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Abstract. Let C be a directed cycle, whose edges have each been assig-
ned a desired direction in 3D (East, West, North, South, Up, or Down)
but no length. We say that C'is a shape cycle. We consider the following
problem. Does there exist an orthogonal drawing I" of C in 3D such
that each edge of I' respects the direction assigned to it and such that
I' does not intersect itself? If the answer is positive, we say that C is
simple. This problem arises in the context of extending orthogonal graph
drawing techniques and VLSI rectilinear layout techniques from 2D to
3D. We give a combinatorial characterization of simple shape cycles that
yields linear time recognition and drawing algorithms.

1 Introduction

The topology-shape-metrics approach [4] for constructing an orthogonal drawing
of a planar graph in 2D consists of three main steps, called planarization, ortho-
gonalization, and compaction. The planarization step determines an embedding,
i.e., the face cycles, for the graph in the plane. The orthogonalization step de-
termines an orthogonal representation of the input graph, i.e. a labeling for each
edge (u,v) of the graph that defines the shape of (u,v) in the final drawing.
For example, (u,v) could be labeled NESNE, which would say “starting from
u first go North, then go East, etc.” Finally, the compaction step computes the
drawing, giving coordinates to vertices and bends while preserving the shape of
the edges determined in the orthogonalization step.
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The topology-shape-metrics approach for 2D orthogonal drawings has been
the subject of much literature. For each step of the approach, different opti-
mization problems (for example minimizing the number of bends, minimizing
the area, minimizing the maximum edge length) have been studied, and papers
providing optimal algorithms and effective heuristics have been presented. An
essential prerequisite of the topology-shape-metrics approach is a characteriza-
tion of those graphs with edges labeled by orthogonal directions that can be
drawn without crossings, while respecting the desired shapes for the edges. This
problem has been studied in several papers, including [TT/T2]. The problem has
been generalized to non-orthogonal polygons and to graphs in [69IT3].

While the literature on 3D orthogonal drawings is quite rich (see, e.g. [178]
14]76])), the extension of the topology-shape-metrics approach to 3D has, as far
as we know, not been previously explored. A major difficulty is that in 3D, there
is no counterpart to the 2D characterization of orthogonal representations. By
studying orthogonal representations of cycles in 3D, this paper represents a first
step toward the goal of extending the topology-shape-metrics approach to 3D.

A 3D shape path o is an ordered sequence of labels for the edges of an oriented
(graph theoretical) path P, where each label specifies a direction Fast, West,
North, South, Up, or Down for the corresponding edge, and o contains at least
one of each oppositely directed pair of direction labels. Similarly, a shape cycle
o is a circularly ordered sequence of direction labels for the edges of an oriented
cycle C, where each label specifies a direction for the corresponding edge, and
each of the six directions occurs at least once as a label. The simplicity testing
problem for o is to decide whether there exists an orthogonal drawing I" of C'
so that I' is simple (i.e., no two edges of I" share any points except common
endpoints) and satisfies the direction constraints on its edges as specified by o.
If so, then the shape cycle o is said to be simple.

Not all shape cycles are simple. For example, consider the shape cycle given
by the circular sequence of labels ESUNDWUN, where E stands for Fast, U
stands for Up, and so on. This shape cycle has no simple orthogonal drawing,
even though each direction label appears at least once (see Figure[Dl). By contrast,
its subcycle ESDWUN s simple.

Our main result is a combinatorial characterization of simple shape cycles
that yields linear time testing and drawing algorithms.

2 Overview

In 2D, simple shape cycles were characterized by Vijayan and Widgerson [12]
in terms of editing operations on the sequence of labels in the shape cycle. If
their editing operations are carried out until no further application is possible,
the result is a unique, reduced form for the shape cycle. A 2D shape cycle is
simple if and only if it can be edited to give the shape cycle for a rectangle, that
is, a sequence of the four distinct labels {E, W, N, S}, with consecutive labels
orthogonal. The editing operations arise in the context of repeatedly taking
shortcuts at U turns in a rectilinear polygon, where the shortcuts do not intersect
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D

Fig. 1. In the shape cycle 0 = ESUNDWU N, the labels assigned to the edges e1, e,
es, and e4 define a “flat” . This shape cycle is not simple.

the boundary of the polygon. Their characterization can also be stated as follows:
a 2D shape cycle is simple if and only if then number of right turns differs from
the number of left turns by four. See also the paper by Tamassia [T1].

Our recognition algorithm for simple shape cycles does not work by repea-
tedly applying editing operations to the shape cycle. Instead, it looks directly for
a subsequence satisfying certain combinatorial properties, which were obtained
by considering cycles of length six drawn on the edges of a cube. To state our
characterization results precisely, we next introduce the concepts of flat and of
canonical sequence for a shape cycle or path.

Let o be a shape cycle or path. A flat of ¢ is a consecutive subsequence F' C ¢
that is maximal with respect to the property that any orthogonal drawing of F'
must consist of edges that lie on the same axis-aligned plane. For example,
consider the shape cycle ¢ = 0102...08 = ESUNDWUN, for which Figure [T
gives a (non-simple) drawing. Labels o1 = F and 09 = S must lie in an EWNS
flat, i.e., a flat whose labels belong to {E, W, N, S}. Since ¢ is a circular sequence
and since, by definition, flats are maximal, label og = N also belongs to the flat
F containing o1 = F and 05 = S. Since an EW N S flat cannot contain a U label,
Iy = 0g0102. Shape o contains three additional flats, namely Fy = 09030405 =
SUND; F3 = 050407 = DWU; and Fy = o708 = UN. Note that each pair of
consecutive flats F;F; 1 share a transition label (02,05, 07,08 in the example).

A not necessarily consecutive subsequence 7 C o, where 7 consists of k labels,
is a canonical sequence if: (1) 1 < k < 6; (2) the labels of T are distinct; (3) no
flat of o contains more than three labels of 7; and (4) if a flat F' of o contains
one or more labels of 7, then 7 N F' forms a consecutive subsequence of o.

For example, the shape cycle c = ESUNDWUN of Figure [[ldoes not con-
tain a canonical sequence of any length containing an S and a D: each of these



Orthogonal Drawings of Cycles in 3D Space 275

labels occurs only once, in flat F5, where S and D are not consecutive as elements
of 0. Hence according to our characterization of simple shape cycles below, cycle
o is not simple.

Theorem 1. A 3D shape cycle with at least two flats is simple if and only if it
contains a canonical sequence of length siz.

In a companion paper [5], we introduced a simpler notion of canonical se-
quence in solving the shape path reachability problem, which is to determine,
given a shape path ¢ and a point p in an octant, whether o admits a simple
orthogonal drawing that starts at the origin and ends at p. The main result of [5]
can be summarized in concrete terms for a particular octant as follows.

Theorem 2. [/ Let o be a shape path, and let p be any point of the UNE
octant. Then o admits a simple orthogonal drawing that starts at the origin and
ends at p if and only if o contains a canonical sequence of length 3 containing
the labels U, N, E in some order.

At a very first glance, the necessity of the condition of Theorem [[lmay appear
to be an immediate consequence of Theorem I if o admits a simple orthogonal
drawing, then o can be shown to split into the concatenation of two shape paths
that reach opposite octants. However, the flats where two such paths join require
special study, as they contain labels from each of the two paths. Hence the union
of canonical sequences for each path need not yield a canonical sequence of length
six for the cycle.

3 Preliminaries

We assume from now on that two adjacent labels of a shape path or cycle are
neither identical, in which case they could be replaced by a single label, nor
oppositely directed, in which case the shape could not be simple. Also, we omit
some straightforward special case handling by considering here only shape cycles
that contain at least four flats.

We regard 3D space as partitioned into eight open octants, eight open qua-
drants, six open (semi)axes directed away from the origin, and the origin itself.
A triple XY Z of distinct unordered labels no two of which are opposite defines
the XY Z octant. Similarly, a pair XY of distinct orthogonal labels defines the
XY quadrant in 2D or 3D, and a direction label X defines the X (semi)axis.

We sometimes use the term “shape” to refer either to a shape path or to a
shape cycle. We sometimes say a shape is drawable if it is a simple shape.

To traverse a shape o or a drawing I'(¢) of ¢ in the positive sense means
to visit its labels or edges in the order specified by o. If o is a shape path,
the starting point for a drawing I'(c) of o is regarded as the origin for that
drawing. Visiting I'(c) in the positive sense then orients each edge of I'(¢). An
edge oriented in this way from u to v is denoted uwv. It points in the direction
specified by its associated label in o.
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Suppose that o is a 3D shape path or cycle and that F' is a flat of ¢. Then
first and last labels for F' (also called its entry and exit labels) are determined
by traversing the cyclic sequence o in the positive sense. In a drawing of F, the
starting or entering point for F' is the vertex at the tail of the edge corresponding
to the entry label of F.

A label Y of a shape o is said to occur between two other labels X and Z if
Y is met when traversing o in the positive sense from X to Z.

Remark. Let ¢() be a permutation of the six direction labels that maps opposite
pairs of labels to possibly different opposite pairs (for example, ¢ might map
N,S,E,W,U,D to E,W,N, S, D,U, respectively). Note that ¢() defines a linear
transformation of 3D space that determines a bijection between drawings of o
and drawings of ¢(o).

For concreteness, as in Theorem [l we often state our results and proofs
referring to some given octant, quadrant, or axis. However, the results can also be
stated with respect to any other octant, quadrant, or axis since, by the Remark,
they are preserved under the ¢() transformation.

We sometimes specify the labels of a canonical sequence 7 by using set not-
ation. For example, {U, N, E, S} might describe a canonical sequence whose di-
rections labels are U, N, E, and S. In this notation, the order of the labels is
not specified and is inherited from the shape o once a particular subsequence 7
has been chosen.

We sometimes distinguish the labels in a canonical sequence 7 from the other
labels of o with special notation. To say that {U, N, E, S} is a canonical sequence
means not only that the canonical sequence contains a U, an S, an N, and an
E direction label, but also that the U label in 7 is a specific element U of o, the
S label is S, and so on.

We say that the elements of o that occur in a canonical sequence 7 are
canonical labels. It is useful to recall that a shape path is a sequence and that a
shape cycle is a circular sequence. Thus a canonical sequence for a shape path
is a sequence, and a canonical sequence for a shape cycle is a circular sequence.

4 Sufficiency

We now sketch a constructive proof that any shape cycle ¢ that contains a
canonical sequence of length six admits a simple orthogonal drawing.

4.1 The Proof Technique

The intuition behind our construction of a drawing for a shape cycle is to imagine
that it will be an elaboration of a cycle of six edges to be drawn along the edges
of a box. A shape cycle of length six has one of two essentially different shapes,
namely, a chair shape such as UNDFESW | which has four flats, or a skew shape
such as UENDW S, which has six flats. From a canonical sequence of length six
we obtain (possibly after some modification) the six labels of a chair shape or a
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skew shape to follow the edges of a big box, with the remaining labels to be drawn
as paths of short edges located near corners of the big box, serving to connect
together the six long edges. The underlying chair or skew shape conveniently
allows us to place the connecting paths of short segments in distinct octants
by assigning long lengths to the canonical labels. In practice, the drawings we
produce do not necessarily assign long lengths to the canonical labels, but this
mental model gives the basic idea for the construction.

One difficulty is that, whereas ¢ does not contain any pairs of oppositely
directed labels that are adjacent, a canonical sequence 7 of ¢ may contain pairs
of oppositely directed labels that are adjacent as elements of 7. Such a canonical
sequence 7 would then not provide the convenient underlying chair or skew shape
for the construction. This motivates the following definition.

Definition 1. A subsequence T of a shape cycle o is a strong canonical cycle if
T s a canonical cycle such that no two labels that are adjacent in T are oppositely
directed.

The next lemma resolves the difficulty. Its proof is a technical case analysis
in which new choices of canonical labels are substituted for old ones.

Lemma 1. If a shape cycle o contains a canonical sequence T of length siz, then
o contains a strong canonical sequence 7' of length siz.

Given a strong canonical sequence of length six (which can be found in linear
time if one exists), we compute simple drawings for the connecting paths between
the canonical labels, then assign lengths to the canonical labels so that these
drawings remain in separate octants (this is made possible by the underlying
chair or skew form of the canonical cycle). To ensure that this is the case, and to
ensure that the cycle closes, we formulate and solve a system of linear inequalities
expressing these constraints.

4.2 Constructing a Drawing

This subsection describes how to construct a drawing from a strong canonical
sequence.

A drawing I'(o) of a shape path o is an expanding drawing if each segment
travels one unit farther in its assigned direction than the extreme points, with
respect to that direction, of the previous segments of I'(0). A drawing I'(c) of
a shape path o is a doubly extensible drawing if its first and last edges can be
replaced by arbitrarily long edges without creating any intersections within the
drawing of that shape path.

Lemma 2. [j] Let o be a shape path with n labels. Then o admits an expanding
drawing that can be computed in linear time on a real RAM. Also, if o is such
that either it consists of exactly two labels or it contains at least two flats, then
o has a doubly extensible drawing that can be computed in O(n) time on a real

RAM.
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We briefly review the proof, whose details are needed below for our cycle
construction and its proof of correctness. The first part of the lemma follows
from the algorithmic nature of the definition of expanding drawing. For the
second part, note that if o consists of exactly two labels, then it is clearly doubly
extensible.

Now suppose ¢ has at least two flats. The subsequence strictly between the
first and last elements thus contains a transition label. Place the tip of the
first transition label at the origin. Working backwards through o from this first
transition label, create an expanding drawing for the initial subsequence of o.
Thus the transition label is the first label to be drawn, and has length 1. When
eventually the first label of ¢ is reached, it can be drawn arbitrarily long.

To draw the remainder of o, consider the label that immediately follows the
first transition label. It must be drawn with its tail at the origin, and perpendi-
cular to the plane of the previous flat. Working forward from this label, create
an expanding drawing using the rule that when a new label is drawn, it extends
farther by 1 in its direction than any previously drawn segment except the one
that could be made arbitrarily long. Thus the first segment past the transition
label is also assigned length 1, and when eventually the last segment of o is
drawn, it may be made arbitrarily long. This concludes the review of the proof.

Note that in the above proof sketch, the tip of the next-to-last segment of
I'(0), and hence the tail of its last segment, lies on the bounding box of the
drawing of the remaining internal labels of o.

Now we describe how to obtain a drawing for a shape cycle with a canonical
subsequence 7. We assume, in accordance with Lemma [I] that 7 has no adjacent,
oppositely directed labels. Removal of 7 from o determines six connecting shape
paths (some may be empty).

To each of these connecting paths, add back on the two elements of 7 that
bound it. Unless this path consists of just the two elements of 7, it must contain
at least two flats. Otherwise, the two elements of 7, which are not adjacent in
o, would lie in the same flat of o, contradicting the fact that 7 is canonical.

The connecting parts of the doubly extensible drawings will be placed in
separate octants. The segments of 7 are precisely the end segments of these six
doubly extensible drawings and can be drawn arbitrarily long. Their lengths
will be chosen so long that they can connect the internal parts of the doubly
extensible drawings isolated in distinct octants.

Make the drawings (and hence their bounding boxes) for the six connecting
paths above. Some of these may be just points. Relative to a local origin of each
drawing, we know the coordinates of all endpoints of the segments in that part
of the drawing.

Now we determine lengths for the canonical segments and position the origins
of the bounding boxes.

Look at the shape of 7. Since it is a strong canonical sequence, there are
just two possibilities, the chair shape (e.g., UNEDSW) or the skew shape (e.g.,
UNDESW). Use this to determine octants for the placement of the bounding
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boxes containing the connecting drawings. Note that no two boxes are assigned
to the same octant.

Let Ig,ln, ... denote the unknown lengths to be assigned to the canonical
segments. A simple system of equations and inequalities must be satisfied by
the unknowns for each oppositely directed pair of canonical segments: the total
length of all segments directed E, say, must equal the total length of all segments
directed W, and similarly for the other pairs. This will guarantee that the cycle
closes.

Note that we have already determined the lengths of the segments that are
not canonical, as well as the location of the endpoints of the canonical segments,
in terms of the local coordinates of the boxes. Hence it easy to determine, for
each local origin of a box, a system of three inequalities, one for each of the
three orthogonal directions, that guarantees that the box stays strictly inside its
assigned octant.

Satisfying these systems of inequalities implies that a corresponding system
of inequalities on the lengths of the canonical segments must also be satisfied.
This gives a lower bound on the length of each canonical segment of the form
lg > cg for some constant cg, and so on.

To ensure that the cycle will close, we add to the system of inequalities
on lengths three equations, one for each pair of opposite directions, as follows.
The total length of segments directed F must equal the total length of segments
directed W, and similarly for the other two pairs. The form for the F/, W equation
is either g = lw + cgw or lyw = lg + cgw for some positive constant cgw,
and similarly for the other two pairs.

Consider the constraints on the lengths of a particular oppositely directed
pair, say on lg and ly,. These constraints are

— for non-negative constant cgw and for I > Iy, we have g = lyw + cgw
(or if lg <lw, then lyw = lg + cew;

These may be satisfied by assigning the value
lw = maz(cw,cg — cgw) (or lg = maz(cg,cw — cgw) in case lg < Iy ).

This determines the value of the length of the canonical segments directed
E and W. The remaining lengths for the other directions may be determined
similarly.

The lengths have now been chosen so that the path forms a closed cycle. To
see that the cycle is simple, note that clearly, segments that are not canonical
do not intersect each other. Hence it suffices to check that no canonical segment
intersects another canonical segment or a non-canonical one (including ones in
boxes not located at the endpoints of the canonical segment). This follows easily
from the fact that the bounding boxes for the connecting paths are located in
distinct octants.
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4.3 Algorithmic Issues

To obtain a linear time algorithm for testing for the condition one must search
for and produce, if one exists, a canonical sequence of length six in linear time.
To do this, find, in linear time, a pair of parallel flats in 0. The proof of the
necessity of the condition (see Section[q for a sketch), reveals that if o satisfies the
condition, then it must contain one of a constant number of canonical sequences
of special types defined by the relation of the labels in the canonical sequence
to each other and to the two given parallel flats. Even though o is a circular
sequence, the fact that the pair of parallel flats can be chosen arbitrarily gives
a starting label for o, namely, the first label of one of these flats. Hence, it is
not necessary to try each label of the entire sequence o as a starting place when
searching for a canonical sequence of one of the special types. Consequently, a
linear time algorithm can be designed to check for the presence of one of these
special canonical sequences. Given a strong canonical cycle, a simple orthogonal
drawing for it can be constructed as described in the previous subsection. The
computation of the coordinates of the endpoints of the segments of a drawing
requires O(n) time for the real RAM model of computation. Since the lengths of
some segments might require ©(lgn) bits to record, the running time becomes
O(nlgn) for a Turing machine model.

5 Necessity

Given a simple orthogonal drawing I'(o) of a shape cycle o, our goal is to show
that o contains a canonical sequence of length six. By slightly perturbing I'(o) if
necessary, we may assume without loss of generality that I'(o) satisfies a general
position assumption, namely, that no two vertices belonging to distinct flats of o
are drawn on the same axis-aligned plane. The lemmas and theorems that follow
are based on this assumption.

5.1 The Proof Technique

The proof is based on the idea of cutting I'(c) into two paths such that one
reaches an octant and the other one goes back to the origin. We follow the two
paths and look for canonical sequences on each path.

As mentioned in Section [, a proof based on this approach does not follow
easily from Theorem P21 It requires more elaborate machinery:

— We suitably choose the points a and b where we cut I'(0) in order to define
the two shape paths o, and op,.

— We find canonical sequences for oqplpy and opelaq that may consist of three
or four labels; #y; is the label of o after the last label of o4, and £,/ is the
label of o after the last label of oy,.

— We use a certain necessary condition, together with Theorem [] and the
properties and lemmas of Subsection to construct a canonical sequence
of length six for o.
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5.2 Some Useful Properties

We now observe some basic properties of a canonical sequence 7 of a shape
cycle or path o. These properties are useful and easy to prove. Unless specified
otherwise, in this subsection ¢ is understood to denote either a shape path or a
shape cycle. By the union 7 U7y of two subsequences of o, we mean the sequence
whose elements are the elements of 7; and 75, ordered as in o.

Property 1. If 7 contains three labels XY Z such that they are consecutive on
the same flat of o, then X and Z define opposite directions.

Property 2. Let o be a shape path. If we remove from 7 its first or last label,
the resulting sequence is still canonical for o.

Property 3. If 7 consists of three labels that define mutually orthogonal direc-
tions, then any subsequence of 7 is a canonical sequence of o .

The next property allows us to remove a label from a canonical sequence of
length four; its proof is an immediate consequence of the definition of 7 and of
Property [

Property 4. If T consists of four labels exactly two of which are oppositely direc-
ted, then a subsequence obtained by deleting from 7 one of these two opposite
labels is a canonical sequence of o.

For example, if 7 = {D, S, W,U} is a canonical sequence, then by Property
@ 7 = {D,S,W} is also a canonical sequence.

The following lemmas allow us to merge two canonical sequences to obtain a
new canonical sequence.

Lemma 3. Let 4 C 0 and 72 C o be two canonical sequences such that (1)
71N T2 =0, and (2) for all pairs of canonical labels X,Y such that X € 7y and
Y € 7y there is no flat containing both X and Y. Then the sequence T = 11 U o
is canonical for o.

Lemma 4. Let o have the form o = 09 X0y, where X is a transition label for o.
Let 11 C Xo1 and 7o C 02X be canonical sequences for o such that (1) 71 N1y
= X and (2) for all pairs of canonical labels Y, Z # X such that Y € 71 and
Z € 1o, there is no flat containing both Y and Z. Then the sequence T = 1 U Ty
is canonical for o.

Lemma 5. Let o be a shape cycle of the form Xo1Y oo, where X and Y are
transition labels, and let 71 and T be canonical sequences for o such that (1)
71 C Xo1Y and 72 C Yoo X, and (2) mN1e = X, Y. Then 1 UTs is a canonical
sequence for o.

Next is a necessity result for 3D shape paths.

Lemma 6. Let I'(0) be a simple drawing of a shape path o starting at the origin,
and let uv be an edge of I'(0). If u is in the DSW octant and v is in the DSE
octant, then o contains a canonical sequence T = {D,S, W, E}.
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5.3 Proof of Necessity

We sketch the proof in the case that shape cycle o has at least four flats. Straight-
forward case analysis handles shape cycles with fewer than four flats.

Under the general position assumption, if o has at least four flats, then it
always has two flats F,, and F}, such that I'(F,) and I'(F}) lie on parallel planes.
Let a be the starting point of F, and let b be the starting point of F}. Let aa’
be the first edge of I'(F,), and let bb’ be the first edge of I'(Fy). Let £44/ be the
direction label for aa’ and let £, be the direction label for bb’. Observe that £,
is a transition label shared by two flats of o, the flat preceding F, and flat Fj,.
Similarly, 3 is a transition label shared by the flat preceding Fj and flat Fj.
We denote with F,,_ and F,_ the flats preceding F, and F}, respectively.

Observe that if the origin is chosen at a, then b is a point of an octant. We
define two disjoint directed paths: I'(c4) is the path from a’ to b and I'(oy,)
is the path from b’ to a. We therefore have that o = £,4 00 lpp 0pq. We also
have Oab = Zaa/aa/b and Opg = be’ab/w

Suppose we locate the origin at a and let XY Z be the octant containing
b. We say that a and a’ are equivalent with respect to b if moving the origin
from a to a’ leaves b in the XY Z octant. A similar definition can be given for
the relationship of b and b’ with respect to a. Observe that if ¢ and @’ are not
equivalent with respect to b, then when we locate the origin at b, we have that
a’ does not lie in the octant that contains a.

We consider four main cases, determined by whether or not a and o’ are
equivalent with respect to b, and by whether or not b and o’ are equivalent with
respect to a. For each case, we show how to choose a canonical sequence of length
six for o. This is done by using Properties [l B, 4 and Lemmas B, B and [l to
perform merging operations on two canonical sequences, one defined in 4p0pp
and the other defined in 04444/ . The canonical sequence of o4plpy (Tpalaar) can
either consist of three labels if b and ¥’ are equivalent with respect to a (a and o’
are equivalent with respect to b ), in which case Theorem [2]is used to define the
canonical sequence; or it can consist of four labels if b and &’ are not equivalent
with respect to a (a and o’ are not equivalent with respect to b), in which case
Lemmal[6 is used to define the canonical sequence. Since paths o405y and opalaq
are not disjoint, their canonical sequences need not be disjoint. However, the
merging operations performed on these canonical sequences for paths produce a
cyclic canonical sequence of length six for cycle o.

We summarize the results of this section with the following theorem.

Theorem 3. Let I'(0) be a simple orthogonal drawing of a shape cycle o. Then
o contains a canonical sequence of length six.

6 Conclusion

This paper has characterized those shape cycles that admit a simple orthogonal
drawing in 3D. The characterization yields a linear time recognition algorithm,
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and a drawing algorithm that is linear in the real RAM model and O(nlgn) in
the Turing machine model. Interesting related problems that remain include: (1)
characterizing simple shapes for graphs that are not just cycles, (2) minimizing
the volume of bounding boxes of shape cycles that must be drawn with vertices
at grid points (the coordinates of our drawing will be rational and can be scaled
up to be integers; however, we have not attempted to minimize the volume of the
drawing), and (3) extending the characterization of this paper to shape cycles
with more than six directions and/or to dimension higher than three.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

T. C. Biedl. Heuristics for 3d-orthogonal graph drawings. In Proc. 4th Twente
Workshop on Graphs and Combinatorial Optimization, pp. 41-44, 1995.

T. Biedl, T. Shermer, S. Wismath, and S. Whitesides. Orthogonal 3-D graph
drawing. J. Graph Algorithms and Applications, 3(4):63-79, 1999.

R. F. Cohen, P. Eades, T. Lin and F. Ruskey. Three-dimensional graph drawing.
Algorithmica , 17(2):199-208, 1997.

G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing. Prentice
Hall, 1999.

G. Di Battista, G. Liotta, A. Lubiw, and S. Whitesides. Embedding problems for
paths with direction constrained edges. In D.-Z. Du, P. Eades, V. Estivill-Castro,
X. Lin, and A. Sharma, eds., Computing and Combinatorics, 6" Ann. Int. Conf.,
COCOON 2000, Springer-Verlag LNCS vol. 1858, pp. 64-73, 2000.

G. Di Battista and L. Vismara. Angles of planar triangular graphs. SIAM J.
Discrete Math., 9(3):349-359, 1996.

P. Eades, C. Stirk, and S. Whitesides. The techniques of Komolgorov and Bardzin
for three dimensional orthogonal graph drawings. Inform. Process. Lett., 60:97—
103, 1996.

P. Eades, A. Symvonis, and S. Whitesides. Three-dimensional orthogonal graph
drawing algorithms. Discrete Applied Math., vol. 103, pp. 55-87, 2000.

A. Garg. New results on drawing angle graphs. Comput. Geom. Theory Appl.,
9(1-2):43-82, 1998. Special Issue on Geometric Representations of Graphs, G. Di
Battista and R. Tamassia, eds..

A. Papakostas and I. Tollis. Algorithms for incremental orthogonal graph drawing
in three dimensions. J. Graph Algorithms and Appl., 3(4):81-115, 1999.

R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421-444, 1987.

G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J.
Comput., 14:355-372, 1985.

V. Vijayan. Geometry of planar graphs with angles. In Proc. 2nd Annu. ACM
Sympos. Comput. Geom., pp. 116-124, 1986.

D. R. Wood. Two-bend three-dimensional orthogonal grid drawing of maximum
degree five graphs. TR 98/03, School of Computer Science and Software Enginee-
ring, Monash University, 1998.

D. R. Wood. An algorithm for three-dimensional orthogonal graph drawing. In S.
Whitesides, ed., Graph Drawing (6th Int. Symp., GD ’98), Springer-Verlag, LNCS
vol. 1547, pp. 332-346, 1998.

D. R. Wood. Three-Dimensional Orthogonal Graph Drawing. Ph.D. thesis, School
of Computer Science and Software Engineering, Monash University, 2000.



	Orthogonal Drawings of Cycles in 3D Space (Extended Abstract)
	Introduction
	Overview
	Preliminaries
	Sufficiency 
	The Proof Technique
	Constructing a Drawing 
	Algorithmic Issues 

	Necessity 
	The Proof Technique
	Some Useful Properties
	Proof of Necessity

	Conclusion
	References


