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Abstract. A drawing of a graph in the plane is ω-searchlight obedient
if every vertex of the graph is located on the centerline of some strip of
width ω, which does not contain any other vertex of the graph. We
estimate the maximum possible value ω(n) of an ω-searchlight obe-
dient drawing of a graph with n vertices, which is contained in the unit
square. We show a lower bound and an upper bound on ω(n), namely,
ω(n) = Ω(log n/n) and ω(n) = O(1/n4/7−ε), for an arbitrarily small
ε > 0. Any improvement for either bound will also carry on to the fa-
mous Heilbronn’s triangle problem.
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1 Introduction

In this paper we represent a graph-drawing problem as an optimization problem
in combinatorial geometry, and establish a lower and an upper bound for the
solution of this problem. Such “Erdős-type” problems attracted much attention
throughout the last century. The interested reader is referred to the rich litera-
ture on combinatorial geometry; see, e.g., [2,3,6]. Specifically, we would like to
draw a graph within the unit square, such that each vertex of the graph is co-
vered by a strip associated with it, and no vertex is covered by a strip associated
with another vertex. Our goal is to maximize the width of the strips.

A searchlight is a strip in IR2, that is characterized by three parameters:

1. A point, the source of the searchlight, which lies on the centerline of the
strip.

2. A direction which defines the orientation of the strip.
3. The width of the strip.

We focus on searchlights whose source points are located in the unit square. A
valid collection of searchlights has the property that no searchlight source point
is covered by any other searchlight. We are interested in the following problem:

Given a valid collection of n searchlights of width ω in the unit square,
what is the maximum possible width ω(n) of the searchlights?
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The quantity ω(n) is the maximum possible value of ω for an ω-searchlight
obedient drawing within the unit square of a graph with n vertices. It is possible
to superimpose such a graph with n strips of width ω, such that every strip
contains one vertex on its centerline, but it does not contain any other vertex of
the graph; see Figure 1. The edges of the graph in the figure are drawn entirely

ω

Fig. 1. An ω-searchlight obedient graph drawing

within the searchlights (bounded by the unit square), but requiring this does not
make the problem harder. Any ω-searchlight obedient drawing can be modified
so as to make all the clipped searchlights connected. This is done by rotating
sufficiently the searchlights around their source points; before a strip hits another
vertex, it must have a nonempty intersection (within the unit square) with the
strip associated with the vertex. Such a drawing solves a routing problem in
electronic chip design, where the vertices are ports and the edges are wires of the
chip, and where all the wires pass through long skinny containers, where every
container is associated with one port. (This is somewhat similar, but unrelated,
to the notion of a joint box used in some graph-drawing algorithms; see, e.g., [1].)

We derive lower and upper bounds for the searchlights problem from its
relation to the famous Heilbronn’s triangle problem [7]:

Given n points in the unit square, what is H(n), the maximum possible
area of the smallest triangle defined by some three of these points?

Heilbronn posed the triangle problem about 50 years ago, and since then it
intrigued the imagination of some of the best mathematicians. Yet there is still
a large gap between the best currently-known lower and upper bounds for H(n),



ω-Searchlight Obedient Graph Drawing 323

Ω(log n/n2) [5] and O(1/n8/7−ε) (for any ε > 0) [4].1 A comprehensive survey
of the history of this problem (excluding the results of Komlós et al.) is given
by Roth in [9]. The relation between the triangle problem and the searchlights
problem imposes a similar gap between the bounds shown in this paper for
the latter problem. Improving either the lower or upper bound for one of the
problems will also improve the respective bound for the other problem.

The problem discussed in this paper was also motivated by the following.
Suppose that the actual value of H(n) is ∆. Consider the set S that realizes ∆.
Every pair of points p, q ∈ S defines a strip of width 4∆/d(p, q) which contains
no other points of S, where d(p, q) is the distance between p and q. Thus, the
width of the “forbidden strip” defined by p, q is inversely proportional to d(p, q).
Roth showed in [8] that H(n) = O( 1

n1.117... ). In this work he made the distinction
between ‘bad’ and ‘good’ strips according to a relation between their width to
the number of points of S they contain. We would like to demonstrate here that
the strip-width effect (caused by the distances between points) on Heilbronn’s
triangle problem is minor. We do that by showing a tight relation between Heil-
bronn’s problem to the searchlights problem, where all the searchlights are strips
of the same width.

2 Easy Bounds on ω(n)

We first establish easy lower and upper bounds on ω(n).

2.1 Lower Bound

Theorem 1. ω(n) = Ω(1/n).

Proof. We establish the lower bound from a simple example. Put n vertical
searchlights of width 1/n so that their interiors do not intersect. The source
points may be located anywhere along the searchlight centerlines, and obviously
no source is covered by any other searchlight.2

2.2 Upper Bound

Theorem 2. ω(n) = O(1/
√

n).

Proof. Let k =
⌊√

n − 1
⌋
. Partition the unit square into a full grid of k×k small

squares each of sidelength 1/k. Now locate n searchlights in the unit square.
Since the grid contains at most (n − 1) small squares, there must exist one
such square that contains two searchlight source points. The distance between
these two sources is at most

√
2/k, therefore the searchlight width cannot exceed

2
√

2/k = 2
√

2/
⌊√

n − 1
⌋

= O(1/
√

n).

1 Actually, Komlós et al. showed in this work that H(n) = O(ec
√

logn/n8/7) for some
constant c > 0.

2 In fact, it is rather easy, as an anonymous referee noted, to improve (increase) the
constant of proportionality in this bound.
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3 Improved Bounds on ω(n)

In this section we improve the bounds on ω(n) obtained in the previous section.
We begin with stating the relation between Heilbronn’s triangle problem and
the searchlights problem.

Theorem 3. Assume that c1f1(n) ≤ H(n) ≤ c2f2(n), for some monotonically-
growing functions f1(n), f2(n) and constants c1, c2 > 0. Then c3f1(

√
2n) ≤

ω(n) ≤ c4
√

f2(2n), for some constants c3, c4 > 0.

Proof. We first show the lower bound on ω(n). We put N points in the unit
square such that the area of the smallest triangle defined by some three of these
points assumes its maximum H(N). (See Figure 2(a); Heilbronn’s points appear

(a) The construction (b) Avoiding source points

Fig. 2. Connecting Heilbronn’s points (•) with searchlights

as black circles.) We then draw the
(
N
2

)
lines defined by the N points. These

will be searchlight centerlines; the locations of the source points (shown as white
circles in Figure 2(a)) will be defined later. Every such line is now split by the
other lines into O(N2) segments. We select one of these segments, σ = pq (p
and q are the endpoints of the segment σ), and locate on it a source point of a
searchlight of width ω (see Figure 2(b)). (We repeat this for all the Θ(N2) lines.)
For ease of exposition we assume without loss of generality that σ is horizontal.

Refer to the leftmost searchlight s emanating upwards from q, the right end-
point of σ. This is the strip that overlaps the most of the right side of σ among
all searchlights whose centerline passes through q. (The rightmost searchlight
emanating upwards from q can also overlap a significant portion of the right side
of σ, in which case we apply the same analysis for searchlights that emanate
downwards from σ.) Let r be the other point which, together with q, defined the
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strip s. Without loss of generality we assume that r is above σ. By the assump-
tion, the area of the triangle defined by the points p, q, r is at least c1f1(N).
Thus, the altitude h of r relative to σ satisfies |σ|h/2 ≥ c1f1(N), that is,

h ≥ 2c1f1(N)/|σ|. (1)

We now compute d, the amount of overlap between s and σ. Obviously |qr| ≤ √
2

and sin α = h/|qr| = ω/(2d). Thus

d =
ω|qr|
2h

≤
√

2ω

2h
. (2)

By substituting Equation (1) in Equation (2) we obtain

d ≤
√

2ω|σ|
4c1f1(N)

. (3)

A similar analysis shows the same upper bound on the length of the portion
of σ overlapped by the rightmost (or leftmost) searchlight emanating upwards
from p. Therefore, the total length of the two overlapped portions is at most√

2ω|σ|/(2c1f1(N)). Hence, in order to preclude a searchlight source point on σ
we must have

√
2ω|σ|/(2c1f1(N)) ≥ |σ|, that is,

ω ≥
√

2c1f1(N). (4)

Finally, we set N =
√

2n in order to have n(1 + o(1)) searchlights, and obtain
ω ≥ √

2c1f1(
√

2n). Setting c3 =
√

2c1 completes the argument.
A reduction in the opposite direction shows the upper bound on ω(n). Refer

to Figure 3. Here we put n searchlights of the maximum possible width ω such
that their source points are located in the unit square. The n centerlines of the
searchlights intersect inside the unit square in at most

(
n
2

)
points. On each cen-

terline we position two “Heilbronn points” at the two intersection points which
define the segment on which the source point of the respective searchlight lies.
(For this purpose we also consider the intersections of the searchlight centerlines
with the unit square.) In total we thus mark N = 2n points.3

Refer to the smallest-area triangle defined by some triple p, q, r of these N
points (see again Figure 2(b)). Here r is one of the points marked on the sear-
chlight s whose intersection with the searchlight containing σ defines q. By the
assumption, the area of this triangle is at most c2f2(N). Fix again the segment
σ whose endpoints are p and q. The altitude h of r relative to σ must satisfy
|σ|h/2 ≤ c2f2(N), that is,

h ≤ 2c2f2(N)
|σ| . (5)

3 Figure 3 is misleading in the sense that this example contains three or more collinear
Heilbronn points, which obviously define a triangle of area 0. Note, however, that
we use here an upper bound on the area of Heilbronn’s triangles.
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Fig. 3. Locating Heilbronn points on searchlights

We now compute the amount of overlap between s and σ. Again, sin α = h/|qr| =
ω/(2d). This time we use the fact that |qr| ≥ ω/2 (otherwise the source point of
the searchlight on σ would be covered by the searchlight centered either at pr
or at qr).4 Thus,

d =
ω|qr|
2h

≥ ω2

4h
. (6)

By substituting Equation (5) in Equation (6) we obtain

d ≥ ω2|σ|
8c2f2(N)

. (7)

A similar analysis applies for the left side of σ. Therefore, the total length
of the two overlapped portions of σ is at least ω2|σ|/(4c2f2(N)). On the other
hand, this total is at most |σ| (since σ contains a searchlight source point), so
we must have ω2|σ|/(4c2f2(N)) ≤ |σ|, that is,

ω ≤ 2
√

c2
√

f2(N) = 2
√

c2
√

f2(2n). (8)

Setting c4 = 2
√

c2 completes the argument.

Next we quote the best currently-known bounds for Heilbronn’s triangle pro-
blem:

Theorem 4. [5] H(n) = Ω(log n/n2).

4 Note the difference between this lower bound on |qr| and the upper bound of
√

2
used above.



ω-Searchlight Obedient Graph Drawing 327

Theorem 5. [4] H(n) = O(1/n8/7−ε) for any ε > 0.

Finally we combine Theorems 3, 4, and 5 to obtain our main result:

Theorem 6. ω(n) = Ω(log n/n) and ω(n) = O(1/n4/7−ε) for any ε > 0. ut
We also have the opposite dependence:

Theorem 7. Assume that d1g1(n) < ω(n) < d2g2(n), for some monotonically-
growing functions g1(n), g2(n) and constants d1, d2 > 0. Then d3g

2
1(n/2) <

H(n) < d4g2(n2/2), for some constants d3, d4 > 0.

Proof. First we show that there exists a constant d3 for which H(n) > d3g
2
1(n/2).

Assume to the contrary that no such constant exists, that is, for any d3 > 0 and
for sufficiently-large values of n, we have H(n) ≤ d3g

2
1(n/2). Then by Theorem 3

there exists a constant d′
3 > 0 for which ω(n) ≤ d′

3

√
g2

1((2n)/2) = d′
3g1(n),

which is a contradiction.
Similarly we show that there exists a constant d4 for which H(n) < d4g2

(n2/2). Assume to the contrary that no such constant exists, that if, for any
d4 > 0 and for sufficiently-large values of n, we have H(n) ≥ d4g2(n2/2). Then
by Theorem 3 there exists a constant d′

4 > 0 for which ω(n) ≥ d′
4g2(

√
2(n2/2)) =

d′
4g2(n), which is also a contradiction.

Theorem 7 implies that any improvement of the lower or the upper bound
for the searchlights problem will also carry on to Heilbronn’s triangle problem,
which, as mentioned in the introduction, has puzzled many mathematicians
throughout the last half of century.
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