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Abstract.  We introduce  polar visibility graphs,  graphs whose vertices can
be represented by arcs of concentric  circles with adjacency determined by
radial  visibility  including  visibility  through  the  origin.  These  graphs  are
more general  than the well-studied bar-visibility graphs and are character-
ized here, when arcs are proper subsets of circles, as the graphs that embed
on the  plane with  all  but  at most  one cut-vertex  on a common face  or  on
the  projective  plane  with  all  cut-vertices  on  a  common  face.  We  also
characterize the graphs representable using full circles and arcs.

1 Introduction

Visibility  graphs  are  now  a  well-established  area  of  graph  drawing  [10].  Much
has been written  about their  importance  and application;  however,  they continue
to  pique  the  imagination  of  mathematicians  with  their  intrinsic  appeal  and
intriguing questions [2].  There  has been a natural  progression from bar-visibility
graphs (BVGs) [11, 17] to rectangles [1, 3, 4, 6], from bars with visibilities in the
plane to those on the sphere and cylinder [12, 13], on a (flat) torus [8], or on the
Möbius  band  [5].  These  rectilinear  representations  are  natural  ones  for  most
applications; however,  we turn instead to the realm of polar representations  with
arcs  of  circles  and  radial  visibility.  In  many  ways  circular  representations  and
related polar  coordinates  are equally natural  and  in some contexts  more applica-
ble than rectilinear ones. With this change of perspective we can and do represent
a  class  of  graphs,  larger  than  with  bars  in  the  plane,  though  ultimately  con-
strained by the real projective plane.  Thus with a planar representation of arcs of
circles  nonplanar  graphs  are drawn in a natural  way, resulting  in diagrams often
reminiscent of time-exposed shots of the North Star and surrounding stars.

We introduce the layout of graphs as polar visibility graphs (PVGs) using
arcs  of  concentric  circles  (arcs  that  are  proper  subsets  of  a  circle)  with  radial
visibility,  including  visibility  through  the  origin,  the  center  of  all  the  concentric
circles. These graphs, though arising naturally from visibility in the plane, corres-
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pond to graphs embedded on the (real) projective plane, the nonorientable surface
of Euler characteristic 1. PVGs are characterized as the planar graphs that can be
drawn in the plane with all but at most one cut-vertex on a common face plus the
graphs  that  can  be  embedded  on  the  projective  plane  with  all  cut-vertices  on  a
common  face.  We  also  consider  the  variation  in  which  full  circles  are  allowed
along with arcs, and characterize the graphs so representable  (CVGs) in terms of
their block-cutpoint tree. 

2 Background

Just  as  visibility  wider  than  along  a  line  is  required  for  BVGs,  we  ask
that radial  visibility in PVGs be available  through a nondegenerate  cone.  Define
a (nondegenerate)  cone  in  the  plane to  be a  4-sided  region of  positive area  with
two opposite sides being arcs of circles, centered at the origin, and the other two
sides,  possibly  intersecting,  being  radial  line  segments  on  lines  through  the
origin. Thus, both 8Hr, qL: 1 £ r £ 2, 0 £ q£ p 6< and also

9Hr, qL: 0 £ r £ 1, 0 £ q£ p
6

or p £ q£ 7p
6
== 9Hr, qL: -1 £ r £ 1, 0 £ q£ p

6
= 

are considered to be cones, respectively, not containing and containing the origin.
Given a set of arcs, all centered at the origin, two of these arcs a1  and a2  are said
to  be  radially  visible  if  there  is  a  cone  that  intersects  only  these  two  arcs  and
whose two circular ends are subsets of the two arcs; the same definition holds for
visibility between an arc and a circle and between two circles. A graph is called a
polar  visibility  graph  if  its  vertices  can  be  represented  by  arcs,  including  end-
points, of circles centered at the origin, having pairwise disjoint relative interiors,
so that two vertices are adjacent if and only if the corresponding arcs are radially
visible;  see  Figure  1a  below  for  a  PVG  representation  of  K6.  If  this  model  is
used,  but  without  visibility  through  the  origin,  the  graphs  arising  are  one  of  the
cylindrical types characterized in [13]. Note that for a 2-connected graph (a graph
without cut-vertices) there is no loss in taking arcs as proper subsets of circles
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               Fig. 1a. K6                            1b. A circular visibility layout

64 J.P. Hutchinson



since a full  circle can be cut down to a smaller  arc, leaving the same visibilities.
Arcs in a  PVG layout  spanning  more than half  its  circle will  provide  interesting
variations, full circles even more. We use graph theoretic terminology as in [15],
topological notions as in [9],  and algorithmic ideas following the BVG presenta-
tion in [10]. 

Similarly  a  graph  is  called  a  circular  visibility  graph  if  its  vertices  can
be represented  by  arcs  and circles  with  radial  visibility between  arcs and  circles
determining edges as for PVGs. When possible we prefer, but do not require, arcs
over circles; that is, in a layout we will decrease a circle to become a proper arc if
no  additional  visibilities  are  introduced.  We  shall  see  that  some  planar  and
projective  planar  graphs  with  cut-vertices  on  an  arbitrary  number  of  faces  are
CVGs, but not PVGs, but that these faces must be nested appropriately. Figure 1b
shows  such  a  planar  CVG.  In  that  layout  the  inner  circle  contains  one  arc;  if
instead, it contained four mutually visible arcs, encircling the origin and forming
a K5 , the example becomes a nonplanar CVG. 

Note that in a PVG or CVG layout of a graph G, we may draw each arc
and  circle  on  a  distinct  circle,  and  we  may  take  these  circles  to  have  radii
1, 2, …, n  where n = V̈HGL .̈ This  naturally leads to another layout of the graph
in a disk of radius n+1 and centered at the origin by inverting each circle and arc
through the  circle of radius Hn+ 1L 2. That  is, each  point with polar coordinates
Hr, qL,  0 < r < n + 1,  is  mapped  by  the  inversion  to  the  point  Hn+ 1 - r, qL.  This
inversion preserves circles, arcs, and the angles defining these arcs. If the original
layout was L, we denote this inverted layout by IHLL.

Recall  that  the  (real)  projective  plane  can  be  obtained  by  taking  a
circular  disk  and  identifying  opposite  (or  antipodal)  points.  Thus  if  we  identify
opposite  points  of  the  circle  of  radius  n + 1,  we  create  a  projective  plane.  Two
arcs  in  IHLL (or  an  arc  and  a  circle  or  two  circles)  that  were  previously  radially
visible  in  a  cone,  not  containing  the  origin,  are  still  radially  visible,  and  a  pair
visible  in a  cone through the  origin are  now visible  in a  "generalized  cone" that
crosses  the  boundary  of  the  projective  plane,  reemerging  on  the  other  side.  The
coordinates  of  such  a  generalized  cone  are  given  by
8Hr, qL, r* £ r £ n + 1 or - Hn+ 1L£ r £ -s*, q1 £ q£ q2< where  r*,  s*,  q1 < q2
are constants,  0 £ r*, s* < n + 1. In addition, the interior of no two of these new
cones  intersect.  Fig.  2a  shows  the  inverted  layout  of K6  on  the  projective  plane
with  dashed  lines  indicating  a  conical  area  of  visibility,  and  in  2b  we  see  an
embedding of K6  created by shrinking each arc to a vertex. The first proposition
is  then  clear  since  each  inverted  arc  and  circle  on  the  projective  plane  can  be
replaced  by  a  single  vertex.  Then  the  visibility  cones  can  each  be  shrunk  and
transformed to a set of nonintersecting edges on the projective plane. 
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  Fig. 2a. IHK6L and IHK6L
* on the projective plane  

          2b. For G = K6, IHLGL= HIHLLLG  

Proposition 2.1. A PVG or a CVG embeds on the projective plane.

Recall that a graph G is said to embed  on a surface S if  it can be drawn
there without any edge crossings, and that each maximal connected component of
S \ 8VHGL, EHGL< is  called  a  face  of  the  embedding  (we  do  not  require  that  the
faces be simply connected). 

Theorem 2.2. A graph G is a PVG if and only if either a) G has an embedding in
the plane with all but at most one cut-vertex on a common face, or else b) G has
an embedding on the projective plane with all cut-vertices on a common face.

Note that condition (a) allows for the representation of planar graphs that are not
BVGs; for example K2,3  with three additional vertices of degree 1 appended, one
each to a vertex  of degree  two,  is a PVG.  Similarly  K4 + 4e  (K4  plus  a pendant
vertex  and  edge  at  each  vertex)  is  a  PVG  (see  Fig.  3);  these  are  the  smallest
graphs that  are not BVGs.  Condition  (b) also allows for  more planar  graphs;  for
example,  two  vertices  joined  by  three  internally  disjoint  paths  of  length  three
(i.e., three  edges each)  plus six vertices  of degree  1,  each adjacent  to a different
vertex of degree two, satisfies (b), but not (a).

Every  graph G  can  be decomposed  into its  blocks  and  their  connecting
cut-vertices  (a block  is  either  an edge  or a  2-connected  subgraph;  see  [15]),  and
these  connections  determine  a  tree,  called  the  block-cutpoint  tree  of  the  graph,
BCHGL.  This  tree  has  a  vertex  for  each  block  and  for  each  cut-vertex  of  G,  and
two vertices  of  BCHGL are  adjacent  if  and  only if  they correspond  to an incident
cut-vertex and block. We call a block planar if it represents a planar graph.

Theorem  2.3.  A  graph  G  is  a  CVG  if  and  only  if  BCHGL consists  of  a  path
P = He1 , e2, …, e2k+1L,  k ‡ 0, with  e2i  representing  a  planar  block,  i = 1, …, k,
so that

   1a) e1  is also incident with one additional (nonempty) block representing a (2-
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connected) projective planar graph, or

   1b) e1 is also incident with one or more (nonempty) planar blocks, and

  2) e2k+1  is  also incident  with  an arbitrary  tree structure  T  so  that T 8e2k+1<

represents  a  planar  graph  that  can  be  drawn  in  the  plane  with  all  cut-vertices,
except possibly for that representing e2k+1 , on a common face.

When k = 0, these conditions reduce to those of Theorem 2.2. On the other hand,
it  may  be  that  each  cut-vertex  of  G,  represented  by  e1, e3 ,…,  e2k+1 ,  lies  on  a
different  face,  as  in  Figure  1b.  This  example  is  the  first  of  an infinite  family  of
CVGs  with  an  increasing  number  of  cut-vertices,  all  on  different  faces;  the
family  is  obtained  by  nesting  repeatedly  the  same  pattern  of  arcs  and  circles.
Most of the details of the proofs of Theorems 2.2 and 2.3 are included below.

As  described  in  [10],  planar  layouts  and  the  block-cutpoint  tree  of  a
graph  can  be  determined  in  linear  time.  Projective  planar  graphs  can  also  be
recognized  and  embedded  in  linear  time  [7].  It  can  quickly  be  determined
whether  all  cut-vertices  of  a  graph  lie  on  a  common  simple  cycle  and,  if  so,
whether  there  is  an  embedding  in  either  surface  in  which  this  cycle  bounds  a
face.  The  proofs  of  Theorems  2.2  and  2.3,  together  with  standard  BVG  algo-
rithms,  lead  to a  OHNE2L= OHN3Ltime  algorithm for  laying out  a PVG G  with
N  vertices  and  E  edges,  given  an  embedding  of  G  in  the  projective  plane  as  a
rotation scheme (defined below), as in [7, 9].

3 Main Results on PVGs

We develop theory that  will  also allow extension  to CVGs.  We focus on simple
graphs and  their  characterizations  as  in Theorems  2.2 and  2.3.  Thus  we say that
two  arcs  are  radially  visible  if  there  is  at  least  one  maximal  cone  providing
mutual  visibility;  however,  we  can  also  obtain  more  precise  results  by  keeping
track of multiple and even self-visibility between arcs and circles.

First  we  need  more  precise  topological  and  geometric  definitions.
Consider  a  PVG  or  CVG  layout  L  of  a  graph  G  and  its  inverse  layout  on  the
projective  plane,  IHLL.  We  let  L*  (respectively,  IHLL*)  denote  the  visibility
depiction obtained by shrinking each maximal visibility cone of L (resp., IHLL) to
a distinct line segment by reducing its angles b1 £ q£ b2  to some constant q= b,
b1 < b < b2 ;  strict  inequality  ensures  distinct  visibility  segments.  For  G = K6 ,
IHLL* is shown in Fig. 2a. 

Also  let  LG  (resp.,  HIHLLLG)  denote  the  graph  obtained  from  L*  (resp.,
IHLL*)  by shrinking  each  arc to a vertex,  consisting  of one point,  and transform-
ing  each  visibility  line  segment  to  an  edge  that  intersects  no  other  edge  except
possibly  at the origin  (resp.,  an edge that  intersects  no  other edge on the projec-
tive  plane).  If  L*  or  IHLL* contains  a  circle,  it  is  replaced  by  a  point  as  vertex.
Thus HIHLLLG is a graph embedded on the projective plane,  see Fig. 2b. Note that
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L*,  IHLL*,  IHLGL,  and  HIHLLLG have  visibility  segments  and  edges  for  each  dis-
tinct, maximal visibility cone so that multiple edges and loops may be present in
these  depictions;  however,  a  pair  of  multiple  edges  will  not  form an  embedded
digon with empty interior. 

Note  that the complement  of the arcs, circles,  and lines  of L* divide up
the plane into faces;  similarly IHLL* divides  up the projective  plane.  One face of
L* is the exterior face, possibly containing the origin; this exterior face is the one
in which most cut-vertices of a PVG and their blocks can be placed. We say that
an arc or circle of a layout L lies on the exterior face if it lies on the exterior face
of L*.

We  use  the  following  combinatorial  description  of  an  embedded  graph
and  of  a  PVG  or  CVG  layout.  If  a  graph  is  embedded  on  any  surface,  then  for
each vertex there is naturally defined a cyclic rotation of its neighbors,  given by
the  order,  say  clockwise,  of  its  edges  in  the  embedding;  such  a  collection  of
rotations, one for each vertex, is called a rotation scheme. (See, for example, [16]
where it is shown that an embedding  is equivalent  to a rotation scheme.)  Such a
description  is  generally  used  for  algorithms  on  embedded  graphs  [9].  Similarly,
given  a  PVG  layout  L  in  the  plane  and  its  inverse  layout  IHLL in  the  projective
plane, one can define the arc-rotation scheme  to be the set of cyclic rotations  of
neighbors about each arc of its visibilities  to other arcs; note that the rotations at
the arcs of L and of IHLL are inverses of each other. We say that an embedding of
a  PVG  graph  G  in  the  plane  or  on  the  projective  plane  and  its  polar  visibility
layout L  are equivalent  if  the arc-rotation  scheme of IHLL,  when translated  into a
set of vertex-neighbor cycles, yields the rotation scheme of the embedded graph;
see Figs. 1, 2. Given a circle in a CVG layout L or IHLL, the neighbors divide into
two  cyclic  rotations  of  the  inner  and  outer  visibilities,  called  the  circle-rotation
scheme. Then a drawing of a CVG and its layout L are equivalent if the arc/circle-
rotation schemes of IHLL agree with those of the embedded graph.

It  is  not  hard  to  see  the  following,  by  bending  or  straightening  corre-
sponding BVG and PVG layouts. 

Proposition  3.1.  A  connected  graph  has  a  PVG  layout  with  no  visibilities
through the origin if and only if the graph is a BVG.

A  PVG  layout  with  no  visibilities  through  the  origin  contains  arcs  in  sectors,
alternating  about  the  origin,  so  that  some  can  be  reflected  through  the  origin,
leaving the layout in two quadrants, and this can be straightened to form a BVG.

 Of  course  there  are  planar  graphs  with  layouts  as  PVGs  including
visibilities  through  the  origin  and  with  cut-vertices  represented  on  the  exterior
face.  Note  that  whenever  there  are  visibilities  through  the  origin  in  a  layout  L,
then  the  equivalent  graph  HIHLLLG  is  embedded  on  the  projective  plane.  It  turns
out that in some PVG layouts there is a (sneaky) hiding place for a cut-vertex and
its  connecting  blocks,  but  the  resulting  graphs  turn  out  to  be  planar.  In  a  PVG
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layout we call  an arc a* a long arc  if its angular span is greater  than p. Suppose
a* = 8Hr*, qL, 0 £ q£ p+ x<,  for  some  0 < x < p.  Then  the  cone  defined  by
CHa*L= 8Hr, qL, -r* £ r £ r*, 0 £ q£ x< is  an area in which  interior arcs can see
the arc a* and possibly no others; see Fig. 3. 

In preparation for CVG layouts, we require special PVG layouts. Let a*

be a  long-arc  at  radius  1,  spanning  q1 £ q£ q1 + p+ x for  some  x > 0.  Arcs  a*

and  b*  are  called  a  long-arc  pair  at  the  origin  if  they  are  mutually  visible,
together  they span 2p,  and if  b*  lies at  radius  r* > 1, no  arcs intersect  the long-
arc  cone  8Hr, qL: 0 £ r < r*, q1 + p+ x < q< q1 + 2p<.  (For  example,  when
r* = 2, no arcs can meet the designated cone.) Similarly if a* is a long-arc at the
outermost  radius  n = V̈HGL ,̈  spanning  q2 £ q£ q2 + p+ y  for  some  y > 0, then
a*  and  b*  are  a  long-arc  pair  at  infinity  if  they  are  mutually  visible,  together
span  2p,  and  if  b*  lies  at  radius  r* < n,  no  arcs  intersect  the  long-arc  cone
8Hr, qL: r* < r < n, q2 + p+ y < q< q2 + 2p<; see Figs. 1a, 3. Notice that in long-
arc pairs  the  long arc at radius  1  or at  radius n  could be extended  to form a full
circle without changing visibilities.

                            Fig. 3. K4+4e.

Here are the building-block results needed for the PVG characterization.

Proposition  3.2.  Let  G  be  laid  out  as  a  PVG  L  including  a  long  arc  a*  that
represents a cut-vertex x*, not lying on the exterior  face, and let  B be a block of
G incident  with x* and whose representation  lies within CHa*L in L. Then G  is a
planar  graph  and  can  be drawn  in  the  plane  with one  face  including  all  vertices
whose arcs lie on the exterior face of L.

The proof consists of observing that in IHLL and in HIHLLLG the representation of a
block  B  incident  with  x*  lies  within  a  (noncontractible)  sector  of  the  projective
plane that divides the space into two contractible (planar) regions.

The next result is the necessary topological argument needed to character-
ize  PVGs;  it  is  a  contraction  proof  similar  to that  of  [14]  and  [8].  This  result  is
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carried  out  for  multigraphs,  those  embedded  with  no  digon  face  with  empty
interior except for  two special  faces. For these graphs we achieve  layouts with a
one-to-one  correspondence  between  distinct,  maximal  visibility  cones  and  edges
of G.  If x  is  a  vertex  of a  PVG,  we let  ax  denote  its  arc  in the layout,  and con-
versely xa  is the vertex corresponding to an arc a. 

Proposition 3.3. (i) Let G be a loopless 2-connected plane multigraph, let F be a
face  in  the  embedding,  and  let  c  be  a  vertex  of  G.  Suppose  G  has  at  most  two
digon faces, possibly F and, when c does not lie on F, possibly one incident with
c. Then  G¢= G  plus  a loop at  c  has  a PVG layout  L¢ in which  all  vertices  of F
are  represented  on  the  exterior  face  of  L¢ and  Hac , adL is  a  long-arc  pair  at  the
origin for some neighbor d of c. In addition, G¢ has an embedding on the projec-
tive plane that is equivalent to L¢.

(ii) Let G be a loopless 2-connected plane multigraph with v1  and v2  designated,
distinct  vertices  and  with  no  digon  face.  Then  G¢= G  plus  a  loop  at  v2  has  a
PVG  layout  L¢ with  vi  represented  by  arc  ai ,  i = 1, 2,  with  Ha1, b1L a  long-arc
pair at infinity, and with Ha2, b2L a long-arc pair at the origin, where for i = 1 and
2, arc bi  corresponds  to some neighbor of vi .  Also  G¢ has  an embedding  on the
projective plane that is equivalent to L¢. 

 (iii) Let G  be a loopless 2-connected multigraph with a 2-cell embedding on the
projective plane,  with F  a face  in the embedding,  and with no digon face except
possibly for F. Then G has a PVG layout L that is equivalent to the embedding of
G with exterior face corresponding to F.

(iv)  Let G  be  a loopless  2-connected  multigraph  with a  2-cell embedding  on the
projective plane, with no digon face, and with v1  a designated vertex. Then G has
a PVG layout L, equivalent to the embedding of G, in which v1  is represented by
arc a1  with Ha1, b1L a long-arc  pair  at infinity and with arc b1  corresponding to
some neighbor of v1.

Sketch of proof of (i). For most cases (when c does not lie on F), the proof is by
induction on n.

We can always find a nonloop,  nonmultiple  edge e = Hx, yL of G so that
G  with e  contracted,  G e,  is 2-connected,  loopless,  embedded on the plane,  and
F  is  still  bounded  by  at  least  two  edges.  G e  satisfies  the  inductive  hypothesis
and so has PVG layout Le , equivalent to an embedding of G e plus a loop on the
projective plane. If the contraction combines vertices x and y into new vertex x*,
let a* be its representation in Le , at say radius r. Because the embeddings of G/e
and Le  are equivalent, the lines of visibility to arcs representing vertices adjacent
to x  in G  are consecutive  in the rotation of visibility lines about a* in Le .  Then,
when a* is not one of the special long arcs at the origin, it can be replaced by two
arcs ax  and ay  at radii  r - 0.5 and r + 0.5 (or vice versa), representing vertices x
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and  y  of  G,  so  that  their  visibilities  give  all  edges  incident  with  x  and  y  and
preserve  the  arc-rotations  at  x  and  y  in  G;  see  Fig  4.  This  alteration  gives  the
desired PVG layout L for G. The argument is similar, though a bit more intricate,
when  a*  is  part  of  the  long-arc  pair  at  the  origin.  The  proofs  for  (ii–iv)  are
analogous.

a*

Fig. 4. An arc and its neighbors

We then obtain the following.

Proposition 3.4.  If G  has  a  PVG layout L,  then the  embedding  HIHLLLG of  G  on
the projective  plane has  cut-vertices  on at  most  two faces.  If  the embedding  has
cut-vertices  on  two  faces,  then  on  one  face  there  is  only  one  cut-vertex,  repre-
sented in L by a long arc.

Corollary 3.5.  If  G  has  a  PVG layout  L  with  a  long  arc a*,  representing  a  cut-
vertex x* and not lying on the exterior face, then G has a planar embedding with
all cut-vertices except for x* lying on a common face.

Theorem  3.6.  A  simple  planar  graph  G  has  a  PVG  representation  if  it  has  a
planar embedding with all but at most one cut-vertex on a common face.

Sketch  of  the  proof.  Assume  that  G  is  not  a  BVG  and  so  can  be  drawn  in  the
plane with cut-vertices lying on the exterior face F1  and an additional cut-vertex
c  lying  on  F2 „ F1 .  Consider  the  block-cutpoint  tree  BCHGL of G;  c  may lie  on
several  blocks,  but  at  least  one,  call  it  B0 ,  contains  a  cut-vertex  c¢„ c  lying  on
F1 . Both of the faces Fi  are bounded by a facial walk Wi , and each Wi  contains a
unique  simple subcycle  Ci ,  lying  in B0  and  containing  c¢ and c,  respectively.  If
G  has  cut  vertices  c1,…,  ci  lying  on  F1 ,  we  label  the  blocks  other  than  B0
incident with c1 , …, ci  B1 , B2 , …, Bj , and the blocks D1 , …, Dk  incident with
c.  Then  we  prove  by  induction  on  j  that  there  is  a  PVG  layout  L  of  G  with  F1
represented  by  the  exterior  face  of  L,  with Hac , adL a  long-arc  pair  at  the  origin
for some neighbor d  of c, and with the blocks incident with c represented within
CHacL.
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Theorem 3.7.  If  a  simple  graph  has  an  embedding  on  the  projective  plane  with
all cut-vertices on a common face, then it is a PVG. 

Proof.  Let  G  have  an  embedding  on  the  projective  plane  P  with  all  cut-vertices
on a  common  face  F.  We  prove  by  induction  on  n = V̈HGL̈ that  G  has  a  PVG
layout  with  arcs  representing  cut-vertices  on  the  exterior  face  and  with  its
embedding equivalent to that of G. When n < 5, the graph has a BVG layout and
so a PVG one by Prop. 3.1; each such graph containing  a cycle also has a 2-cell
embedding on the projective plane and an equivalent PVG layout. 

If  G  has  no  cut-vertex,  then  we  apply  Prop.  3.3(iii)  for  graphs  on  the
projective plane to get the PVG layout of G.

If G has a cut-vertex, we consider the block-cutpoint tree T  of G, and, if
possible, let c be a cut-vertex incident with a leaf of T  with that leaf-block planar
and  embedded  in  a  contractible  region  of  P;  call  this  block  B.  Deleting  the
vertices and edges of B \ 8c< leaves G¢ on the projective plane with face F  now a
face F¢, containing all remaining cut-vertices. By induction G¢ has a PVG layout
L¢ that is equivalent to G¢ and with exterior face representing F¢. Then there is a
BVG layout of B with the bar representing c bottommost and extending the width
of the layout, and by Prop. 3.1 B has a corresponding PVG layout LB . Then ac  in
LB  can be inserted as a subarc of ac  on the exterior face of L¢ so that LB  together
with L¢ gives the desired layout of G.

Otherwise every leaf-block B is embedded in a noncontractible region of
P  and  contains  a  noncontractible  cycle  in  its  embedding.  If blocks  B  and  B¢ are
two such leaves, they must intersect at a cut-vertex c since every pair of noncon-
tractible cycles on P intersects. If there are additional blocks, there are additional
leaves  which  must  also  all  meet  at  c  so  that  T  is  a  star  K1,i  with  the  non-leaf
vertex of T  representing c, the only cut-vertex of G, and each block is embedded
in a  wedge  of  P,  all  wedges  meeting  at,  say,  the  origin.  Such  a  graph  is  planar
with one cut-vertex c and so by Theorem 3.6 is a PVG. 

Proof  of  Theorem  2.2  for  simple  graphs.  By  Theorems  3.6  and  3.7  the  graphs
described  are  PVGs.  Conversely  if  L  is  a  layout  of  a  PVG  G,  then  G  has  an
embedding on the projective plane by Prop. 2.1 with embedding HIHLLLG. If L has
no visibility through the origin, then by Prop. 3.1 G  is a BVG and so embeds  in
the plane with all cut-vertices on a common face. Otherwise, if L contains a long
arc, satisfying the conditions of Cor. 3.5, then G embeds in the plane with all but
one  cut-vertex  on  a  common  face.  Otherwise  G  embeds  in  the  projective  plane
with all cut-vertices on a common face by Prop 3.4. 
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4 Results on CVGs

As the  example  in Fig.  1b  and  its  extensions  demonstrate,  cut-vertices  on  many
faces  can  be  achieved  using  circles  in  layouts.  We  characterize  CVGs  in  this
section, as given in Theorem 2.3. 

Suppose  G  has  a  layout  L  with  circles  c1 , c2, …, ck  at  radii
r1 < r2 < < rk  and  with  no  circle  replaceable  by  an  arc  so  that  the  same
visibilities  are  achieved.  The  circles  ci  divide  up  the  plane  into  annular  regions
and  one  projective  planar  region;  note  that  neither  the  interior  of  c1 ,  denoted
intHc1L,  nor  the  exterior  of  ck ,  extHckL,  is  empty  in  L  since  neither  circle  can  be
replaced by  an arc.  Then  the corresponding  vertices  v1 , v2, …, vk  of  G  are  cut-
vertices,  and  G  is  the  union  of  graphs  whose  layouts  lie  in  the  annular  regions
plus  the  innermost  region:  G = G1 G2 … Gk Gk+1  where  G1  is  the
subgraph whose layout in L lies on c1 intHc1L, Gk+1  lies on ck+1 extHck+1L,
and  for  i = 2, …, k,  Gi  lies  on  the  annulus  given  by
ci-1 ci 8intHciL extHci-1L.  Thus  G2, …, Gk+1  are  each  planar.  In
addition for  i = 2, …, k  Gi  is  2-connected  since each block of Gi  contains  some
vertices  adjacent  to  vi-1  and  some  to  vi .  Thus  the  block-cutpoint  tree  for  G,
BCHGL,  contains  a  path  of  2k - 1  vertices,  representing  consecutively
v1, G2 , v2 , … , Gk , vk .  What  sorts  of graphs  are possible  for  G1  and for  Gk+1 ,
and  what  additional  tree  structure  in  BCHGL is  possible  at  the  two  ends  of  this
path?

Consider G1,  laid out on c1 intHc1L, with c1  opened up to become an
arc  a1so  that  this  is  a  PVG  layout  of  G1.  If  G1  is  planar,  by  Prop.  3.4  and  its
proof, G1  can have at most one additional cut-vertex, not on the exterior face but
represented  by  a  long  arc  a*  at  radius  1.  If  there  is  no  long  arc  a*  besides  a1,
then v1  may be attached to an arbitrary positive number of planar blocks. If there
is a long arc a* „ a1 , then each block represented  between a* and a1  sees these
two arcs  and  so  there  is  only  one  block  lying  in  this  annular  region.  Inside  and
attached to  a*  may be  any  number  ia ‡ 0 of  2-connected,  planar  graphs,  but  in
any case, BCHGL has  attached to the path-end v1  either  i1 > 0 leaves  or else one
additional block vertex b, representing part or all of G1, then a vertex for a* that
is also adjacent to ia > 0 vertices of degree one. (Thus the latter case corresponds
to having  v3  represented  by c1  and  v1  by  a*.)  If G1  is  not planar,  by  Prop.  3.4
and Cor. 3.5 it is 2-connected so that the path of BCHGL is extended at v1  by one
additional vertex representing G1. 

The  layout  for  the  planar  graph  Gk+1  lies  in  the  infinite  region,
ck extHckL. In this layout of Gk+1  the circle ck  can be opened up to a long arc
with  empty  interior  to  form  a  PVG  layout;  by  Prop.  3.4  Gk+1  has  all  its  cut-
vertices  on  a  common  face,  the  exterior  face,  and  so  can  have  arbitrarily  many
cut-vertices  with  arbitrarily  many  connected  blocks,  provided  all  cut-vertices  lie
on  the  infinite  face.  Thus  attached  to  vk  in  BCHGL is  any  tree  representing  a

73On Polar Visibility Representations of Graphs



planar  graph  with  all  cut-vertices,  except  possibly  for  vk ,  on  a  common  face.
These remarks prove the necessity of Theorem 2.3.

Lemma 4.1.  Let  L  be  a  layout  of  a  PVG G  with  n  vertices  and  with  a  long-arc
pair at infinity or at the origin (or both). Then L can be laid out as a CVG with a
circle  on  the  exterior  face  at  radius  n  or  a circle  about  the  origin  at  radius  1  (or
both). 

As noted in Section 3, a long arc at radius 1 or at n can be extended to a
full circle, changing no visibilities.

Proof  of  the  sufficiency  of  Thm.  2.3.  Suppose  G  has  BCHGL satisfying  (1a)  and
(2) so that BCHGL is Hb0, e1, e2, …, e2k+1, TL where for i = 1, …, k, each e2i-1
represents  a  cut-vertex  vi  of  G,  each  e2i  represents  a  2-connected  planar  graph,
b0  is a 2-connected projective planar graph, and T  represents  a plane graph with
all cut-vertices on a face F. Such a graph embeds on the projective  plane; in the
layout each cut-vertex vi  will be represented by a circle ci .

By  Prop.  3.3(iv)  the  projective  planar  subgraph  of  G  corresponding  to
b0  has  a  PVG  layout  L0

¢  with  the  arc  a1  representing  v1  in  a  long-arc  pair  at
infinity with some neighbor of v1 . By Lemma 4.1 L0

¢ can be changed to the CVG
L0  so  that  a1  becomes  a  circle  surrounding  L0.  By  Prop.  3.3(ii)  the  planar
subgraph  of  G  corresponding  to  e2  can  be  represented  as  a  PVG  L1

¢  with  a1 ,
representing v1, part of a long-arc pair at the origin and with a2 , representing v2 ,
part of a long-arc pair at infinity.  By Lemma 4.1 L1

¢ can be changed to the CVG
L1  so that a1  and a2  each become circles inside and surrounding L1  respectively.
Then L1  is joined with L0  by identifying the two copies of the circle a1, placing
L1  wholly  outside  of  L0 .  This  process  of  expansion  can  be  repeated  for
e4, …, e2k .  Finally  by  Prop.  3.3(i)  T  can  be  laid  out  as  a  PVG  with  vk  repre-
sented by ak , part of a long-arc pair at the origin. Again by Lemma 4.1 ak  can be
extended to a full circle inside of T’s layout and can be identified with the circle
representing  ak  on  the exterior  of  the layout  previously  constructed.  In this  way
G is laid out. 

If BCHGL satisfies (1b) and (2), it can be laid out similarly, only differing
within c1.

Since  v1  is  incident  with  one  or  more  planar  blocks,  we  can  lay  these
out in radial segments within c1. Each planar block can be represented as a BVG
with  v1  represented  top-most  and  a  neighbor  bottom-most,  then  as  a  PVG  via
Prop.  3.1,  and  then  inserted  with  v1’s  arc  as  a  subarc  of  c1  within  a  distinct
wedge  of,  say,  0 £ q£ p,  giving  the  desired  visibilities.  Thus  in  all  cases  the
graph can be laid out as a CVG.  
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5 Concluding Thoughts

It is clear that more complex graphs can be achieved in the polar visibility model
by allowing visibility through the origin and diagonally across the boundary of a
disc with  antipodal  points  identified;  call  such  a  layout  a  doubly  polar  visibility
layout  and  the  resulting  graphs  doubly  polar  visibility  graphs  (DPVGs).  These
naturally lead to graphs that embed on the Klein bottle, the nonorientable surface
of Euler characteristic 0. Analogous proofs to those given on the projective plane
give the following results.

Proposition 5.1. a) A DPVG embeds on the Klein bottle.
b)  If  G  has  a  layout  L  as  a  DPVG  with  no  long  arcs,  then  G  contains  no  cut-
vertex.
c)  If  a  2-connected  graph  G  has  an  embedding  on  the  Klein  bottle,  then  G  is  a
DPVG and has an equivalent doubly polar visibility layout.

It seems that a DPVG that is neither a BVG nor a PVG can have at most
two cut-vertices, represented by a long arc about the origin and at infinity.
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