
Collaborative Filtering with the Simple Bayesian Classifier

Koji Miyahara1 and Michael J. Pazzani2

1 Information Technology R&D Center
Mitsubishi Electric Corporation

5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, JAPAN
miya@isl.melco.co.jp

2 Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

pazzani@ics.uci.edu

Abstract:
Many collaborative filtering enabled Web sites that recommend books, CDs, movies,
videos and so on, have become very popular on Internet. They recommend items to a
user based on the opinions of other users with similar tastes. In this paper, we discuss
an approach to collaborative filtering based on the simple Bayesian classifier. The
simple Bayesian classifier is one of the most successful supervised machine-learning
algorithms. It performs well in various classification tasks in spite of its simplicity.
In this paper, we define two variants of the recommendation problem for the simple
Bayesian classifier. In our approach, we calculate the similarity between users from
negative ratings and positive ratings separately. We evaluated these algorithms using
a database of movie recommendations and joke recommendations. Our empirical
results show that one of our proposed Bayesian approaches significantly outperforms
a correlation-based collaborative filtering algorithm. The other model almost out-
performs as well although it shows similar performance to the correlation-based ap-
proach in some parts of our experiments.

Keywords:
Agents, User modeling

Email address of contact author:
miyahara@ics.uci.edu (Until 3/31/00)
miya@isl.melco.co.jp (After 4/1/00)

Phone number of contact author:
+1- (949) 824-8046 (Until 3/31/00)
+81-(467) 41-2486 (After 4/1/00)

1 Introduction
The growth of Internet has resulted in a tremendous amount of information available
and a vast array of choices for consumers. Recommender systems are designed to
help a user cope with this situation by selecting a small number of options to present
the user. They filter and recommend items based on a user’s preference model. Vari-
ous types of recommender systems have been proposed so far, their filtering tech-
niques fall into two categories. One is content-based filtering (e.g. [12]) and the other
is collaborative filtering or social filtering (e.g. [16]).

In content-based filtering, a user’s preference model is constructed for the individual
based upon the user’s ratings and descriptions (usually, textual expression) of the
rated items. Such systems try to find regularities in the descriptions that can be used
to distinguish highly rated items from others. On the other hand, collaborative filter-
ing tries to find desired items based on the preference of set of similar users. In order
to find out like-minded users, it compares other users’ ratings with the target user’s
ratings. It is not necessary to analyze the contents of items, therefore it can be applied
to many kind of domains where a textual description is not available or regularities in
the words used in the textual description are not informative (e.g. [4]). One of the
most popular algorithms in collaborative filtering is a correlation-based approach. In
this paper, we report experimental results comparing the collaborating filtering with
the Simple Bayesian Classifier as an alternative approach.

This paper is organized as follows. We present the central ideas of current typical
collaborative filtering algorithms. We define the two alternative formulations of the
Simple Bayesian Classifier for collaborative filtering. Then, we evaluate our algo-
rithms on database of user ratings for movies and jokes, and show that our approach
outperforms the correlation-based collaborative filtering algorithm. Finally, we dis-
cuss the results and summarize this paper.

2 Collaborative Filtering
The main idea of collaborative filtering is to recommend new items of interest for a
particular user based on other users’ opinions. A variety of collaborative filtering al-
gorithms have been reported and their performance has been evaluated empirically
([2], [15], [16]). These algorithms are based on a simple intuition: predictions for a
user should be based on the preference patterns of other people who have similar in-
terests. Therefore, the first step of these algorithms is to find similarities between user
ratings. Resnick et al. [15] use the Pearson correlation coefficient as a measure of
preference similarity. The correlation between user j and j’ is:

∑∑
∑

−−

−−
=

i
jij

i
jij

i
jijjij

jj
RRRR

RRRR
w

2
''

2

''

'
)()(

))((

where all summations over i are over the items which have been rated by both j and j’.
The predicted value of user j for item i is computed as a weighted sum of other users’
ratings:

∑
∑ −

+=

'
'

'
''')(

ˆ

j
jj

j
jjjij

jij w

wRR
RR

These correlation-based prediction schemes were shown to perform well. However, it
should be valuable to think of other approaches. Breese et al. [2] report a variety of
modification to the above typical collaborative filtering techniques and the use of
Bayesian clustering and a Bayesian network. A primary difference between what we
propose below and the work of Breese et al. [2] is that we construct a separate Baye-
sian model for each user. This is practical only for the simple Bayesian classifier that
is linear in the number of examples and number of features.

3 Simple Bayesian Model

3.1 Rating Matrix
Most of collaborating filtering systems adopt numerical ratings and try to predict the
exact numerical ratings. However, we are not interested in the prediction of the exact
rating a user would have given to a target item. We would much rather like to have a
system that can accurately distinguish between items to recommend and others.
Therefore, we defined two classes, like and dislike, that were used as class labels.
Table 1 is an example of rating matrix in which three users have reported ratings on
five different items. Some entries in the matrix are empty because users do not rate
every item. The last row represents the ratings of a user for which the system will
make a prediction. Typically, the rating matrix is sparse because most users do not
rate most items.

I1 I2 I3 I4 I5

U1 Like Dislike Dislike Like
U2 Dislike Dislike Dislike
U3 Like Like Like
Class Label Like Dislike Like Like ?

Table 1: Example of User Ratings in a sparse matrix

I1 I2 I3 I4 I5

U1like 1 0 0 0 1
U1dislike 0 1 1 0 0
U2like 0 0 0 0 0
U2dislike 1 0 0 1 1
U3like 0 1 1 0 1
U3disike 0 0 0 0 0
Class Label Like Dislike Like Like ?

Table 2. Boolean Feature transformation of Ratings Matrix

Billsus and Pazzani [1] proposed transforming the format of rating matrix so that
every cell has an entry. In their format, each user’s ratings are divided into two fea-
tures, which has a Boolean value indicating whether the user reported liking the item

and whether the user reported not liking the item. Table 2 shows the resulting Boo-
lean feature based rating matrix. One of the advantages of this transformation is that
we can treat each feature as an attribute like a word in text-based information filtering
domains. Therefore. it is possible to apply any supervised machine learning algorithm
to the collaborative filtering task.

3.2 Simple Bayesian Classifier
The Simple Bayesian Classifier is one of the most successful algorithms on many
classification domains. Despite of its simplicity, it is shown to be competitive with
other complex approaches especially in text categorization and content based filter-
ing. Making the “naïve” assumption that features are independent given the class la-
bel, the probability of an item belonging to class j given its n feature values,
p(classj| f1, f2, … fn) is proportional to:

∏
n

i
jij classfpclassp)|()(

where both p(classj) and p(fi | classj) can be estimated from training data. To deter-
mine the most likely class of an example, the probability of each class is computed,
and the example is assigned to the class with the highest probability. Although the
assumption that features are independent given class label of an item is not realistic in
this domain, the Simple Bayesian Classifier has been shown to be optimal in many
situations where this assumptions does not hold [3] and has been empirically been
shown to be competitive with more complex approaches in many others (e.g., [9]).

Here, we define two variants of the Simple Bayesian Classifier for collaborative fil-
tering.
(1) Transformed Data Model

This model is identical to the multi-variate Bernoulli model applied to the trans-
formed data such as that in Table 2. This model assumes that all the features,
even dual features (Uilike and Uidislike), are completely independent. After se-
lecting a certain number of features, absent or present information of the selected
features is used for predictions. That is:

p(classj| f1=1, f2=0 , f3=1 … fn-1=1, fn=0)

where fi=1 means that fi is present on the target item and fi=0 means that fi is ab-
sent on the target item.
When estimating conditional probabilities, e.g. p(fi =1| classj) , it is calculated
over all ratings of the target user. The following conditions hold for this model:

p(Uilike = 1 | classj) + p(Uilike = 0 | classj) = 1.
p(Uidislike = 1 | classj) + p(Uidislike = 0 | classj) = 1.

However, p(Uilike = 1 | classj) + p(Uidislike = 1 | classj) and p(Uilike = 0 |
classj) + p(Uidislike = 0 | classj) does not necessarily equal 1 because some us-
ers may have not indicated whether they like or dislike a particular item.

(2) Sparse Data Model

In this model, it is assumed that only known features are informative for classifi-
cation. Therefore, only known features are used for predictions. Therefore the
following formula is considered as follows:

p(classj| f1=1, f3=1, … fn-1=1)
Moreover, we make an only use of the data which both users in common rated
when estimating conditional probabilities. In this representation, the following
condition holds:

p(Uilike = 1 | classj) + p(Uidislike = 1 | classj) =1

For example, in the rating matrix of Table 2, the estimated conditional probability of
p(U1like | like) = 0.33 in the transformed data model and p(U1like | like) = 0.5 in the
sparse data model1 respectively.

By using Simple Bayesian Classifier to make predictions, we expect to avoid a prob-
lem with correlation-based collaborative filtering algorithms. The correlation-based
algorithms make a global similarity model between users, rather than separate models
for classes of ratings (e.g. positive rating vs. negative rating). It might be possible that
a set of one user’s positive ratings is a good predictor for other users’ positive ratings
but the negative ratings of one user may not be useful in making predictions. Since
the proposed models treat each class of ratings separately, we expect that the Baye-
sian model will capture similarity between users more precisely.

3.3 Feature Selection
Feature selection is a common preprocessing technique in many supervised learning
algorithms. By restricting the number of features, it might be expected that it would
increase the accuracy of the learner by ignoring irrelevant features or reduce the com-
putation time. We apply a feature selection method to find a set of the n most infor-
mative features. Since our goal is to discriminate between classes, we define informa-
tive as being equivalent with providing the most information about an item’s class
membership. Intuitively, we would like to select features that appear more frequently
in one class than in others. We use an information theory based approach to determine
n most informative features. This is accomplished by computing the expected infor-
mation gain [13] that the presence or absence of a feature F gives toward the classifi-
cation of a set of labeled items S:

E(F, S) = I(S) - [p(F = 1) I(SF = 1) + p(F = 0) I(SF = 0)]

where p(F =1) is the probability that feature F is present on an item, and SF = 1 is the
set of items for which F = 1 holds, and I(x) is the entropy of a set of labeled items,
defined as:

1We use Laplacean prior in the actual calculation of conditional probabilities to smooth the
probability estimates with few rating and to avoid estimating a probability to be 0. Therefore,
the values of p(U1like | like) are (1+1)/(3+2) = 0.4 in Transformed Data Model and (1+1)/(2+2)
= 0.5 in Sparse Data Model respectively.

∑
∈

−=
classesc

cc SpSpSI))((log)()(2

where Sc is the set of all rated items that belong to class c (In our case, c = {like, dis-
like}) by the target user. This formula is suitable for the Transformed Model, because
it can calculate information gain of all the features independently even dual features
such as Uilike and Uidislike. However the above formula doesn’t guarantee that se-
lected feature is informative in the Sparse Model, because the conditional probability
is estimated from the common items rated by both users. For Sparse Model, we ex-
tend the above formula as follows:

Esparse(F, S) = E(F,Scommon)*E(F,S)* E(¬ F,S)

where Scommon is the set of the common rated items by both users and ¬ F is the dual
feature of F, that is ¬ Uilike = Uidislike and ¬ Uidislike = Uilike. Note that since
E(Uilike, Scommon) is equal to E(Uidislike, Scommon), the value of Esparse(Uilike, S) is
equivalent to the value of Esparse(Uidislike, S) in the above formula. Accordingly, se-
lecting features is identical to selecting users in the Sparse Model.

4 Experiments

4.1 Dataset
We used the EachMovie dataset and Jester dataset as test data.
(1) EachMovie dataset

The EachMovie service was part of a research project at the DEC Systems Re-
search Center [10]. The service was available for an 18-months period and was
shut down in September 1997. During that time 72,916 users entered numeric
ratings for 1,628 movies. User ratings were recorded on a numeric six-point
scale, ranging from 0 to 1 (0, 0.2, 0.4, 0.6 0.8, 1.0). In our experiment, we use an
experimental protocol similar to the one first used in [1]. We restricted the num-
ber of users to first 2,000 users in the database. These 2,000 users provided rat-
ings for 1,410 different movies.

(2) Jester Data
Jester is a WWW-based joke recommendation system, which has been develop-
ing at University of California, Berkeley [4]. This data has 21,800 users entered
numeric ratings for 100 jokes. User ratings were recorded on a real value, ranging
from -10 to +10. Like EachMovie dataset, we restricted the number of users to
first 3,000 users in the database. These 3000 users provided rating for 100 differ-
ent jokes.

4.2 Evaluation Criteria
We are not interested in the most accurate prediction of the exact rating which a user
would have given to the target item. Rather we would like to have a system that can
accurately distinguish items that are liked by the user and items disliked. To distin-
guish items, we transformed numerical ratings into these two labels. We labeled items
as like if the numerical rating for the item was above 0.7 (midpoint between the two

possible user ratings 0.6 and 0.8), or dislike otherwise in EachMovie dataset. And, we
labeled items as like if the numerical rating for the item was above 2.0, or dislike oth-
erwise in Jester dataset.

Not only does assigning class labels allow us to measure classification accuracy, we
can also apply additional performance measures, precision and recall, commonly
used for information retrieval tasks. However, it might be easy to optimize each of
these measurements. To avoid this problem, we use F-Measure [7], which combines
precision and recall:

recallprecison
recallprecision

MeasureF
+

⋅⋅=− 2

4.3 Experimental Methodology
In our first experiment, we have evaluated the effectiveness of feature selection for
our proposed two alternative representations. We also have evaluated a typical corre-
lation-based approach, which is described in [15]. We selected 20 test users who have
rated at least 80 movies from the EachMovie and 20 test users who have rated at least
60 jokes from the Jester dataset respectively. In the correlation-based approach, after
calculating the predicted score, we labeled like or dislike according to the thresholds
(0.7 in EachMovie and 2.0 in Jester). For each test user we ran a total of 20 paired
trials for each algorithm, where we varied the number of features. For an each trial in
an experiment, we randomly selected 50 rated items for EachMovie and 40 for Jester
as a training set, and 30 items for EachMovie and 20 for Jester as a test set. The final
results for one user are then averaged over all 20 trials, and we report the average
value over 20 test users. In the Transformed Model, we selected N most informative
features from all of the features. Predictions are made using all of these selected fea-
tures. However, since Sparse Model uses only present features, it would happen that
no selected feature is present for the target items. To avoid this problem, we picked
up N most informative users (features) among users have already rated the target
item. We applied similar method to the correlation-based approach, except it used an
absolute value of correlation coefficient instead of the expected information gain.

In our second experiment, we have evaluated performance when we change the num-
ber of rated item in a training data. We started training with 10 rated items and in-
creased the training set incrementally in steps of 10 up to 50 items for EachMovie and
up to 40 items for Jester, measuring the algorithms' performance on the test set for
each training set size. For each algorithm, we set the number of features, which got
the best performance at the first experiment. Like the first experiment, for each test
user, we ran a total of 20 paired trials for each algorithm. We repeated this for all test
users and the final results reported here are averaged over 20 test users.

5 Results
Figure 1 shows the classification accuracy of our first experiment with EachMovie
dataset. Note that since there are 4,000 (2000 users × 2 features per user) features at
most in EachMovie dataset, maximum number of features is 3,998 (4,000 features – 2

features) in the Transformed Model. The results show that the Transformed Model
reaches a maximum accuracy of 67.3% at 100 features. It seems to be sensitive to the
number of selected features and it is getting worse in proportion to the number of
features significantly. The Sparse Model reaches a maximum classification accuracy
of 71.6% at 200 users. However, there are no significant differences among the per-
formance with 30 user or more. Correlation reaches a maximum accuracy of 66.4% at
30 users. Its performance seems to be stable at 30 users or more like the Sparse
Model.

Figure 2 shows the classification accuracy with Jester dataset. The Transformed
Model reaches a maximum classification accuracy of 68.3% at 200 features, Sparse
Model is 68.5% at 50 users and Correlation is 68.0% at 50 users. Like EachMovie
dataset, Transformed Model clearly has an optimal number of features. The perform-
ance of Sparse Model and Correlation is getting worse when picking larger number
of users.

Classfication Accuracy

58

60

62

64

66

68

50 10
0

20
0

50
0

10
00

20
00

39
98

Num ber of features

A
cc

ur
ac

y

Transformed Model

Classfication Accuracy

64

66

68

70

72

74

10 20 30 40 50 10
0

20
0

19
99

Number of users

A
cc

ur
ac

y

Sparse Model Correlation

Figure 1: Effects of Feature Selection (EachMovie Dataset)

Classfication Accuracy

62

64

66

68

70

50 10
0

20
0

30
0

50
0

10
00

30
00

59
98

Num ber of features

A
cc

ur
ac

y

Transformed Model
Classfication Accuracy

62

64

66

68

70

10 20 30 40 50 10
0

20
0

50
0

29
99

Number of users

A
cc

ur
ac

y

Sparse Model Correlation

Figure 2: Effects of Feature Selection (Jester Dataset)

Figure 3 shows learning curves in our second experiment with EachMovie dataset,
and Figure 4 shows learning curves with Jester dataset. For each model, we set the
number of features which performs best in our first experiment. These results show
that the Sparse Model performs best among three models. Especially, with Each-
Movie dataset, it significantly outperforms other two models significantly (as for ac-
curacy, at 50 training examples, 71.6% for Sparse Model vs. 67.3% for Transformed
Model and 66.4% for Correlation. As for F-Measure, 70.2% for Sparse Model vs.
64.4% Transformed Model and 58.4% for Correlation). Transformed Model generally
performs better than Correlation except the accuracy at 30 or less training examples.
With Jester dataset, Sparse Model performs slightly better than the Transformed
Model and both models outperform Correlation. At 40 training examples, Trans-
formed Model reaches F-Measure of 66.3%, Sparse Model is 65.9% and Correlation
is 60.1%. The accuracy of Sparse Model is 64.2%, Transformed Model is 62.7% and

Figure 3: Learning Curves (EachMovie Dataset)

Classfication Accuracy

61

64

67

70

73

10 20 30 40 50
Number of Training Examples

A
cc

ur
ac

y

Transformed Model (100 features) Sparse Model(best 200 users)
Correlation(best 30 users)

F-Measure

45

50

55

60

65

70

75

10 20 30 40 50
Number of Training Examples

F-
M

ea
su

re

Figure 4: Learning Curves (Jester Dataset)

Classfication Accuracy

60

63

66

69

10 20 30 40
Number of Training Examples

A
cc

ur
ac

y

Transformed Model (200 features) Sparse Model (best 50 users)
Correlation (best 50 users)

F-Measure

45

50

55

60

65

70

10 20 30 40
Number of Training Examples

F-
M

ea
su

re

Correlation is 61.7% at 10 training examples. As for the F-Measure, Sparse Model is
62.8%, Transformed Model is 60.0%, and Correlation is 45.6%.

6 Discussion
Our experimental results show that our proposed collaborative filtering with the Sim-
ple Bayesian Model performs well. The Sparse Model significantly outperforms over
the correlation-based algorithm. We think that the probability calculation by dividing
positive ratings and negative ratings separately captures more precise similarity be-
tween users and it has a good effect on predictions. We also think that probability
smoothing by Laplacean prior in the Sparse Model might be effective especially in
the case that the number of commonly rated items is small.

The feature selection is effective in the Transformed Model, the model has an opti-
mum number of features which can work best. Similar results are reported in text
classification tasks using the multi-variate Bernoulli model of Simple Bayesian Clas-
sifier ([9], [12]). The Sparse Model has an optimum number of features with Jester
dataset, but it is not significant. The effect of features selection is not clearly shown
with EachMovie dataset.

It is interesting that the Transformed Model works well. This model treats even miss-
ing ratings as informative. It might be possible that this treatment distorts the simi-
larity between users, because it would be happen that a user doesn’t rate items by
chance. In text classification tasks, it is reasonable that an absent word is informative,
because people tend to use suitable words for its domain of the text. Therefore, ab-
sence of the word is a good predictor for its negative class. However, our empirical
results show that this model performs well in spite of this intuitive thought. One ad-
vantage of the Transformed Model is that it greatly reduces computational complex-
ity. Once the model selected fixed number of features, it can make predictions using
the selected features.

7 Conclusions and Future Work
In this paper, we reported on collaborative filtering with the Simple Bayesian Classi-
fier. We proposed two representations for the Simple Bayesian Classifier. We found
that the Sparse Data Model performs better than the Transformed Data Model and the
typical correlation-based approach. This shows that the transformation proposed by
Billsus and Pazzani [1] to use any machine learning algorithms for collaborative fil-
tering may be improved upon by algorithms which handle missing data well. The
Transformed Data Model also outperforms the correlation-based approach although it
shows similar accuracy to the correlation approach in some parts of the experiment
with EachMovie dataset. Since our experiments used two datasets, it is important to
adopt other type of dataset to verify our methodology.

In future work, we will investigate to combine content based filtering and collabora-
tive filtering. As a first step, we plan to integrate keyword features and user features
within one framework using the Simple Bayesian Classifier.

References

[1] Billsus, D. & Pazzani M. (1998) Learning Collaborative Filters. In Proceedings
of the 15th International Conference on Machine Learning, San Francisco, CA.,
Morgan Kaufmann Publishers.

[2] Breese, J., Heckerman, D., Kadie, C. (1998) Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, Madison, WI., Morgan Kaufmann Pub-
lisher.

[3] Domingos, P. & Pazzani M.(1997) On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. Machine Learning, 29, 103-130.

[4] Gupta, D., Digiovanni, M., Narita, H., Goldberg, K. (1999) Jester 2.0: A New
Linear-Time Collaborative Filtering Algorithm Applied to Jokes. Workshop on
Recommender Systems Algorithms and Evaluation, 22nd International Confer-
ence on Research and Development in Information Retrieval, Berkeley, CA.

[5] Herlocker, J., Konstan, J., Borchers, A., Riedl, J. (1999) An Algorithmic Frame-
work for Performing Collaborative Filtering. In proceedings of 22nd International
Conference on Research and Development in Information Retrieval 230-237,
Berkley, CA., ACM Press.

[6] Hill, W., Stead, L., Rosenstein, M., Furnas, G.(1995) Recommending and Evalu-
ating Choices in a Virtual Community of Use. In Proceedings of the Conference
on Human Factors in Computing Systems, 194-201, Denver, CO., ACM Press.

[7] Lewis, D. & Gale, W. A. (1994) A sequential algorithm for training text classifi-
ers. In Proceedings of 17th International Conference on Research and Develop-
ment in Information Retrieval, 3-12, London, Springer-Verlag.

[8] Lewis, D. (1998) Naïve (Bayes) at forty: The independence assumption in infor-
mation retrieval. In Proceedings of the Tenth European Conference on Machine
Learning.

[9] McCallum, A. & Nigam, K. (1998) A Comparison of Event Models for Naïve
Bayes Text Classification. American Association for Artificial Intelligence
(AAAI) Workshop on Learning for Text Categorization.

[10]McJonese, P. (1997). EachMovie collaborative filtering data set. DEC Systems
Research Center.

[11]Mitchell, T., (1997) Machine Learning. MacGraw-Hill, New York.
[12]Pazzani, M. & Billsus, D. (1997) Learning and Revising User Profiles: The iden-

tification of interesting web sites. Machine Learning 27, 313-331.
[13]Quinlan, J.R. (1986). Induction of decision trees. Machine Learning 1, 81-106.
[14]Resnick, P. & Varian, H. (1997) Recommender systems. Communications of the

ACM, 40(3) 56-58.
[15]Resnick, P., Neophytos, I., Mitesh, S. Bergstrom, P. Riedl, J. (1994) GroupLens:

An Open Architecture for Collaborative Filtering of Netnews. In Proceedings of
CSCW94: Conference on Computer Supported Cooperative Work, 175-186,
Chapel Hill, Addison-Wesley.

[16]Shardanand, U. & Maes, P. (1995) Social Information Filtering: Algorithms for
Automating 'Word of Mouth'. In Proceedings of the Conference on Human Fac-
tors in Computing Systems, 210-217, Denver, CO., ACM Press.

