
A Fast Layout Algorithm for k-Level Graphs

Christoph Buchheim, Michael Jünger, and Sebastian Leipert

Universität zu Köln, Institut für Informatik,
Pohligstraße 1, 50969 Köln, Germany

{buchheim,mjuenger,leipert}@informatik.uni-koeln.de

Abstract. We present a fast layout algorithm for k-level graphs with
given permutations of the vertices on each level. The algorithm can be
used in particular as a third phase of the Sugiyama algorithm [8]. In the
generated layouts, every edge has at most two bends and is drawn verti-
cally between these bends. The total length of short edges is minimized
levelwise.

1 Introduction

When displaying hierarchical network structures, one usually has a partition of
the vertices into k levels such that in the drawing all vertices of a common level
are required to receive the same y-coordinate. This leads to the concept of k-level
graphs, that is also used to draw arbitrary graphs in the algorithm of Sugiyama
et al. [8]. This algorithm serves as a frame for many graph drawing algorithms,
processing a graph in three phases. In a first phase, the vertices are assigned to
levels 1, . . . , k, thus transforming the graph into a k-level graph. In the second
phase, the number of edge crossings is reduced by permuting the vertices within
the levels. Finally, a nice layout based on the results of the previous phases has
to be determined, assigning y-coordinates to the levels and x-coordinates to the
vertices and edge bends.

The first two phases of the Sugiyama algorithm have been examined inten-
sively, see e.g. [5] for the crossing minimization, while the third phase has only
been studied rarely, see e.g. [3] or [7]. In this paper, we present a new algorithm
LEVEL LAYOUT for the third phase. Every edge that traverses more than one
level is drawn vertically except for its outermost segments. This improves reada-
bility (compare Fig. 1 and Fig. 2). Furthermore, the total length of short edges is
minimized levelwise as described in Sect. 5.2. If the k-level graph is connected,
LEVEL LAYOUT performs in O(m(log m)2), where m is the number of edge
segments in the k-level graph, i.e., the number of edges after introducing virtual
vertices wherever an edge crosses a level. An implementation of the algorithm is
contained in the AGD-Library [6].

2 Preliminaries

A graph G is a pair (V, E) where V is an arbitrary finite set and E is a subset of
{{v, w} | v, w ∈ V, v 6= w}. Elements of V and E are called vertices and edges,

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 229–240, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

230 C. Buchheim, M. Jünger, and S. Leipert

if1

s94

if2

if3

loop end1

Reset

if4 if5

if6

if7

s112

if8

begin1

s41

s81

s 81

s 82

s65

s 65

s 83

s 66

s 84

fi1

s 67

fi2

s 68

fi3

s 69

fi4

s 100

fi5

s100

s 101

s 102

s 103

forever1

chain1

s34

s 70

s70

s 71

s38

Fig. 1. Layout of an embedded 25-
level graph generated by a straight-
forward algorithm

if1

s94

if2

if3

loop end1

Reset

if4 if5

if6

if7

s112

if8

begin1

s41

s81

s 81

s 82

s65

s 65

s 83

s 66

s 84

fi1

s 67

fi2

s 68

fi3

s 69

fi4

s 100

fi5

s100

s 101

s 102

s 103

forever1

chain1

s34

s 70

s70

s 71

s38

Fig. 2. The same graph drawn by
LEVEL LAYOUT. Every edge has
at most two bends

respectively. We usually denote an edge {v, w} by (v, w). For a vertex v ∈ V ,
δG(v) = {w ∈ V | (v, w) ∈ E} is the set of its neighbors. For any nonnegative
integer k, a k-level graph G = (V, E, λ) is a graph G = (V, E) equipped with a
mapping λ : V → {1, . . . , k} such that λ(v) 6= λ(w) for every edge (v, w) ∈ E. If
v ∈ V is a vertex, λ(v) is called the level of v.

An edge e = (v, w) is called short if |λ(v) − λ(w)| = 1, otherwise long . Let e
be a long edge and assume that λ(w) > λ(v). We introduce a virtual vertex vl for
every level l ∈ {λ(v) + 1, . . . , λ(w)−1} and set λ(vl) = l. We split up e into edge
segments (v, vλ(v)+1), (vλ(v)+1, vλ(v)+2), . . . , (vλ(w)−1, w). Applying this to every
long edge, we obtain a set of virtual vertices, disjoint from V , which is denoted
by V . Furthermore, we obtain a set E of edge segments. Obviously, this yields
a new k-level graph G = (V ∪ V , E, λ) without long edges. For the following,
let δ = δG and δ = δG. We will call the vertices v ∈ V original vertices to
distinguish them from virtual vertices. An edge segment is called outer segment
if it is incident to an original vertex, otherwise it is called inner segment.

A Fast Layout Algorithm for k-Level Graphs 231

A level embedding of a k-level graph is a mapping that assigns to each l ∈
{1, . . . , k} a permutation of λ−1(l) = {v ∈ V ∪ V | λ(v) = l}. For every vertex
v ∈ V ∪ V , we define the left direct sibling of v to be the vertex preceding v
in λ−1(λ(v)), according to the given permutation. If the left direct sibling of v
exists, it is denoted by s−(v), otherwise we set s−(v) = ?. The right direct sibling
s+(v) is defined analogously.

In a drawing of the graph, two direct siblings v and w must be separated
by a minimal distance m(v, w) > 0 (which may be given by the user). The
extension of m to arbitrary pairs of vertices on the same level is straightforward:
Let v1, v2, . . . , vr be a consecutive sequence of vertices on a common level, then
we define m(v1, vr) =

∑r−1
i=1 m(vi, vi+1).

3 Outline of the Algorithm

For an arbitrary k-level graph with given level embedding, LEVEL LAYOUT
computes a layout having the following properties:

(1) The minimal distance between direct siblings is respected and the given
permutations on the levels are not changed.

(2) Vertices belonging to the same level get the same y-coordinate.
(3) The minimal distance between neighboring levels is respected.
(4) All edge segments are drawn straight-line.
(5) Inner segments of long edges are drawn vertically.

For simplicity, we treat the distances mentioned in (1) and (3) as distances
between the centers of the vertices. To avoid overlapping, the vertex dimensions
have to be included. In the following, we assume that long edges never intersect
at inner segments. Otherwise, we cannot satisfy (1), (4), and (5) simultaneously.
We propose to rule out this case by a preprocessing step, see [2] for details.

The algorithm LEVEL LAYOUT performs in three phases. In the first phase,
the x-coordinates of virtual vertices are determined. In the second phase, the
x-coordinates of original vertices are computed, keeping the virtual vertices in
fixed positions. Finally, the y-coordinates of the levels are determined.

LEVEL LAYOUT

PLACE VIRTUAL(x);
PLACE ORIGINAL(x);
PLACE LEVELS(x,y);

In the following sections, we demonstrate the proceeding of LEVEL LAYOUT
by a 10-level graph, see Fig. 3, Fig. 5 and Fig. 6.

4 Placement of the Virtual Vertices

The function PLACE VIRTUAL places the virtual vertices as close to each other
as possible in horizontal direction subject to properties (1) and (5) of Sect. 3.

232 C. Buchheim, M. Jünger, and S. Leipert

First, all vertices are placed as far as possible to the left with respect to (1) and
(5). This is done as explained by Sander [7], considering the segment ordering
graph S of G. While Sander needed this step only to get a preliminary placement
with vertical inner segments, we compute final x-coordinates for virtual vertices.
Since the placement is asymmetric, we determine a second placement of the
vertices by placing them as far as possible to the right, analogously. Then we
take the average positions of the two placements as final x-coordinates for the
virtual vertices. See Fig. 3.

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

(a) Left

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

(b) Right

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

(c) Average

Fig. 3. Placement of the virtual vertices

If the segment ordering graph S is not connected, the placements of vertices
belonging to parts of G induced by different components of S are not related to
each other. This may lead to deformed drawings, since there can be short edges
of G connecting these parts. To avoid this, we process each connected component
of S separately and adjust the placements afterwards by minimizing the total
length of these edges. We skip the technical details here, see [2].

5 Placement of the Original Vertices

The function PLACE ORIGINAL places the original vertices. The positions of
the virtual vertices computed by PLACE VIRTUAL are denoted by x ∈ RV

and regarded as fixed. We have a decomposition of V into maximal consecutive
sequences of original vertices belonging to the same level. Let S = v1, . . . , vr

be such a sequence. We define b− = s−(v1) and b+ = s+(vr), thus b− is the
virtual vertex bounding S to the left, or ? if S has no siblings to the left, ana-
logously for b+. Observe that the positions of v1, . . . , vr are already fixed if
x(b+) − x(b−) = m(b−, b+), in this case S is called a fixed sequence. Usually,

A Fast Layout Algorithm for k-Level Graphs 233

most sequences are not fixed. Our strategy is to process the sequences successi-
vely. When processing a sequence, we compute a placement that minimizes the
total length of all edges connecting the vertices of the current sequence with
their neighbors in the previously placed sequences, subject to the fixed positions
of b− and b+. Obviously, the layout depends on the order of processing; the more
neighbors have already been fixed, the more edges can be taken into account. We
next discuss the order of processing the sequences and how to find the optimal
placements.

5.1 The Order of Processing the Sequences

We use an array D ∈ {1,−1, 0}V to encode this order and initialize it to zero.
The array D is updated dynamically by a function ADJUST DIRECTIONS
discussed below.

The function PLACE ORIGINAL first traverses the graph level by level do-
wnwards, and then, in a second step, it traverses the graph upwards. The di-
rection of traversal is given by d ∈ {1,−1}, where a 1 is used to indicate the
downward direction and a −1 to indicate the upward direction. For every le-
vel, the maximal original sequences are traversed from left to right. The cur-
rently examined sequence S = v1, . . . , vr, bounded by b− and b+, is placed by
PLACE SEQUENCE if and only if b− = ? or b+ = ? or D(b−) = d. When placing
a sequence, we regard the positions of all neighbors that belong to the preceding
level as fixed, i.e., the vertices in δ(vi, d) = {v ∈ δ(vi) | λ(v) = λ(vi) − d} for
i = 1, . . . , r (see below for a justification).

Hence, if b− = ? or b+ = ?, the positions for v1, . . . , vr are determined
twice. The distances between the vertices b−, v1, . . . , vr, b+ resulting from the
first traversal are used as lower bounds for the distances computed in the second
traversal. By this strategy, we take both neighboring levels into account for the
final placement.

On the other hand, if b− and b+ are virtual vertices, the sequence is pla-
ced only once. It depends on D(b−) whether the sequence is placed while tra-
versing upwards or while traversing downwards (for technical reasons, the se-
quence v1, . . . , vr is represented by its left virtual sibling b−). It remains to
determine D. This is done by ADJUST DIRECTIONS dynamically, using an
array P ∈ {true, false}V . For a virtual vertex v, P (v) is true if and only if the
original sequence to the right of v has been placed already. At the beginning,
only fixed sequences are regarded as placed.

PLACE ORIGINAL(x)

for all b− ∈ V
let b+ be the next virtual vertex to the right of b−;
if b+ 6= ?

set D(b−) = 0;
if x(b+) − x(b−) = m(b−, b+) set P (b−) = true;
else set P (b−) = false;

to be continued...

234 C. Buchheim, M. Jünger, and S. Leipert

for all d = 1, −1
for all levels l traversed by direction d

if level l contains a virtual vertex
let b− be the outermost left virtual vertex of level l;
let v1, . . . , vr be the vertices to the left of b−;

else
set b− = ?;
let v1, . . . , vr be all vertices of level l;

PLACE SEQUENCE(x,?,b−,d,v1,. . . ,vr);
for i = 1 to r − 1 set m(vi, vi+1) = x(vi+1) − x(vi);
if b− 6= ? set m(vr, b−) = x(b−) − x(vr);
while b− 6= ?

let b+ be the next virtual vertex to the right of b−;
if b+ = ?

let v1, . . . , vr be the vertices to the right of b−;
PLACE SEQUENCE(x,b−,?,d,v1,. . . ,vr);
for i = 1 to r − 1 set m(vi, vi+1) = x(vi+1) − x(vi);
set m(b−, v1) = x(v1) − x(b−);

else if D(b−) = d
let v1, . . . , vr be the vertices between b− and b+;
PLACE SEQUENCE(x,b−,b+,d,v1,. . . ,vr);
set P (b−)=true;

set b− = b+;
ADJUST DIRECTIONS(l,d,D,P);

After traversing the sequences of level l, the values of D for the next level l + d
are computed by ADJUST DIRECTIONS. We first introduce the notion of a
neighboring sequence. Let S = v1, . . . , vr be a maximal original sequence on
level l + d. Let v− be the next virtual vertex to the left of S that has a virtual
neighbor w− on level l. If no such vertex v− exists, set v− = w− = ?. Analogously,
we define v+ and w+. The neighboring sequences of S on level l are the maximal
original sequences on level l between w− and w+. Furthermore, if w− 6= ? and
w+ 6= ?, S is said to be an interior sequence with respect to l. Otherwise, S is
said to be an exterior sequence. Fig. 4 illustrates the definition of neighboring
sequences.

S

S1 S2

v+

w+

v−

w−
l

l + d

l + 2d

Fig. 4. Neighboring sequences of S. Filled and empty circles represent virtual and
original vertices, respectively. Only inner edge segments are displayed. The neighboring
sequences of S on level l are S1 and S2. The sequence S is interior with respect to l,
but exterior with respect to l + 2d

A Fast Layout Algorithm for k-Level Graphs 235

We now give an informal description of ADJUST DIRECTIONS. All interior
maximal original sequences S = v1, . . . , vr on level l + d are traversed. If all
neighboring sequences of S on level l have already been placed (to check this we
use the array P), we set D(s−(v1)) = d. This allows to place S in the next step
of PLACE ORIGINAL. To explain that this permission is justified, we have to
show that every neighbor v on level l of a vertex vi can be regarded as fixed. We
distinguish three cases:

1. The neighbor v is virtual. Then its position is fixed by PLACE VIRTUAL.
2. The neighbor v belongs to a neighboring sequence of S. Then v has been

placed before, as checked by ADJUST DIRECTIONS explicitly.
3. The neighbor v is original but does not belong to a neighboring sequence of

S. In this case, the edge segment (vi, v) crosses an inner edge segment that is
drawn vertically by PLACE VIRTUAL (like (v−, w−) or (v+, w+) in Fig. 4),
so that the exact position of v does not affect the optimal placement of S.

Theorem 1. PLACE ORIGINAL applies PLACE SEQUENCE to all maximal
original sequences.

Proof. Assume on the contrary that a sequence S on level l is not visited
by PLACE SEQUENCE. By construction of PLACE ORIGINAL, there either
exists a neighboring sequence of S on level l−1 that is unvisited as well, or S is ex-
terior with respect to l−1. The same holds for level l+1. Applying this argument
inductively, we get a chain of unvisited neighboring sequences, where the first
and the last sequence is exterior. Now by construction of PLACE VIRTUAL,
every such chain must contain a fixed sequence, since otherwise the two parts of
the graph divided by the chain could be placed closer to each other. Since fixed
sequences are visited by construction, we have a contradiction.

In our example graph (see Fig. 5), the sequences are processed in the following
order: The sequences (1,2), (13), (17), (21,22), and (23) are not bounded
by virtual vertices, they are placed in both traversals. The sequences (9), (12),
(14,15,16), and (20) are fixed. Traversing downwards, the sequence (18,19)
is the only bounded sequence placed by PLACE ORIGINAL, its neighboring
sequence (14,15,16) is fixed. Traversing upwards, the first bounded sequence
is (10,11), its only neighboring sequence (14,15,16) is fixed. The next one is
(8), since its neighboring sequence (10,11) has just been placed. By the same
reason, the sequences (6,7), (4,5), and finally (3) are placed.

5.2 The Computation of Optimal Placements

For a sequence of original vertices S = v1, . . . , vr, PLACE SEQUENCE finds an
optimal placement x(v1), . . . , x(vr) in the following sense:

(*)
The placement x(v1), . . . , x(vr) minimizes

∑r
i=1

∑
v∈δ(vi,d) |x(v)−x(vi)|

with respect to the minimal distances between b−, v1, . . . , vr, b+.

236 C. Buchheim, M. Jünger, and S. Leipert

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Fig. 5. Placement of the original vertices

1 2

3

4

6

8

10 11

13 14 15 16

17 18 19 20

21

23

5

7

9

12

22

Fig. 6. Final placement

Since PLACE SEQUENCE uses a divide and conquer strategy, S is not ne-
cessarily maximal and b− now denotes the next virtual vertex to the left of v1
instead of s−(v1), analogously for b+.

PLACE SEQUENCE(x,b−,b+,d,v1,. . . ,vr)

if r = 1
PLACE SINGLE(x,b−,b+,d,v1);

if r > 1
set t = br/2c;
PLACE SEQUENCE(x,b−,b+,d,v1,. . . ,vt);
PLACE SEQUENCE(x,b−,b+,d,vt+1,. . . ,vr);
COMBINE SEQUENCES(x,b−,b+,d,v1,. . . ,vr);

Finding a placement satisfying (*) for a single vertex is trivial, therefore we
skip the description of PLACE SINGLE. Next, we explain how to combine two
optimal placements for v1, . . . , vt and vt+1, . . . , vr to an optimal placement of the
sequence v1, . . . , vr. Let m = m(vt, vt+1). If x(vt+1) − x(vt) ≥ m, then nothing
has to be done. Otherwise, we transform the placement step by step, where in
each step we increase the distance between vt and vt+1 by either decreasing x(vt)
or increasing x(vt+1).

Let p ∈ R and 1 ≤ i ≤ t. If x(vt) is decreased to position p, then x(vi)
must be decreased to position xp(vi) = min{x(vi), p−m(vi, vt)} in order to keep
the two partial placements feasible. Let j(p) ∈ {1, . . . , t} be minimal such that
xp(vj(p)) < x(vj(p)); hence decreasing x(vt) implies decreasing x(vj(p)), . . . , x(vt).
Let

r−(p) =
t∑

i=j(p)

(
#

{
v ∈ δ(vi, d) | x(v) ≥ xp(vi)

}
− #

{
v ∈ δ(vi, d) | x(v) < xp(vi)

})
.

Thus r−(p) is the number of edge segments getting longer when decreasing x(vt)
past position p minus the number of edge segments getting shorter. This is called

A Fast Layout Algorithm for k-Level Graphs 237

the resistance to decreasing x(vt) past p. Observe that r− : R → Z is a piecewise
constant monotone function with finitely many steps. Analogously, we define
the resistance r+(p) to increasing x(vt+1) past p. Now we proceed as follows.
We decrease x(vt) if r−(x(vt)) < r+(x(vt+1)) or increase x(vt+1) otherwise. If
equality holds, we choose an arbitrary direction. Assume that x(vt) is decreased.
Then we decrease x(vt) until either x(vt+1) − x(vt) = m or r−(x(vt)) reaches
a new step. In the latter case, we determine the new resistance and continue
decreasing x(vt) or increasing x(vt+1).

The function COMBINE SEQUENCES computes the steps of r− before star-
ting to separate the vertices vt and vt+1. For every step of length c at position
p, a pair (c, p) is stored on a heap R− by CHANGES LEFT. The heap R−
is sorted in a decreasing order with respect to the positions p. Analogously
CHANGES RIGHT stores the steps of r+ on an increasing heap R+. For run-
time reasons, we only move vt and vt+1, and adjust the positions of v1, . . . , vt−1
and vt+2, . . . , vr later.

COMBINE SEQUENCES(x,b−,b+,d,v1,. . . ,vr)

let R− and R+ be heaps;
CHANGES LEFT(R−);
CHANGES RIGHT(R+);
set r− = r+ = 0;
while x(vt+1) − x(vt) < m

if r− < r+

if R− = ∅ set x(vt) = x(vt+1) − m;
else

pop (c−, x(vt)) from R−;
set r− = r− + c−;
set x(vt) = max{x(vt), x(vt+1) − m};

else
if R+ = ∅ set x(vt+1) = x(vt) + m;
else

pop (c+, x(vt+1)) from R+;
set r+ = r+ + c+;
set x(vt+1) = min{x(vt+1), x(vt) + m};

for i = t − 1 down to 1
set x(vi) = min{x(vi), x(vt) − m(vi, vt)};

for i = t + 2 to r
set x(vi) = max{x(vi), x(vt+1) + m(vt+1, vi)};

Assuming that x(vt) is decreased, we explain the computation of the steps of
r−. Three different situations lead to a step in the resistance function: The
resistance changes by 2, if a vertex vi passes a neighbor v (Fig. 7(a)). This
coincides with x(vt) being decreased to x(v)+m(vi, vt). Hence CHANGES LEFT
stores (2, x(v) + m(vi, vt)) on R−. When the minimal distance between vt and
a vertex vi is reached, the position of vi is decreased as well (Fig. 7(b)). The
resistance changes by

ci = #{v ∈ δ(vi, d) | x(v) ≥ x(vi)} − #{v ∈ δ(vi, d) | x(v) < x(vi)} ,

238 C. Buchheim, M. Jünger, and S. Leipert

vi

vi

(a) From 0 to 2

vi vt

m

vi vt

m

(b) From −1 to 1

v1

m

b−

v1

m

b−

(c) From −1 to ∞

Fig. 7. Changes of the resistance to moving vt to the left

and (ci, x(vi) + m(vi, vt)) is stored on R−. Finally, we enforce the minimal di-
stance between b− and v1 by adding (∞, x(b−) + m(b−, vt)) to the heap R−
(Fig. 7(c)).

CHANGES LEFT(R−)

for i = 1 to t
set c = 0;
for all v ∈ δ(vi, d)

if x(v) ≥ x(vi) set c = c + 1;
else

set c = c − 1;
push (2, x(v) + m(vi, vt)) to R−;

push (c, x(vi) + m(vi, vt)) to R−;
if b− 6= ? push (∞, x(b−) + m(b−, vt)) to R−;

From Theorem 1 we know that all maximal original sequences are visited. For
the correctness of PLACE ORIGINAL, it remains to show that placements
computed by PLACE SEQUENCE satisfy the minimality condition (*). Let
v1, . . . , vr be the original sequence that has to be placed, and let x be a pla-
cement that satisfies (*) both for v1, . . . , vt and for vt+1, . . . , vr. We show that
COMBINE SEQUENCES merges the two partial placements into a placement
satisfying (*) for v1, . . . , vr. We first give a lemma that allows us to restrict our
attention to placements that are determined by the positions of vt and vt+1:

Lemma 1. Let x be a placement satisfying (*) for v1, . . . , vt and for vt+1, . . . , vr.
Then there exists a placement x∗ satisfying (*) for v1, . . . , vr such that the fol-
lowing conditions hold.

(a) x∗(vi) = min{x(vi), x∗(vt) − m(vi, vt)} for i ≤ t
(b) x∗(vi) = max{x(vi), x∗(vt+1) + m(vt+1, vi)} for i ≥ t + 1.

A Fast Layout Algorithm for k-Level Graphs 239

Proof. Starting with a placement satisfying (*) for v1, . . . , vr but not necessarily
(a) and (b), one can transform this placement by successively adjusting the
position of vj to condition (a), for j = t, . . . , 1, such that condition (*) is not
violated. For j = t + 1, . . . , r, one can proceed analogously to obtain (b). See [2]
for a precise proof.

Theorem 2. The placement x̃ computed by COMBINE SEQUENCES satisfies
(*) for v1, . . . , vr.

Proof. Assume that x̃(vt+1) − x̃(vt) < m(vt, vt+1), otherwise there is nothing to
show. For p ∈ R let

f−(p) =
t∑

i=1

∑
v∈δ(vi,d)

|x(v) − min{x(vi), p − m(vi, vt)}| ,

and analogously

f+(p) =
r∑

i=t+1

∑
v∈δ(vi,d)

|x(v) − max{x(vi), p + m(vt+1, vi)}| .

By Lemma 1, we only need to consider placements satisfying (a) and (b) in or-
der to check the minimality of x̃. By construction, it is clear that x̃ satisfies (a)
and (b) and is feasible for v1, . . . , vt. Hence x̃ satisfies (*) if x̃(vt) and x̃(vt+1)
minimize f−(x̃(vt)) + f+(x̃(vt+1)) subject to x̃(vt+1) − x̃(vt) ≥ m(vt, vt+1).
However, the function f+ is convex and piecewise linear, and the gradient to
the left of a position p is the resistance to moving vt+1 to position p (analo-
gously for f− and vt). Thus moving to the direction with lower resistance until
x̃(vt+1) − x̃(vt) = m(vt, vt+1) yields a minimal placement.

6 Placement of the Levels

In most algorithms, neighboring levels get a fixed distance. Thus the length
|x(w) − x(v)| of an edge segment (v, w) ∈ E with λ(v) = l and λ(w) = l + 1
has no influence on the distance between l and l + 1. It is however easy to see
that long edge segments require a larger level distance than short ones in order
to obtain good readability. In this section we propose a method for computing
the y-coordinates of the vertices that considers this by adjusting the distance
between l and l + 1 to the longest edge segment connecting neighboring levels.

Let the gradient of (v, w) be defined as ∇(v, w) = |x(w)−x(v)|/|y(w)−y(v)|.
We use a fixed maximal gradient GRADIENT. Then we determine the distance
between l and l + 1 by

max{∇(v, w) | (v, w) ∈ E and λ(v) = l and λ(w) = l + 1} = GRADIENT .

Explicitly, the distance can be computed as

max{GRADIENT · |x(w) − x(v)| | (v, w) ∈ E and λ(v) = l and λ(w) = l + 1} .

Fig. 6 shows the final layout with the new y-coordinates, including some local
improvements that have been automated.

240 C. Buchheim, M. Jünger, and S. Leipert

7 Runtime

Let G = (V, E, λ) be a k-level graph with a given level embedding and let
G = (V ∪ V , E, λ) be the k-level graph resulting from G by introducing virtual
vertices as explained in Sect. 2. For m = |E| and n = |V ∪ V | we have

Theorem 3. The algorithm LEVEL LAYOUT computes a layout for the k-level
graph G in O((m + n)(log (m + n))2) time.

Proof. The left and right placement of virtual vertices can be computed in O(n)
time, if both segment ordering graphs are connected. Otherwise, the adjustment
of different connected components can be done in O(n + m log m) (see [2]). The
first loop of PLACE ORIGINAL needs O(n) time in total. The second loop ap-
plies PLACE SEQUENCE to all maximal original sequences at most twice. The
function COMBINE SEQUENCES combines two sequences including r vertices
and t incident edge segments in O((r+t) log(r+t)), since at most r+t+2 changes
of resistance are stored on the heap. By the logarithmic depth of the applied di-
vide and conquer strategy we see that placing a sequence of r vertices with t inci-
dent edges can be performed by PLACE SEQUENCE in O((r+t) log(r+t) log t).
In total, all calls of PLACE SEQUENCE take O((m+n) log (m + n) log m) time.
Since ADJUST DIRECTIONS needs O(n), PLACE ORIGINAL can be perfor-
med in O((m + n) log (m + n) log m) time. The y-coordinates are computed in
O(m + n), so we have the desired result.

References

1. F. J. Brandenburg, M. Jünger, and P. Mutzel. Algorithmen zum automatischen
Zeichnen von Graphen. Informatik-Spektrum 20, pages 199–207, 1997.

2. C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level graphs.
Technical report, Institut für Informatik, Universität zu Köln, 1999.

3. E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230, 1993.

4. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 4(3):312–316, 1983.

5. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. Journal of Graph Algorithms and Applications,
1:1–25, 1997.

6. Petra Mutzel et al. A library of algorithms for graph drawing. In S. H. Whitesides,
editor, Graph Drawing ’98, volume 1547 of Lecture Notes in Computer Science,
pages 456–457. Springer Verlag, 1998.

7. G. Sander. A fast heuristic for hierarchical Manhattan layout. In F. J. Brandenburg,
editor, Graph Drawing ’95, volume 1027 of Lecture Notes in Computer Science, pages
447–458. Springer Verlag, 1996.

8. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierar-
chical systems. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–
125, 1981.

	A Fast Layout Algorithm for k-Level Graphs
	Introduction
	Preliminaries
	Outline of the Algorithm
	Placement of the Virtual Vertices
	Placement of the Original Vertices
	The Order of Processing the Sequences
	The Computation of Optimal Placements

	Placement of the Levels
	Runtime
	References

