
J. Marks (Ed.): GD 2000, LNCS 1984, pp. 384-395, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Clan-Based Incremental Drawing

Fwu-Shan Shieh1 and Carolyn L. McCreary2

 1Minolta-QMS, Inc. One Magnum Pass,
Mobile, AL 36618, USA

Fwu-Shan.Shieh@Minolta-QMS.com
2Compaq Computer Corporation, 334 South Street,

Shrewsbury, MA 01545-4112, USA
 Carolyn.McCreary@compaq.com

Abstract. The stability is an essential issue for incremental drawings. To allow
stable updating, means to modify graph slightly (such as adding or deleting an
edge or a node) without changing the layout dramatically from previous layout.
In this paper, a method for achieving stable incremental directed graph layout
by using clan-based graph decomposition is described. For a given directed
graph, the clan-based decomposition generates a parse tree. The parse tree,
which is used for layout, is also employed in locating changes and maintaining
visual stability during incremental drawing. By using the generated parse tree,
each incremental update can be done very efficiently.

1 Introduction

Directed graphs are an excellent means of conveying the structure and operation of
many types of systems. In order to have a meaningful and understandable hand
drawn graph, much time is required to plan how the graph should be organized on the
page. It is especially hard to hand draw an understandable graph containing a huge
number of nodes and edges. In addition, it is difficult for a user to draw a graph when
the data is generated by applications (e.g., dialogue state diagrams generated by
reverse engineering [1]). In the past decades, several visualization systems have been
created for static (automatic) drawings [see 3 & 11 for lists]. Static drawings are not
completely satisfactory because in many situations the displayed drawings are subject
to change from time to time by the user (such as manual editing, browsing large
graphs, and visualizing dynamic graphs) [10]. For dynamic drawings, stable
incremental updating where the placement of only a minimal number of nodes and
edges are modified, is essential [10, & 12]. Currently, only a few Sugiyama-based
dynamic drawing systems have been developed for acyclic directed graphs [6, 10, &
15], and general directed graphs [14]. Based on the experience gained from clan-
based graph drawings [8, 9, & 13], the parse tree generated by clan-based
decomposition can be used to locate updates and generate stable incremental drawings
easily [12].

mailto:Fwu-Shan.Shieh@Minolta-QMS.com
mailto:Carolyn.McCreary@compaq.com

Clan-Based Incremental Drawing 385

2 Clan-Based Graph Drawing

Clan-based graph decomposition parses a directed acyclic graph (DAG) into a
hierarchy of subgraphs. These new subgraphs generated by the decomposition are
called clans and a clan is classified as one of three types: (a) series, (b) parallel, and
(c) primitive [2, 4, and 5].

By using Clan-based graph decomposition, any digraph can be decomposed into an
inclusion tree, known as the parse tree, of subgraphs (clans) whose leaves are
singleton clans (graph nodes) and whose internal nodes are complex clans (series or
parallel) built from their descendants. The primitive clans are decomposed into series
and parallel clans by augmenting edges from all the source nodes of the primitive to
the union of the children of the sources [4, 5]. After decomposition, a bounding box
with computed dimension is associated with each clan and the nodes in the clan are
assigned locations within the bounding box. The generated parse tree of the graph
with bounding boxes attributed is used to provide geometric interpretations to the
graph. To show the directed graph where the edges uniformly point downward (or
upward in the case of a reverse edge), the series clans are displayed vertically and
connected by inter-clan edges, and the parallel clans are displayed horizontally with
no edges between them. To achieve an aesthetically pleasing layout, the nodes are
centered. Figure 1 shows a graph, parse tree, and node layout. . For the details about
clan-based graph drawing, please refer to [7, 8, and 9].

 (a) Graph (b) Parse Tree (c) Node Layout

Fig. 1. Graph, Parse Tree, and Node Layout

3 Clan-Based Incremental Drawing

In order to have stable incremental drawing for clan-based graph decomposition, any
layout computation for a successive drawing should be limited to a minimum area that
contains updates only. Since parallel clans contain no inter-clan connections, this
limited area for clan-based drawing is a series clan (called minimum series clan,
MSC). After the MSC is identified, the layout algorithm is applied to the MSC only.

During the incremental drawing, the previous graph drawing and its corresponding
parse tree, attributed with bounding boxes, are used to locate the MSC for the next
graph and its drawing. The MSC contains all nodes affected by the updates except the
added nodes, which are not in the previous drawing. The updates could be multiple
node or edge insertions and deletions. For an update, the affected nodes include (a)

p p

p pp = parallel clan
= node

1

234 56

7 8910

= series clanSS

S

S
V1

V2V4 V3

V5V6V7V10

V8V9

386 F.-S. Shieh and C.L. McCreary

nodes added, (b) nodes deleted, (c) nodes connected to deleted nodes, (d) nodes
connected to added nodes, (e) nodes connected by added edges, (f) nodes connected
by deleted nodes, and (g) user selected nodes.

The following notations are used to denote graph objects in iteration i:
(1) Gi , graph.
(2) Ei , all edges of graph Gi.
(3) Vi, all nodes of graph Gi.
(4) Di, drawing of graph Gi.
(5) Ti, parse tree of drawing Di with its bounding box and position attributes.
(6) Eadd, edges added to drawing Di-1.
(7) Edel, edges deleted from drawing Di-1.
(8) Nadd, nodes added to drawing Di-1.
(9) Ndel, nodes deleted from drawing Di-1.
(10) Nc-add-n, nodes connected to added nodes Nadd.
(11) Nc-del-n, nodes connected to deleted nodes Ndel.
(12) Nc-add-e, nodes connected by added edges Eadd.
(13) Nc-del-e, nodes connected by deleted edges Edel.
(14) Nsel, selected nodes.
(15) Naffected, nodes affected by update. Naffected = Nadd ­ Ndel ­ Nc-add-n ­ Nc-del-n ­ Nc-add-e

­ Nc-del-n ­ Nsel .
(16) Pi-1, array of clan tree pointers to leaf nodes of Ti-1.

The msc and act subscripts denote graph objects of the minimum series clan and the
subgraph that requires layout computation, respectively.

When few changes are made from one iteration of the graph to the next, the new
graph can be drawn by:

(1) identifying the MSC, Cmsc, and its corresponding graph, Gmsc,
(2) adding/deleting nodes and edges from Gmsc, to form the affected graph, Gact,
(3) computing the parse tree of Gact,
(4) determining the layout of Gact from the parse tree, and
(5) scaling Gact to fit in the space occupied by Gmsc.

Figure 2 shows a graph drawing, parse tree, and its updated graph. The affected
nodes Naffected for this update are nodes 7, 9, and 17. From Figure 2 (b) parse tree, the
MSC that contains Naffected - Nadd is series clan S4. For Figure 2 (a), the Gmsc consists of
nodes (7, 8, 9) and edges ((7, 8), (8, 9)). After Gmsc is found, the clan-based layout
algorithm will be applied only to sub-graph Gact of current graph. The sub-graph Gact

can be identified as Gact.nodes = Gmsc.nodes ­ Nadd - Ndel and Gact.edges = Gmsc.edges ­
Eadd - Edel. In Figure 2 (c), the Gact consists of nodes (7, 8, 9, 17) and edges ((7, 8), (8,
9), (7, 17), (19, 9)). After the layout algorithm is applied to Gact, the parse tree Tact and
drawing Dact are generated (as shown on Figure 3). The size and position of Gact’s
drawing Dact are attributed in parse tree Tact.

 (a) Graph Drawing

(c) Node 17

Fig. 2. Graph

 (a) Graph Gact of Fig. 2 (c) (

Fig. 3. G

In order to minimize the
incremental drawing, only the G
Dact of Gact is sized to be conta
and position of Gmsc’s drawing
than Dmsc, the Dact is scaled do
positioned in the center of the a

The MSC Cmsc in Ti-1 is repl
tree becomes the current parse
parse tree Ti and it's drawing D
Clan-Based Incremental Drawing 387

 (b) Parse Tree for (a)

and Edges (7, 17) & (17, 9) Added to (a)

Drawing, Parse Tree, and Updated Graph

b) Parse Tree of graph Dact (c) Drawing of Graph Gact

raph Gact, Parse Tree, and Drawing

number of nodes that must be moved for stable
act is recomputed for current graph Gi, and the drawing

ined in the area used by Gmsc’s drawing Dmsc. The size
 Dmsc are attributed in Cmsc. If the size of Dact is greater
wn. If the size of Dact is smaller than Dmsc, the Dact is
rea used by Dmsc.
aced by graph Gact's parse tree Tact. The modified parse
 tree Ti for current graph Gi. Figure 4 shows the new
i of Figure 2 (c)’s incremental update.

388 F.-S. Shieh and C.L. McCreary

 (a) Parse Tree from Fig. 2(b) with (b) Drawing of Figure 2(c)
 Series Clan S4 Replaced

Fig. 4. Drawing for Figure 2 (c)’s Incremental Update

 (a) Updated Graph of (b) Drawing Shows (c) New Drawing of (b)
 Figure 4(b) Nodes Overlapped

Fig. 5. An Updated Graph and Drawings for Fig. 4 (b)

4 Insuring Readability

When Dact is scaled down to fit in the area used by Dmsc, the scaled drawing might be
unreadable. Figure 5 (b) shows this problem after an update. Figure 5 (a) is an
updated graph of Figure 4 (b)’s drawing. In this updated graph, nodes (18, 19, 20, 21,
22, 23, 24) and edges ((7, 18), (18, 19), (19, 20), (20, 9), (7, 21), (21, 9), (7, 22), (22,
23), (23, 24), (24, 9)) are added. Figure 5 (b) is the drawing for Figure 5 (a). In the
Figure 5 (b), the scaled down drawing Dact has overlapping nodes that make it a
problem for the user to read the drawing. So, a maximum scale limit is needed to
ensure readability. Figure 5 (c) shows new drawing of Figure 5 (a). In Figure 5 (c),
the scale limit is applied. After the scale limit is reached, the Dact is given more space
to maintain the readability. Although only the subtree rooted at MSC is replaced, the
bounding box and placement attributes of the entire parse tree must be computed. For
the example in Figure 5, this has the effect of moving nodes (1, 2, 3, 4, 5, and 6) to
the left and nodes (10, 11, 12, 13, 14, and 15) to the right.

Clan-Based Incremental Drawing 389

5 Locality of Incremental Drawing

Successive modifications to graphs often occur within a small geometric or logical
neighborhood [10]. In order to build more stable drawing with fewer computations,
the algorithms should take advantage of this locality property. When adjusting the
previous clan tree Ti-1 and the previous drawing Di-1 to make extra space for Dact, if the
space created is the exact space needed by Dact, then any nodes added to the current
Gact might cause Ti and Di to be adjusted again. If the graph is expected to grow, the
scale factor for Gact should be increased.

Figure 6 shows an example of extra space created for future updates. Figures 6 (b)
is successive drawings of Figure 6 (a) and Figure 6 (c) is successive drawing of
Figure (b). In Figures 6 (b) and 6 (c), nodes (1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15) are
not re-positioned because the possible extra space needed by successive drawings has
been generated during Figure 6 (a) drawing layout computation.

 (a) New Drawing of (b) Successive Drawing (c) Successive Drawing
 Fig. 5 (b) of (a) of (b)

Fig. 6. New Update Drawing of Figure 5 (c) with Nodes and Edges Added

6 Reposition Nodes Not in the Minimum Series Clan

If more space is needed, what nodes need be re-positioned or re-sized? Let Pmsc-root be
the path from Cmsc to root in previous parse tree Ti-1, and Ladjust be extra length and Wadjust

be extra width needed by Dact. To make extra space, for each clan Cpath along the path
Pmsc-root needs to add Wadjust to Cpath’s width and Ladjust to Cpath’s length. Also, along the path
Pmsc-root,

1. all left siblings of Cpath whose parent is a parallel clan need to be shifted left with
Wadjust / 2 distance,

2. all right siblings of Cpath whose parent is a parallel clan need to be shifted right
with Wadjust / 2 distance, and

3. all right siblings of Cpath whose parent is a series clan need to be shifted down
with Ladjust distance.

Figure 7 is a parse tree with Cmsc identified. The path Pmsc-root includes clans Cmsc, P7,
S5, P2, and S1. In this parse tree, if more space is needed :

1. node 64 and clan S4’s nodes need to be shifted to the left,
2. clan S10’s nodes and clan S6’s nodes need to be shifted to the right, and
3. and node 65, clan P8’s nodes, and P3’s nodes need to be shifted down.

390 F.-S. Shieh and C.L. McCreary

Fig. 7. Parse Tree with Cmsc identified

Fig. 7. Parse Tree with Cmsc identified

7 Resizing Affected Clans

Is it necessary to resize all clans along the path Pmsc-root? For a parallel clan, its length is
the max value of all children’s lengths. For a series clan, its width is the max value of
all children’s widths. For each clan Cpath along the path Pmsc-root, if both the Cpath 's width
and length do not exceed parent’s max values, it is not necessary to resize parent.

 (a) Drawing (b) Updated Graph of Drawing (a)

 (c) Drawing for (b) (d) New Drawing of (b)
Fig. 8. Updated Graph and Drawings

In some situations, it is not necessary to re-position siblings along the path Pmsc-root

or resize clans which contains Cmsc when the drawing Di requires extra space. In
Figure 8 (b), nodes (6, 7, 8, 9) and edges ((3, 6), (6, 4), (3, 7), (7, 4), (3, 8), (8, 4), (3,
9), (9, 4)) are added to Figure 8 (a) drawing. Figure 8 (c) is the drawing for Figure 8
(b). In Figure 8 (c), nodes 1 and 2 are shifted to the left to make some space for
updates. However, the shift is not necessary. Since there are no nodes at the right
hand side of nodes 3 and 4, it would be more reasonable for updates to grow toward

Clan-Based Incremental Drawing 391

the
Fig

ap
Fig
the
do
dif
wh

8

Us
no
dr
10
fo
(c)
(as
 right without shifting nodes 1 and
ure 8 (b). In Figure 8 (d), nodes 1 and

 (a) Drawing

 (c) Drawing for (b)

Fig. 9. Updated

Figure 9 shows a case when re-sizin
pended to the node 4 of Figure 9 (a).
ure 9 (c), the sub-graph containing n
re are no nodes below them. In th
wnward freely without affecting th
ferent drawing of Figure 9 (b). The
ere re-sizing / re-positioning is not ne
1. along the path Pmsc-root , if there are

parallel clan, the drawing Di can g
the right,

2. along the path Pmsc-root , if there are
parallel clan, the drawing Di can g
to the left, and

3. along the path Pmsc-root , if there are
series clan, the drawing Di can grow

Incremental Drawing of Cycli

ing the depth first search to find an
t be suitable for some applications [1
awing when only one edge is drawn u
 (a) shows a path of a company’s syst
r bugs report is added. Figure 10 (c) i
 does not represent the two paths in
 Figure 10 (d)), it will be even more d
2. Figure 8 (d) shows a different drawing of
 2 are not moved.
 (b) Updated Graph of Drawing (a)

 (d) New Drawing of (b)

 Graph and Drawings

g is not necessary. In Figure 9 (b), nodes are
Figure 9 (c) is the drawing for Figure 9 (b). In
odes (3, 4, 5, 6, 7, and 8) is scaled even when
is case, the graph should be able to grow
e drawing stability. Figure 9 (d) shows a
path Pmsc-root can be used to identify the cases
cessary:
 no left siblings for a clan whose parent is a

row toward left without shifting other clans to

 no right siblings for a clan whose parent is a
row toward right without shifting other clans

 no right siblings for a clan whose parent is a
 downward without scaling down length.

c Graphs

edge to be reversed for the cyclic graph may
2]. Figure 10 shows a problem in incremental
pward for each cycle of cyclic graphs. Figure
em code release. In Figure 10 (b), a new path
s the drawing of Figure 10 (b). The Figure 10
the expected way. If edge labels are removed
ifficult for the user to visualize the concept of

392 F.-S. Shieh and C.L. McCreary

two different paths. In order to improve this situation, the visual input graph nodes’
position information is used. During the graph layout computation, if upward edges
contributed to a cycle re found, those edges will reversed for layout computation

and then be changed
shows new drawings
edges are not labeled,

 (a) Initial Draw

 (d) Drawing of (c)
 Labels Removed

Fig. 10. Up

By using clan-base
applies to the affected
sub-graph is extracted
be missing. The Figu
Figure 11 (b)’s Gact w
but Gact is part of the c
cyclic graph, no edge
shows the incorrect
direction, upward edg
original graph. If an
reversed during the co
(e) shows the correct d
 a

back to upward after layout
of Figure 10 (b). As shown i
the drawing still represents t

ing (b) Node & Edges A

with (e) Drawing of (b

dated Graph and Drawings of In

d drawing for incremental dr
 sub-graph Gact instead of the
 from the entire graph, its or
re 11 (b) is an update of F
hich requires layout computa
ycles of Figure 11 (b) cyclic
s are reversed during the
updated drawing of Figure
es need be checked to see i
upward edge contributes to
mputation and reversed aga
rawing of Figure 11 (b).
be

 computations done. Figure 10 (e)
n the Figure 10 (f), even when the
he concept of two paths.
dded (c) Drawing of (b)

) (f) Drawing of (b) with
 Label Removed

cremental Cyclic Drawing

awing, the layout computation only
 entire graph. Sometimes when the

iginal role in the entire graph might
igure 11 (a), and Figure 11 (c) is
tion. The Gact is not a cyclic graph,

 graph originally. Since Gact is not a
layout computation. Figure 11 (d)
 11 (b). To insure proper edge
f those edges are part of cycles of
a cycle, this upward edge will be
in after the computation. Figure 11

Clan-Based Incremental Drawing 393

 (a) Initial Drawing (b) Nodes

 (d) Incorrect Drawing of (

Fig. 11. Drawing and Gr

9 Incremental Drawing Exampl

Figure 12 shows a series of incrementa
algorithm. The Figures 12 (b), (e), and
Those upward paths are part of cycles.
(11, 12), (12, 13), (13, 6)) are added
Figure 12 (g), is not changed because
space for updates. Figures 13 (n) is the n
18), (7, 20)) are added. The edges ((7, 1
moved to above nodes 18 and 20.

10 Conclusion

Clan-based graph drawing using a pa
stability for directed graph drawings in s
(1) The attributed parse tree provides

different sizes. A node can be spa
necessary. During the incremental u
the new updates might be done very

(2) The utilization of parse trees allows
sacrificing aesthetic criteria and
incremental drawing can be done
recomputed area can be localized w
& Edges A

b) (e)

aph with Up

es

l drawings
(f), show t
 After nod
to Figure 1
the minim
ew drawin
8), (7, 20))

rse tree i
everal area
an easy w
nned over
pdates, if t
 easily wit
 the increm
speed. B
 very eff
ith the prov
dded (c) Sub-graph of (b)

 Correct Drawing of (b)

ward Edges Added

 created by the clan-based drawing
hat some upward paths were added.
es (11, 12, 13) and edges ((4, 11),
2 (f), the length of new drawing,
um affected area still has enough
g of 12 (m) after upward edges ((7,
 are not part of cycles, so node 7 is

mproves the incremental drawing
s:
ay to layout graphs with nodes of
more than one level in drawing if
he change is only to enlarge nodes,
hout re-positioning other nodes.
ental drawing to be stable without

y using clan-based drawing, the
iciently because the changed and
ided parse tree.

394 F.-S. Shieh and C.L. McCreary

(3) No extra constraints are needed to maintain incremental drawing stability. For
clan-based drawing, the node position constraints are embedded in the parse tree.

(4) By using the parse tree, it is easy to determine whether the modifications are in
the interior or the exterior boundary area of a drawing. If the changes are made to
exterior area, the updates can grow freely toward the open area without re-
positioning other nodes.

(5) By using the parse tree to locate the minimum affected area of updates, the
locality issue can be considered for the future stable updates.

References

1. J. H. Cross II and R. S. Dannelly, "Reverse Engineering Graphical Representations of X
Source Code," International Journal of Software Engineering and Knowledge Engineering,
Spring, 1996.

2. A. H. Deutz, A. Ehrenfeucht, G. Rozenberg, "Clans and regions in 2-structures,"
Theoretical Computer Science, 129, 207-262, 1994.

3. G. Di Battista, P. Eades, R. Tamassia, I. Tollis, "Algorithms for Drawing Graphs: an
Annotated Bibliography", Computation Geometry: Theory and Applications, 4(5):235-
282, 1994.

4. A. Ehrenfeucht and G. Rozenberg, "Theory of 2-Structures, Part I: Clans, Basic
Subclasses, and Morphisms," Theoretical Computer Science, Vol. 70, 277-303, 1990.

5. A. Ehrenfeucht and G. Rozenberg, "Theory of 2-Structures, Part II: Representation
Through Labeled Tree Families," Theoretical Computer Science, Vol. 70, 305-342, 1990.

6. M. Frohlich,”Incremental Graphout in Visualization System – daVinci,” PhD thesis,
Department of Computer Science, The University of Bremen, Germany, November 1997.

7. C. M. McCreary, R. O. Chapman, and F. S. Shieh, "Using Graph Paring for Automatic
Graph Drawing", IEEE Trans. on Systems Man, and Cybernetics -- Part A: Systems and
Humans, Vol. 28, No. 5, 545-561, 1998.

8. C. L. McCreary and A. Reed, "A Graph Parsing Algorithm and Implementation," Tech.
Rpt. TR-93-04, Dept. of Comp. Sci and Eng., Auburn U. 1993.

9. C. McCreary, F. S. Shieh, and H. Gill, "CG: a Graph Drawing System Using Graph-
Grammar Parsing," Lecture Notes in Computer Science, Vol. 894, 270-273, Springer-
Verlag, 1995.

10. S. C. North, "Incremental Layout in DynaDAG," Lecture Notes in Computer Science, Vol.
1027, 409 - 418, Springer-Verlag, 1996.

11. G. Sander, “Graph Drawing Tools and Related Work,”
 http://www.cs.uni-sb.de/RW/users/sander/html/gstools.html

12. F. S. Shieh, "Stability and Topology of Graph Drawing," Auburn University,
Ph.D. dissertation, 2000.

13. F. S. Shieh, and C. L. McCreary, "Directed Graphs Drawing by Clan-based
Decomposition," Lecture Notes in Computer Science, Vol. 1027, 472 - 482,
Springer-Verlag, 1996.

14. Tom Sawyer, "Graph Toolkit". http://www.tomsawyer.com.
15. K. Sugiyama, S. Tagawa and M. Toda, "Methods for Understanding of

Hierarchical System Structures," IEEE Trans. on Sys. Man, and Cyb., SMC-11,
109-125, 1981.

http://www.cs.uni-sb.de/RW/users/sander/html/gstools.html
http://www.tomsawyer.com/

Clan-Based Incremental Drawing 395

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 (j) (k) (l)

 (m) (n) (o)

Fig. 12. Clan-Based Incremental Drawings

	Clan-Based Incremental Drawing
	1 Introduction
	2 Clan-Based Graph Drawing
	3 Clan-Based Incremental Drawing
	4 Insuring Readability
	5 Locality of Incremental Drawing
	6 Reposition Nodes Not in the Minimum Series Clan
	7 Resizing Affected Clans
	8 Incremental Drawing of Cyclic Graphs
	9 Incremental Drawing Examples
	10 Conclusion
	References

