ha(g) (1)

where Va = [V (q, s) : (q, s) ∈ Q2] is a Gibbs potential for the clique family Ca

with values depending on the GLCs (q, s), Ha(g) is the GLC histogram (GLCH)
collected in the image g over the family Ca, and • denotes the dot product.
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Let V = [Va : a ∈ A] and H(g) = [Ha(g) : a ∈ A] denote the potential
vector and the GLCH vector, respectively. The GLC-based Gibbs image model
with multiple pairwise pixel interactions [4]:

Pr(g|C,V) =
1

ZC,V
exp (E(g)) (2)

relates the probability of every sample g to its total interaction energy E(g):

E(g) =
∑

a∈A

Ea(g) = V • H(g). (3)

As shown in [4], the analytical first approximation of the MLE of the potential
Va is proportional to the difference between the GLCH Ha(g◦) and the expected
uniform GLCH Ha,irf for the samples of the independent random field (IRF),
or what is the same, to the centered GLCH. The IRF is described by the Gibbs
model of Eq. (2) with zero-valued potentials Va = 0.

Therefore, characteristic interaction structure can be recovered by comparing
the analytical estimates of the relative partial interaction energies

ea(g◦) = Ha(g◦) • (Ha(g◦) − Ha,irf) (4)

for a large search set W of possible clique families Ca. In all the experiments
below, the search set W contains 3280 clique families with the inter-pixel shifts
in the range −40 ≤ ∆xa, ∆ya ≤ 40.

2.2 Basic Structure via Thresholding the Partial Energies

In the simplest case, the basic interaction structure can be learnt by comparing
relative partial energies ea(g◦) to a threshold that depends on the frequency
distribution of all the energies for the search set W. Such a structure is sufficient
to simulate many natural image textures called stochastic textures in [3,4].

a b c d

Fig. 1. Training and simulated samples D29 (a, b) and D101 (c, d) with the basic
structures learnt by thresholding the analytically estimated partial energies.

Figure 1 shows, for example, the training and simulated samples 128×128 of
the textures D29 “Beach sand” and D101 “Cane” [1]. The basic interaction struc-
tures (11 and 39 clique families, respectively) were learnt by using the threshold
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θ = Em + 4σ where Em and σ are the mean energy and the standard deviation,
respectively. Such a basic structure results in the visually good simulation of
the stochastic texture D29. But the minor repetitive details of the more regular
texture D101 are not described at all, and the simulation gives only a very rough
approximation of the original visual pattern.

2.3 Empirical Sequential Learning

The above thresholding may produce basic structures of larger size than one
needs for describing the characteristic visual features of a texture if some GLC
distributions over clique families with the top partial energies can be conside-
red as statistically independent. Below, such families will be referred to as the
primary ones. Let Cα and Cβ be the primary clique families with the sizable
energies Eα(g◦) > θ and Eβ(g◦) > θ, respectively. Then they can give rise to
a lower but still sizable energy Eγ(g◦) for the secondary family Cγ , such that
constγ = constα + constβ , although the latter family may not take part in the
basic structure. It is evident that the straightforward thresholding cannot detect
a fine interaction structure describing minor but visually characteristic regular
details of a texture if their interaction energies are lower than the energies of
secondary interactions produced by the primary basic ones.

Empirical sequential learning, proposed first by Zalesny [5,6], reduces the
basic structure to only the primary interactions and recovers the fine structure
by repeating iteratively the texture simulation and structure selection steps. We
shall restrict our consideration to the specific type of sequential learning that is
based on the relative partial energies of interactions. At each iteration t, a new
image sample g[t] is simulated under a current interaction structure C[t]. Then
the GLCHs Ha(g◦) for a given training sample g◦ are compared to the GLCHs
Ha(g[t]) for the simulated sample, and the clique family with the maximum
relative partial energy

ea(g◦) = Ha(g◦) • (Ha(g◦) − Ha(g[t])) (5)

is selected to be added to the current structure.
In principle, all the statistical interplay between the primary and secondary

energies is taken into account by simulation so that both the basic and fine
structures of the minimum size are expected to be found. But it should be noted
that imahe simulation with a fixed interaction structure and potentials results in
a set of different samples such that their GLCHs approach the GLCHs for a given
training sample only in average. Therefore the obtained basic and especially fine
structures will reflect also a particular sequence of simulated images, and the
same training sample may produce notably different interaction structures.

Figures 2–4 show the textures simulated after learning the interaction struc-
ture by the empirical sequential search using the training samples D29 and D101
in Figure 1. The primary structure found for the texture D29 contains only the
two clique families with the inter-pixel shifts [0, 1] and [1, 0]. The additional fine
structure includes the families with very low energies. As a result, they are cho-
sen rather arbitrary, and the resulting structure is unsuitable for simulating the
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a b c d

Fig. 2. Texture D29 simulated with 4 (a), 5 (b), 7 (c), and 11 (d) clique families found
by the sequential empirical choice of the family with the top relative partial energy.
Notice that these images do not mimic the initial visual pattern of Figure 1,a.

a b c d

e f g h

Fig. 3. Texture D101 simulated with 7 (a) – 14 (h) clique families found by the
sequential empirical choice of the family with the top relative partial energy.

texture samples that possess the visual similarity to the training sample D29 in
Figure 1,a. The images in Figure 2, in contrast to the simulated sample in Fi-
gure 1,b, differ much from the training sample even when the overall interaction
structure is of the same or greater size than the basic structure recovered by
thresholding the energies.

But as shown in Figures 3 and 4, the overall structure found sequentially
for modelling the texture D101 with a repetitive visual pattern, both contains
less clique families and represents better the fine details than the basic structure
found by thresholding the energies. The sequential choice of a single top clique
family with the highest relative energy of Eq. (5) proposed in [5,6] forms the
basic structure of about 16 clique families and the fine structure of 4–6 clique
families (compare Figure 1,d to Figures 3 and 4.

Similar results in Figure 5 are obtained twice faster by choosing the two top
families at each step. But the structures of similar size obtained by choosing more
than two clique families per iteration give somewhat worse simulation results (see
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a b c d

e f g h

Fig. 4. Texture D101 simulated with 15 (a) – 22 (h) clique families found by the
sequential empirical choice of the family with the top relative partial energy.

a b c d

e f g h

Fig. 5. Texture D101 simulated with 4 (a) – 12 (e), 16 (f), 18 (g), and 22 (h) clique
families found by the sequential empirical choice of the top two families.

Figure 6). Also, it should be noted that the visual quality of simulation does not
steadily increase with the structure size. As follows from Figures 3–6, the quality
may even degrade after adding a clique family and then be restored after adding
one–two more families.

2.4 Analytical Sequential Learning

Assuming the probability distributions of the GLCs for the primary clique fami-
lies are statistically independent, the secondary interactions with relatively high
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a b c d

e f g h

Fig. 6. Texture D101 simulated with 4 (a) – 32 (h) clique families found by the
sequential empirical choice of the top four families.

energies can be approximately taken into account by recomputing each secon-
dary GLCH, Hγ(g), using each currently chosen primary GLCH, Hα(g), and
the corresponding previous GLCH Hβ(g) such that constγ = constα + constβ .
In this case all the GLCHs in the search set W can be analytically updated
after adding to a current interaction structure the next clique family with the
maximum relative energy of Eq. (5) with respect to the training sample. Such an
analytical estimation does not take account of all the statistical interplay of the
families but only approximates the actual distribution of the relative energies.

Figures 7,a–b, and 8,a–b demonstrate the grey-coded actual and analytically
computed distributions of the partial energies of Eq. (4) for the textures D29 and
D101 over the search set W. Here, each square box of size 4×4 pixels represents a
particular inter-pixel shift consta = (∆x, ∆y); −40 ≤ ∆x, ∆y ≤ 40. The energy
distributions for the textures D29 and D101 are computed, respectively, with
the 10 and 15 sequentially chosen primary clique families. The corresponding
interaction structures as well as the more detailed structures with the 22 clique
families are shown in Figures 7,c–d and 8,c–d. The low-energetic fine structure
of the texture D29 does not represent specific visual features and is obviously
arbitrary, as distinct from the regular fine structure of the texture D101.

The sequential analytical scheme results in a sufficiently accurate approxi-
mation of the actual interaction energies. Therefore it can be used for reducing
the size of the basic structure with respect to the like structures obtained by
thresholding the energies of Eq. (4). The samples D101 in Figure 9,a–c simu-
lated with the analytically found interaction structures containing 15–25 clique
families are very similar to the sample D101 in Figure 1,d simulated with the
39 families. The texture in Figure 9,d simulated with the 32 clique families re-
flects also some fine visual details but to the lesser extent than the samples in
Figures 4,e–h, 5,d–h, and 6,h, obtained by the empirical sequential learning.
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a b c d

Fig. 7. Estimated with 10 clique families (a) and actual (b) energies for the D29 model
and the interaction structures with 10 (c) and 22 (d) analytically chosen families.

a b c d

Fig. 8. Estimated with 15 clique families (a) and actual (b) energies for the D101 model
and the interaction structures with 15 (c) and 22 (d) analytically chosen families.

a b c d

Fig. 9. Texture D101 simulated with 15 (a), 19 (b), 25 (c), and 32 (d) analytically
chosen clique families.

As concerning the stochastic texture D29, the analytical sequential search for
the top relative partial energies has the same drawbacks as the empirical one.
Figures 1,a–b, 7, and 10 show that the basic structure recovered by threshol-
ding produces much better simulation results even when the analytically chosen
structure is of larger size.

The possible reason is that the assumed statistical independence of the GLC
distributions for the primary interactions does not hold for this texture so that
the exclusion of the secondary interactions by using the relative energies of
Eq. (5) is not justified. In such a case the search for the reduced basic structure
and additional fine can only deteriorate the actual basic structure.



Basic and Fine Structure of Pairwise Interactions in Gibbs Texture Models 755

a b c d

Fig. 10. Texture D29 simulated with 4 (a), 10 (b), 15 (c), and 22 (d) analytically
chosen clique families.

2.5 Combined Sequential Learning

As follows from the above experiments, the sequential learning can produce the
efficient interaction structures only if our assumption about the independent pri-
mary GLC distributions has a reasonable fit to the textures under consideration.
If this assumption holds, let these latter be called the regular textures.

The empirical sequential learning outperforms the faster analytical scheme
as concerning the fine interaction structure of a regular texture. But the reduced
basic structures recovered empirically or analytically are very similar so that the
sequential learning can be accelerated by combining the both approaches.

Figure 11 shows the results of simulating the texture D101 when the reduced
basic interaction structure with 15 clique families is first found analytically (see
Figures 8 and 9) and then is appended with the fine structure of 1–8 clique
families by the empirical learning. It is evident that the purely empirical and
the combined analytical–empirical sequential learning produce very similar final
results, but the latter approach is much faster than the former one.

3 Conclusions

These and other our experiments (as well as experiments [6] in empirical sequen-
tial learning based on the chi-square distances between the GLCHs) suggest that
modelling of spatially homogeneous textures with the Gibbs model of Eq. (2)
must take account of possible statistical dependences between the clique families
that form the characteristic interaction structure. Stochastic textures introduced
in [3,4] have basic stuctures of only weakly interdependent primary interactions
so that no interaction with a sizeable partial energy can be considered as the
secondary one and excluded from the basic structure.

Regular textures differ from the stochastic ones in that they can be modelled
by the reduced basic and the additional fine structures. The initial basic struc-
ture contains both the strongly and weakly interdependent interactions with a
sizable energy. Assuming that only the top-energetic interactions are the inde-
pendent primary ones, the basic structure is reduced in size by the empirical or
analytical sequential exclusion of the dependent secondary interactions. Then the
fine structure is recovered in the like way by the empirical sequential learning.
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a b c d

e f g h

Fig. 11. Texture D101 simulated with the interaction structure containing 15 ana-
lytically found clique families and the additional 1 (a) – 8 (h) families found by the
sequential empirical choice of the top family.

The sequential learning extends the range of image textures that can be
modelled by multiple pairwise pixel interactions but it does not replace the sim-
ple energy thresholding for the stochastic textures. Also, the sequential learning
schemes, as well as the parallel thresholding of partial energies, have still no theo-
retically justified rules for choosing an adequate size of the interaction structure.
Thus the number of clique families to be used in the Gibbs model of a particular
texture is selected, mainly, on the experimental base. Our experiments and ex-
periments in [4,6] show that many natural spatially homogeneous images are of
the stochastic or regular type. But a vast majority of images are outside these
types and should be modelled by other means.
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