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Abstract. Let G be an n-node graph. We address the problem of com-
puting a maximum symmetric graph H from G by deleting nodes, dele-
ting edges, and contracting edges. This NP-complete problem arises na-
turally from the objective of drawing G as symmetrically as possible. We
show that its tractability for the special cases of G being a plane graph,
an ordered tree, and an unordered tree, depends on the type of operations
used to obtain H from G. Moreover, we give an O(log n)-approximation
algorithm for the intractable case that H is obtained from a tree G by
contracting edges. As a by-product, we give an O(logn)-approximation
algorithm for an NP-complete edit-distance problem.

1 Introduction

As graphs are known to be one of the most important abstract models in various
scientific and engineering areas, graph drawing has naturally emerged as a fast
growing research topic in computer science. Among various aesthetics investi-
gated in the literature, symmetry has received much attention recently [2,3,4,
5,6,9,10,16,15,17]. As a symmetric graph can be decomposed into a number of
isomorphic subgraphs, only a portion of the graph, together with the symmetry
information, is sufficient to define the original graph. In this way, symmetric gra-
phs can often be represented in a more succinct fashion than their asymmetric
counterparts. In reality, however, we often have to lower our expectations by al-
lowing imperfection while considering the so-called ‘nearly symmetric’ drawings
of graphs. To draw a graph in a nearly symmetric fashion, a good starting point
might be to draw its symmetric subgraph as large as possible first, and then add
the remaining nodes and edges to the drawing. Like many of the graph drawing
problems, determining whether a graph has an axial or rotational symmetry is
computationally intractable [15]. The maximum symmetric subtrees (i.e., sub-
trees that exhibit symmetric drawings), however, can be computed in polynomial
time [4]. For series-parallel graphs, algorithms that display as much symmetry
as possible can be found in [10]. Aside from the above algorithmic aspects of
symmetric drawings, in [6] several types of symmetries, including axial symme-
tries and rotational symmetries, have been characterized in a unified way using
geometric automorphism groups.

To formulate the notion of near symmetry, in this paper we propose a quan-
titative measure to capture the degree of symmetry in drawing graphs, and then
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Fig. 1. (a) An asymmetric graph G rooted at the gray node. (b) A maximum axially
symmetric graph H obtained from G by contracting edges. (c) A nearly symmetric
drawing of G. (d) A 3-rotational symmetric graph.

investigate the complexity of computing such a measure for ordered trees, un-
ordered trees, and plane graphs. An O(log n)-approximation algorithm is given
for an NP-complete case for unordered trees. Given a graph G, our symmetry
measure of G is the maximum number of edges in a symmetric graph H that
is obtained from G by applying a sequence of edge contractions, node deletions,
or edge deletions. For example, the asymmetric graph G in Figure 1(a) can be
turned into a symmetric graph H in Figure 1(b) by contracting the gray edges.
One can verify that H is a maximum axially symmetric graph obtainable from
G by contracting edges. Therefore, the degree of axial symmetry for G is 8. Vi-
sually, the graph in Figure 1(a) admits a nearly symmetric drawing as displayed
in Figure 1(c). In light of the above, our symmetry measure can be thought of as
a quantitative way of defining the notion of near symmetry in graph drawings.
Graphs with higher degrees of symmetry have the tendency to exhibit better
symmetric appearances visually. For more about nearly symmetric drawings,
the reader is referred to [9].

As stated above, our main concern is to turn a graph into a symmetric graph
with maximum number of edges through edge contractions, edge deletions, and
node deletions. If the resulting graph is axially (respectively, rotationally) sym-
metric, we call the problem das (respectively, drs), standing for degree of axial
(respectively, rotational) symmetry. The tractability results are summarized in
Tables 1 and 2. By allowing nodes to be drawn sufficiently close to each other
(see Figure 1(c)), edge contractions, node deletions, and edge deletions seem to
be rather natural to define near symmetry. In our setting, if a graph cannot be
turned into a symmetric one, then the degree of symmetry is zero.

Our das problems are related to graph isomorphism problems. Such pro-
blems include tree inclusion [12] and edit distance [20], which have appli-
cations to analyzing molecular structures in biology. Given two labelled trees
A and B, tree inclusion is to determine whether A can be obtained from B
by ‘contracting’ nodes, whereas edit distance is to determine the minimum
number of ‘changes,’ ‘contracting’ (or its dual) needed to transform A into B.
The main disparity between our das problem and those related to graph iso-
morphism is that the latter deal with two or more graphs from which some
common substructures are extracted, whereas in the case of das, a single graph
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Table 1. The tractability for maximum axially symmetric subgraph.

node deletion edge deletion edge contraction
tree ordered P [Theorem 1] P [4] P [Theorem 1]

unordered P [Theorem 3] P [4] NPC [Theorem 2]
graph plane P [Theorem 4] NPC [Theorem 5] NPC [Theorem 5]

general NPC [15] NPC [15] NPC [15]

Table 2. The tractability for maximum rotationally symmetric subgraph with respect
to unordered trees.

node deletion edge deletion edge contraction
O(1)-degree trees P [Theorem 8] P [1] Do not preserve degree bound

general trees NPC [Theorem 9] NPC [Theorem 9] NPC [Theorem 9]

is considered. (Although, as we shall see later, a number of techniques commonly
seen in the graph isomorphism research turn out to play a constructive role in
our design and analysis.) As for trees, our das problem also differs from the
tree inclusion and edit distance in the following. First, our das problem
is defined over graphs (while treating trees, both ordered and unordered, as a
special case), as opposed to tree inclusion and edit distance which are
explicitly targeted for trees only. Second, instead of given two ‘labelled’ trees
as inputs in the tree inclusion and edit distance cases, in our symmetric
drawing setting the input consists of a single graph (or tree). In addition, our
graphs are not labelled. Finally, in addition to contractions, we also consider
node deletions and edge deletions. An interesting by-product of our work is an
O(log n)-approximation algorithm for an NP-complete problem related to edit
distance problems.

The rest of the paper is organized as follows. Section 2 defines the degree-of-
symmetry problems. Section 3 studies the tractability of the problems for axial
symmetry, and gives two approximation algorithms, one for a symmetry pro-
blem, and the other for a problem related to edit distance. Section 4 studies the
tractability of the problems for rotational symmetry with respect to unordered
trees. Section 5 concludes the paper with some future research directions.

2 Preliminaries

Let G be a graph. Let |G| denote the number of nodes in G. A drawing of G
on the plane is a mapping D from the nodes of G to R2, where R is the set of
real numbers. That is, each node v is placed at point D(v) on the plane, and
each edge (u, v) is displayed as a line segment connecting D(u) and D(v). A
graph G has an axial symmetry if there exists a drawing D under which the
image of G is symmetric with respect to a straight line on the plane. G has a
k-rotational symmetry if there exists a drawing D such that D is unchanged if
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Fig. 2. Four graphs for illustrating the operations of deleting nodes, deleting edges,
and contracting edges.

the plane is rotated at some point by 360/k degrees. For example, the drawing
shown in Figure 1(b) has an axial symmetry; and the drawing in Figure 1(d)
has a 3-rotational symmetry. Axial symmetry and rotational symmetry are two
special kinds of geometric automorphisms defined by Hong, Eades, and Lee [8].
The reader is referred to [6,8,9,15] for more about symmetry in graph drawing.

For a connected G, the following basic graph operations are used throughout
the paper.

– Node deletion. Only nodes of degree no more than two can be deleted from
G. For any degree-one node w of G, deleting w is the operation of removing
w and its incident edge from G. If the degree of w is two, where u and v are
its neighbor in G, then deleting w is the operation of deleting w, (u, w), and
(v, w) from G, and then adding a copy of (u, v) to G.

– Edge deletion. The operation can only be applied to an edge (u, v) whose
removal does not disconnect G, or one of u and v is of degree one. Deleting
(u, v) is the operation of removing edge (u, v) (or exactly one copy of the
parallel edges incident to u and v). In case a degree-one node is involved,
the node is removed as well.

– Edge contraction. For any edge (u, v) of G, contracting (u, v) is the operation
of deleting the edge incident to u and v, and then merging u and v into a
single node. Note that if G has m parallel edges incident to u and v, then all
but one of those m parallel edges become self-loops incident to the merged
node in the resulting graph.

Examples are shown in Figure 2: G2 is obtained from G1 by deleting the gray
nodes; G3 is obtained from G2 by deleting the gray edges; and G4 is obtained
from G2 by contracting the gray edges. Given graphs G and H, we write G

ec→ H,
G

nd→ H, and G
ed→ H to signify that H can be obtained from G through a

sequence of edge contractions, node deletions, and edge deletions, respectively.
Clearly, a node deletion can be viewed as an edge contraction. Hence, G

nd→ H
implies G

ec→ H. One can easily see that if H consists of a single node and no
edges, then G

ec→ H and G
ed→ H hold for any nonempty G. However, G

nd→ H
does not necessarily hold, since parallel edges cannot be removed through node
deletions.

Given a graph G, the degree of axial (respectively, rotational) symmetry of
G is defined to be the size of a maximum axially (respectively, rotationally)
symmetric graph H that can be derived from G through basic graph operati-
ons. In this paper, we investigate the tractability of determining the degree of
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axial symmetry (das) and the degree of rotational symmetry (drs). Let dasec,
dasnd, and dased denote the das problem with respect to edge contraction,
node deletion, and edge deletion, respectively. Let drsec, drsnd, and drsed be
defined similarly. For any graphs G1 and G2, let distec(G1, G2), disted(G1, G2),
and distnd(G1, G2) denote the minimum number of edge contractions, edge de-
letions, and node deletions required to transform G1 and G2 into two identical
graphs, respectively.

Fact 1 (see [15]) For each operation op ∈ {ec, ed, nd}, dasop and drsop for
graphs are NP-complete.

3 Axial Symmetry

3.1 Ordered Trees

We begin by considering the das problems for ordered and unordered trees.
Unless stated otherwise, trees are assumed to be rooted for the rest of the paper.
For any ordered forest F , let reflection(F ) be the ordered forest obtained from
F by (a) reversing the order of the trees in F , and (b) reversing the order of
the children of v for each node v in F . For any ordered tree T , let T (i) be the
subtree of T rooted at vi, where v1, v2, . . . , vn is the postordering of T .

Fact 2 (see [20,13]) For any ordered forests F1 and F2, distec(F1, F2) can be
computed in polynomial time.

Theorem 1. dasec and dasnd for ordered trees can be solved in polynomial
time.

Proof. Clearly, one of the following two cases holds for any axially symmetric
tree T .

– Case 1: The root of T has 2k + 1 children for some integer k. Let vi be the
(k + 1)-st child of the root of T . Let F1 be the subforest of T induced by
the nodes vj with j < `, where v` is the leftmost leaf node of T (i). Let F2
be the subforest of T induced by the nodes vj with i < j < n. Clearly, F1 is
identical to reflection(F2).

– Case 2: The root of T has 2k children for some integer k. If k ≥ 1, then let
vi be the k-th child of the root of T . Let F1 be the subforest of T induced
by the nodes vj with 1 ≤ j ≤ i. Let F2 be the subforest of T induced by the
nodes vj with i < j < n. Clearly, F1 is identical to reflection(F2).

We prove the statement for dasec by giving a dynamic-programming al-
gorithm. Let T be the given ordered tree, where v1, v2, . . . , v|T | is the post-
ordering of T . Clearly, v|T | is the root of T . By the above observations for
any axially symmetric ordered tree, one can verify that the algorithm shown
in Figure 3 correctly computes the minimum number of edge contractions re-
quired to turn T into an axially symmetric ordered tree. An example that illu-
strates number-of-contraction for v7 is shown in Figure 4. The correctness of
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function number-of-contraction(T ) {
for i = 1 to |T | − 1 do {

let Ai be the set of ancestors of vi in Ti;
let F1 be the subforest of T induced by {v1, v2, . . . , vi};
let F2 be the subforest of T induced by {vi+1, vi+2, . . . , v|T |} −Ai;
let F3 be obtained by removing T (i) from F1;
let ci = min{distec(F1, reflection(F2)),

distec(F3, reflection(F2)) + number-of-contraction(T (i))};
}
return min1≤i≤|T |−1 |Ai| + ci;

}

Fig. 3. An algorithm for computing the minimum number of edge contractions required
to turn T into an axially symmetric graph.

(a)

v13

v7v3

(d)(c)(b)

v3 v7 v12 v3

v12

Fig. 4. (a) An ordered tree. (b) The F1 for v7. (c) The F2 for v7. (d) The F3 for v7.

number-of-contraction is immediate from the above two-case observation. By
Fact 2, it is not difficult to see that number-of-contraction runs in polynomial
time.

The statement for dasnd can be proved similarly.

3.2 Unordered Trees

Theorem 2. dasec for unordered trees is NP-complete.

Proof. By Fact 1, it suffices to show a reduction from the following variant
of satisfiability, which remains NP-complete [12]: The input f is a set of
m clauses C1, C2, . . . , Cm over variables v1, v2, . . . , vn, where each ¬vi appears
in at most one clause of f . Let ` = (12m + 10)(m +

∑m
i=1 |Ci|) + n, where

|Ci| is the number of literals in Ci. For each 1 ≤ k ≤ m, let Gk be as shown
in Figure 5(b). Clearly, the height of each Gi is 3m + 5. The unordered tree
instance Tf consists of two subtrees L and R, each begins with a long path of
length `. The length-` path of L has subtrees G1, . . . , Gm. The length-` path of
R has subtrees P1, . . . , Pn, where Pi is defined as follows. If ¬vi does not appear
in f , then Pi has a subtree Gj for each index j with vi ∈ Cj . If ¬vi appears in a
clause, say, Cr of f , then Pi is exactly Gr, whose leftmost leaf node has a subtree
Gj for each index j with vi ∈ Cj . An example of Tf is shown in Figure 5(a).

Now we prove that f is satisfiable if and only if Tf
ec→ T holds for some

axially symmetric tree T with |T | ≥ 1 + 2|L|. Suppose f is satisfiable by a truth
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(b)

3k + 2 nodes

3m + 1 − 3k nodes
G1 G1

G2G2 G3 G2 G3 G4 G1 G4 G4

G3

R

G1 G2 G3 G4

(a)

L

` nodes

Fig. 5. (a) The Tf for f = {¬v2 ∨ v3 ∨ ¬v4, v1 ∨ v2 ∨ v4, v1 ∨ v2 ∨ ¬v3, v2 ∨ v3 ∨ v4}.
(b) The building block Gk.

assignment φ. We show how to obtain L by applying edge contractions to R.
If φ(vi) = false, then we remove all those Gj with vi ∈ Cj from Pi by edge
contractions. If φ(vi) = true, then we remove all but those Gj with vi ∈ Cj from
Pi by edge contractions. Since each Cj , with 1 ≤ j ≤ m, is satisfied by φ, it is
clear that at least one copy of Gj remains in the resulting R. Thus, we can apply
additional edge contractions on the resulting R to obtain L.

Now we assume that there is an axially symmetric tree T such that Tf
ec→ T

and |T | ≥ 1 + 2|L| hold. One can easily verify that L and the length-` path in
R must stay intact in T . In the symmetric drawing, if block Gi in L is mapped
into block Gj in R, then i = j. Note that the depth of each leaf node in each
Gi, with 1 ≤ i ≤ m, is exactly m + 6. Therefore, if i 6= j, then Gi

ec→ Gj does
not hold. It follows that each Gi in the right subtree of T comes from a Pj of R.
If Pj was composed of Gi whose leftmost leaf node has some subtrees, then let
φ(vi) = false. Otherwise, let φ(vi) = true. Hence, φ indeed satisfies f .

Theorem 3. dasnd for unordered trees can be solved in polynomial time.

Proof. Let v1, v2, . . . , vn be a postordering of the input tree T . If in the outcome
of the conversion between T (i) and T (j), vi and vj remain to be the roots of
T (i) and T (j), then the minimum number of node deletions required is written
as d(T (i), T (j)). (Note that in the resulting symmetric mapping, the two roots
need not be vi and vj .) Let das(T (i)) be the number of node deletions required
to turn the T (i) into a symmetric one.

For each i, let Vi consist of the children of vi in T . We first show how to
compute d(T (i), T (j)) in polynomial time. Construct a complete bipartite graph
B = (Vi ∪ Vj , E) as follows: For each edge (vp, vq) with vp ∈ Vi and vq ∈ Vj , let
the edge weight w(vp, vq) be |T (p)| + |T (q)| − distnd(T (p), T (q)), and compute
the maximum matching of graph G. Since vi and vj must be mapped into each
other for computing d(T (i), T (j)), and the numbers of children of vi and vj do
not increase under node deletions, we know d(T (i), T (j)) = |T (i)| + |T (j)| −
matching(B), where matching(B) is the weight of the maximum matching of
B. Since maximum matching can be computed in polynomial time [14], so can
d(T (i), T (j)).
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It remains to show that each das(T (i)) can be computed in polynomial time.
Construct a weighted graph Gi = (Vi, Ei). For each pair of nodes vp and vq in
Vi, let the weight of edge (vp, vq) be |T (p)|+ |T (q)|−distnd(T (p), T (q)). We then
do the following:
Step 1. The number of operations required to let T (i) become symmetric without
any nodes on the symmetry axis is |T (i)| − matching(Gi).
Step 2. Delete one node vj of Gi, and then compute the maximum matching of
the resulting graph. The number of operations required to let T (j) become sym-
metric with vj on the symmetry axis is |T (j)|−the sum of edge weights found−
das(T (j)).
Step 3. Repeat Step 2 for each node in G.
Step 4. The minimum number of required operations is the minimum value found
in Steps 1 and 3.

Clearly, the solution of a maximum matching contains edge (vi, vj) of weight
w if and only if T (i) and T (j) can be made identical by deleting w nodes. Thus,
the above procedure computes das(T (i)) correctly, proving the theorem.

3.3 Plane Graphs

In this subsection we study the das problems for planarly embedded graphs.

Theorem 4. dasnd for plane graphs can be solved in polynomial time.

Proof. The proof is a slight extension of a result in [15]. First we apply node
deletions to all the degree-1 and degree-2 nodes of G. Let the resulting graph be
H. Hence, if after finite node deletion operations on G, we get a symmetric graph
G1, and suppose P is a geometric automorphism on G1, then P must also be
a geometric automorphism on H. Using the algorithm that finds automorphism
for plane graphs [11], all the geometric automorphisms of H can be obtained in
polynomial time. And for each automorphism P , we then compare the numbers of
degree-1 and degree-2 nodes of G on the corresponding edges of P by Theorem 1.
Thus, the theorem is proved.

Theorem 5. dased and dasec for plane graphs are NP-complete.

Proof. By Fact 1, it suffices to ensure the NP-hardness of dased and dasec for
plane graphs. The NP-hardness of dased can be obtained by a reduction from
the NP-complete Hamiltonian cycle problem on a plane graph G [7]. For a given
n-node m-edge plane graph G, we construct a plane graph H by connecting G,
an (m + 2)-node path Pm+2, and an n-node cycle Cn. One can verify that there
exists an axially symmetric plane graph H ′ whose edge number is greater than
or equal to 2n+m+3 and H

ed→ H ′ if and only if G admits a Hamiltonian cycle.
Now we prove the NP-hardness of dasec. Let G∗ be the dual graph of the

input plane graph G with the node (and its incident edges) associated with the
external face in G removed. Clearly, G admits a symmetric drawing if and only
if G∗ admits a symmetric drawing. Also, an edge contraction on G corresponds
to an edge deletion on G∗. Therefore the NP-hardness of dasec for G follows
from that of dased for G∗.
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(a) (b)

Fig. 6. (a) An unordered tree T . (b) A path decomposition of T .

3.4 Approximation Algorithms

As shown in Theorem 2, dasec for unordered trees is NP-complete. In the fol-
lowing, we give an approximation algorithm for dasec. We shall see later that
the technique of our approximation algorithm for dasec has an application to
the problem of finding the maximum isomorphic subtrees (under contraction)
between two unordered unlabeled trees. A related result in the literature is that
the edit-distance problem for unordered labeled trees is MAX SNP-hard [19].

Let decomp(T, r) be the following procedure of decomposing a tree T with
root r into k paths, where k is the number of leaves. The leaves are labeled from
1 to k such that a leaf with a smaller depth is assigned a smaller label. The k
paths are constructed as follows. An edge e = (v, w), where v is closer to r than
w, belongs to path Pi, 1 ≤ i ≤ k, if i is the largest label among all the leaves of
the subtree rooted at w. An example is shown in Figure 6. Let e be the base of
the natural logarithm.

Theorem 6. For any n-edge rooted tree T , there is a polynomial-time algorithm
that outputs a symmetric tree T ′ such that T

ec→ T ′ and T ′ contains at least n
e ln n

edges.

Proof. Let r be the root of T . We first perform decomp(T, r), and let R =
{P1, . . . , Pk}, where k is the number of leaves of T , be the resulting set of
paths. We then decompose R into R1, . . . , Rdln ne such that any path in Ri

has length between ei−1 and ei, for each 1 ≤ i ≤ dln ne. Then, find the set
Rj , 1 ≤ j ≤ dln ne, with the maximum number of edges among all Ri. Now
∀i, i 6= j, contract all the edges in Ri and all the edges e = (u, v) in Rj with the
distance from v to the leaf of the path (in R) containing e greater than or equal
to ej−1. The resulting graph is a tree with paths of equal length dej−1e directly
attached to the root r, and hence, the graph is symmetric. For those paths in
Rj , at least 1/e of the total number of edges of Rj is left after the mentioned
contraction operations. (Recall that the length of each path in Rj has lower and
upper bound of dej−1e and deje, respectively.) In view of the above, the total
number of edges left in the resulting symmetric tree is at least n

e ln n .
By Theorem 6, we are able to find an approximation algorithm of guaranteed

performance for computing, given two unordered and unlabeled trees T1 and T2,
the maximum tree T such that both T1

ec→ T and T2
ec→ T .

Theorem 7. There is a polynomial-time algorithm which, given two unordered
unlabeled trees T1 and T2, outputs a tree T having at least 4·opt

e2 ln n1 ln n2
edges such
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that T1
ec→ T and T2

ec→ T , where n1 and n2 are the numbers of edges in T1 and
T2, respectively, and opt is the number of edges in an optimal tree.
Proof. For any given trees T1 and T2, we run decomp(T1, r1) and decomp(T2, r2).
Then we separate the edges in T1 and T2 into ln n1

2 and ln n2
2 subsets, respectively,

using the same strategy stated in the proof of Theorem 6. The length of a path
in the i-th set is between e2i−2 and e2i. For the i-th subset of T1 and the j-th
subset of T2 (assuming that i ≥ j), since each path in the j-th subset of T2 has
length at most e2j , the maximum number of edges that can be matched is at
most e2j ·µ(i, j), where µ(i, j) is the minimum of (a) the number of paths in the
i-th subset of T1, and (b) the number of paths in the j-th subset of T2. However,
according to the contraction method used in Theorem 6, it is easy to see that the
number of edges matched is at least µ(i, j)·e2j−2 (i.e., 1

e2 of the maximum number
of edges matched). Our contraction procedure is similar to that of Theorem 6.
In the partitions of T1 and T2 mentioned above, we mark those edges belonging
to the optimal solution opt. Since there are only ln n1

2 subsets of T1 and ln n2
2

subsets of T2, there exists a pair (i, j) such that the i-th subset of T1 and the
j-th subset of T2 have more than 4·opt

ln n1 ln n2
edges matched in opt. Our algorithm

generates a tree of at least 1
e2 · 4·opt

ln n1 ln n2
edges. The subtree achieving the above

approximation ratio can be obtained by considering all possible combinations of
i and j.

4 Rotational Symmetry

Theorem 8. For any constant k ≥ 3, k-drsnd for unordered trees with O(1)
degree can be solved in polynomial time.
Proof. Let T be a given tree, whose maximum number of children of each node
is at most δ. For brevity, we may assume that each non-leaf node of T has exac-
tly δ children. This assumption can be removed without too much effort. Let
v1, v2, . . . , vn be the postordering of T . Let vc(i,j) be the j-th child of vi. Let
d(i1, i2, . . . , ik) be the minimum number of node deletions required to transform
T (i1), T (i2), . . . , T (ik) into k identical trees. Given a set S = {s1, s2, . . . , sk}, a
mapping σ : S → S is called a permutation of S if {σ(s1), σ(s2), . . . , σ(sk)} = S.
It is not difficult to see that d(i1, i2, . . . , ik) can be computed by the following re-
cursive procedure: If {vi1 , . . . , vik

} contains a leaf of T , then let d(i1, i2, . . . , ik)
be the sum of |T (ij)| over all leaves vij

of T . Otherwise, d(i1, . . . , ik) is the
minimum of (a) min1≤p≤k,1≤q≤δ d(i1, . . . , ip−1, c(ip, q), ip+1, . . . , ik) + |T (ip)| −
|T (c(ip, q))| and (b) d2 = minσ1,... ,σk∈Σ

∑
1≤t≤δ d(c(i1, σ1(t)), . . . , c(ik, σk(t))),

where Σ consists of all permutations of {1, . . . , δ}. Since k = O(1) and δ =
O(1), we know that d(i1, i2, . . . , ik) can be computed in polynomial time. If
the number of children of the root is no more than k, then the degree of k-
rotational symmetry of T is zero. Otherwise, the degree of k-rotational symme-

try of T is exactly n − 1 minus the minimum of
∑b δ

k c
i=1 d(ri,1, ri,2, . . . , ri,k) +∑{|T (j)| : vj is a child of the root, j 6∈ {

ri,j | 1 ≤ i ≤ ⌊
δ
k

⌋
, 1 ≤ j ≤ k

}}
, where

the minimum is taken over all choices of distinct children vri,j (1 ≤ i ≤ ⌊
δ
k

⌋
, 1 ≤

j ≤ k) of the root.
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16 nodes

17 nodes

T3T2T1

Fig. 7. The tree TR constructed for the problem instance R of tripartite matching,
where R = {{b1,1, b2,1, b3,2} , {b1,1, b2,2, b3,2} , {b1,2, b2,2, b3,1}}.

Theorem 9. For any constant k ≥ 3, k-drsnd, k-drsed and k-drsec for unor-
dered trees are NP-complete in general.

Proof. By Fact 1, a reduction from tripartite matching [18] suffices. Let R
be a given instance for tripartite matching, which is a ternary relation over
B1 × B2 × B3, where Bi = {bi,1, bi,2, . . . , bi,n} for each i ∈ {1, 2, 3}. We define
the tree TR for the drs problems as follows. Define a function f(k) by letting
f(1) = 1 and f(k) = f(k − 1) + n4 + k − 2 for each k with 2 ≤ k ≤ |R|. Let P
be a path of f(|R|) nodes rooted at an endpoint of P . For each i ∈ {1, 2, 3} and
j ∈ {1, 2, . . . , n}, let Ti,j be a rooted binary tree obtained from P as follows: the
node of depth f(k) is attached by a node if and only if the k-th relation in R
contains bi,j . Let TR be a rooted tree consisting of the subtrees T1, T2, and T3,
where each Ti is a rooted tree consisting of the subtrees Ti,j with 1 ≤ j ≤ n. An
example is shown in Figure 7. One can verify that R admits a size-n tripartite
matching if and only if the degree of 3-rotational symmetry of TR is at least
3|R| · f(|R|) + 3n + 4.

5 Conclusions

From a computational complexity viewpoint, we have investigated the problem
of transforming a graph into a symmetric one using a number of graph operati-
ons including edge contractions, edge deletions, and node deletions. For a given
graph, our goal is to find the maximum symmetric graph that can be derived
from the original graph. An approximation algorithm with a guaranteed perfor-
mance has been given to one of the NP-complete problems. Our study here can
be viewed as a step towards a formal treatment of the notion of near symmetry
in graph drawings. An interesting future research would be to find a sequence of
operations that leads to the symmetric graph, and see how such information can
be used to give a nearly symmetric display of an originally asymmetric graph
(perhaps, by adjusting edge lengths and levels).
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