
J. Malenfant, S. Moisan, A. Moreira (Eds.): ECOOP 2000 Workshops, LNCS 1964, pp. 203-240, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Workshop on Aspects and Dimensions of Concern:
Requirements on, and Challenge Problems for, Advanced

Separation of Concerns∗∗∗∗

Peri Tarr1, Maja D�Hondt2, Lodewijk Bergmans3, and Cristina Videira Lopes4

1IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown, NY 10598 USA
tarr@watson.ibm.com

2Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
mjdhondt@vub.ac.be

3University of Twente, Dept. of Computer Science, P.O. Box 217, 7500 AE, Enschede,
The Netherlands

lbergmans@acm.org
4Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

lopes@parc.xerox.com

Workshop web site: http://trese.cs.utwente.nl/Workshops/adc2000

Abstract. This document describes the results of the two-day Workshop on
Aspects and Dimensions of Concern at ECOOP 2000. The workshop produced
the beginnings of a set of goals, requirements, and issues to be addressed by
approaches to advanced separation of concerns. These goals and issues are
encapsulated, in part, in a set of challenge problems that are intended to be
solved by providers of advanced separation of concerns technologies. The
challenge problems and requirements begin to define the boundaries of this
problem domain and solution space, and they will help provide a basis for
evaluating and comparing different solutions and solution approaches.

1 Introduction

The First Workshop on Aspects and Dimensions of Concern was held at ECOOP
2000, following several previous workshops on Aspect-Oriented Programming,
Subject-Oriented Programming, and Multi-Dimensional Separation of Concerns.
Whereas the goals of previous workshops had been to introduce and begin to explore
the new subdomain of advanced separation of concerns, this workshop�s purpose was
instead to begin to define a set of concrete goals for, requirements on, and issues to be
addressed by, approaches to advanced separation of concerns. The explicit
representation of these goals, requirements, and issues represents the start of the
transition of advanced separation of concerns from an infant subdiscipline to a
coherent, mature research area. When completed, they will help to define the
boundaries of the problem domain and solution space, and they will provide a basis
for evaluation of, and comparison among, different solutions and solution approaches.

∗ This workshop was funded in part by Xerox PARC and IBM Research.

204 Peri Tarr et al.

To accomplish the workshop goals, we brought together both practitioners and
researchers who have experienced problems related to inadequate separation of
concerns, and practitioners and researchers who have provided solution technologies
or approaches that address these problems. It was our intention to establish a dialogue
between these two groups, to reveal the needs of the former group and the capabilities
of the latter, thus facilitating the identification of goals, requirements and issues for
advanced separation of concerns. To achieve this, prospective participants were
required to submit position papers describing either some problems they had
encountered, or solutions they had developed, in the field of advanced separation of
concerns. This resulted in more than 40 experienced researchers and developers
participating in the workshop, and their position papers can be found on the workshop
web site, http://trese.cs.utwente.nl/Workshops/adc2000.

As a highly interactive setting seemed most suitable, we allocated the larger
amount of the two-day workshop to group work, only occasionally alternating it with
invited talks from some of the experts in the field and authors who provided highly
incisive, challenging problems. Seven heterogeneous groups were formed, joining
problem providers with solution providers, and distributing co-authors or colleagues
over as many groups as possible. This policy ensured that as wide a variety of
submitted problems and solutions as possible were discussed in each group. Over the
two days, the groups analyzed selected problems and evaluated some solutions by
applying them to the problems. Each group presented both an interim report and their
final results. The workshop concluded with a panel consisting of one representative
per group, which proved to be a valuable source of general insights to the community.

The rest of this document describes some of the results of this two-day workshop.
Depending on the viewpoint adopted by a group�either the problem perspective or
the solution perspective�the group work resulted in the following kinds of results:

− Challenge problems: Challenge problems are software engineering scenarios that
highlight one or more key problems and issues in advanced separation of concerns.
The problem statement also describes any necessary requirements or constraints on
solutions. Challenge problems, as their name suggests, are intended to serve as
challenges to those researchers and developers in this subdomain who have
produced, or who will produce, models of, or tools to support, software
engineering using advanced separation of concerns. It is our hope that the
producers of such models and technologies will propose solutions to the challenge
problems using their models and technologies. As a result, we expect that some
limitations or interesting features of existing models and technologies will be
uncovered, prompting new research, and that the various solutions will be used as a
basis for comparing and contrasting the relative strengths and weaknesses of
different approaches.

� Generalization of challenge problems: Particular subsets of challenge problems
suggest larger, abstract classes of problems. Such generalizations are particularly
critical, as they help to identify and categorize key parts of the problem domain.

− Requirements statements: Some of the requirements on advanced separation of
concerns approaches are already well defined; for example, an advanced separation
of concerns approach must facilitate the encapsulation of multiple kinds of
concerns, including those that cross-cut objects. Many requirements, however, are
not well defined or widely accepted. Requirements statements highlight

 Workshop on Aspects and Dimensions of Concern 205

requirements on approaches to advanced separation of concerns, and they are
generally illustrated with examples. It is our intent that the producers of advanced
separation of concerns models and technologies will indicate how their models and
technologies address these requirements; if they do not, we hope that they will use
the requirements to help them identify new areas for subsequent research.

Each result is classified accordingly.
The remainder of this document is organized as follows. Sections 2-REF8

describe, respectively, the results produced by a particular workshop subgroup.
Finally, Section 9 presents some conclusions and future work.

Clearly, a single, two-day workshop is not sufficient time to produce a complete
set of requirements, issues, or challenge problems, or even to produce a representative
set. The results reported in this document are preliminary. Subsequent efforts may
determine that some of the results are incomplete, inadequate, mutually inconsistent,
or erroneous. It is our intention for these results to be discussed, revised and
expanded by the advanced separation of concerns community. Beyond all else, this
document is intended to provide food for thought.

1.1 Contributors

The results described in this paper are due to�and in many cases, adapted from
reports written by�the workshop participants and organizers: Mehmet Aksit, Jean
Paul Arcangeli, Federico Bergenti, Lodewijk Bergmans, Andrew Black, Johan
Brichau, Isabel Brito, Laurent Bussard, Lee Carver, Constantinos Constantinides,
Pascal Costanza, Krzysztof Czarnecki, Lutz Dominick, Maja D�Hondt, Wolfgang De
Meuter, Kris de Volder, Erik Ernst, Robert Filman, Eric Hilsdale, Mathias Jung, Pertti
Kellomäki, Mik Kersten, Gregor Kiczales, Thomas Kühne, Donal Lafferty, Cristina
Videira Lopes, Mira Menzini, Tommi Mikkonen, Blay Mireille, Oscar Nierstrasz,
Klaus Ostermann, J. Andrés Díaz Pace, Renaud Pawlak, Elke Pulvermüller, Bert
Robben, Martin Robillard, Andreas Speck, Erlend Stav, Patrick Steyaert, Peri Tarr,
Tom Tourwé, Eddy Truyen, Bart Vanhaute, John Zinky.

2 Safe Composition

Group members: Laurent Bussard, Lee Carver, Erik Ernst, Mathias Jung, Martin
Robillard, and Andreas Speck

Issues: Semantically correct composition of aspects, concerns

Categories: Challenge problems, requirements statements

2.1 Problem Overview

Different aspects or concerns should only be composed when the result of composing
them is semantically meaningful. Two classes of conflicts may occur among
concerns that are to be composed which, if present during composition, may affect the
correctness of the composed result:

206 Peri Tarr et al.

� Semantic mismatch conflicts: Semantic mismatch conflicts are ones in which the
composition of two or more concerns produces semantically incorrect programs.
The mismatches occur when composed concerns contain behaviors that interact in
subtle (often multiple) ways, and the interactions are not addressed correctly in the
composed program.
 We further divide the class of semantic mismatch conflicts into intentional and
unintentional conflicts. Intentional conflicts are ones that are introduced
deliberately by a developer�i.e., the developer designs two or more concerns or
aspects to conflict (e.g., to be mutually exclusive). Unintentional conflicts, on the
other hand, are ones that occur inadvertently, often due to non-obvious semantic
interactions among the concerns or aspects. While these kinds of semantic
mismatch conflicts look the same, we distinguish them because addressing them
requires different kinds of support from advanced separation of concerns
mechanisms. Intentional mismatches require a means for allowing developers to
assert that a set of concerns or aspects is intended to conflict. Unintentional
mismatches, on the other hand, require compositor and/or run-time detection
capabilities, and they must be resolved, either automatically or manually (e.g., with
�glue� aspects or mediators), to produce a correct composed program that contains
all of the (originally conflicting) aspects.

� Spurious conflicts: As their name suggests, spurious conflicts are ones that are
identified as conflicts erroneously�i.e., the composed program would actually run
correctly�due to the limitations of static or otherwise overly conservative type
checking. Addressing spurious conflicts is difficult and may necessitate a choice
between aspect reuse and static type checking, but it may be addressable with more
powerful type analyses.

Generally, name resolution plays an important role in the emergence and handling
of composition conflicts. The various composition technologies necessarily relax
conventional name resolution rules. The inclusion of an aspect or concern in a
composition relies on a tolerant form of name matching that precludes detection of
over-defined or under-defined names. Existing tools, such as Hyper/J� [22]and
AspectJ [18], provide no mechanisms to prevent or require the inclusion of specific
aspects or enhancements. This issue must be addressed by advanced separation of
concerns approaches.

Advanced separation of concerns mechanisms must be able to identify these
classes of conflicts among aspects that are to be composed and to address the
conflicts, where possible.

Motivating papers: See [23] for intentional semantic mismatch conflicts; [8] for
unintentional semantic mismatch conflicts; and [13] for spurious conflicts.

2.2 Challenge Problems and Requirements

Challenge Problem 1: Recognition, Representation and Enforcement of
Intentional Semantic Mismatch Conflicts Among Concerns
To demonstrate intentional semantic mismatch conflicts, we present a challenge
problem in which aspects are used to separate distribution-related code (implemented

 Workshop on Aspects and Dimensions of Concern 207

for CORBA) from problem-domain code. Separating these concerns reduces the
complexity of the code and improves its reusability. A simplified version of the code
is shown in Fig. 1; the full version can be found in [23].

Aspect Weaver

woven Server Code

import org.omg.CORBA.*;

aspect ServerComm {
 static advice void main(String args[]) & Server {
 after {
 java.lang.Object sync = new java.lang.Object();
 synchronized(sync){
 sync.wait();
 }
 }
}

Aspect
ServerComm

import App.*;

class Servant extends _Interface_NameImplBase {
 public String get() {
 return "\n A String \n";
 }
}

public class Server {
 static Servant ref;
 public static void main(String args[]) {
 ref = new Servant();
 }
}

Server
Code

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

aspect ServerName {
 static advice void main(String args[]) & Server {
 after {
 ORB orb = ORB.init(args, null);
 orb.connect(ref);
 org.omg.CORBA.Object objRef =
 orb.resolve_initial_references("NameService");
 NamingContext ncRef = NamingContextHelper.narrow(objRef);
 NameComponent nc = new NameComponent("Name", " ");
 NameComponent path[] = {nc};
 ncRef.rebind(path, ref);
 }
 }
}

Aspect
ServerName

Aspect
ServerString

import java.io.*;
import org.omg.CORBA.*;

aspect ServerString {
 static advice void main(String args[]) & Server {
 after {
 ORB orb = ORB.init(args, null);
 orb.connect(ref);
 String str = orb.object_to_string(ref);
 String filename = System.getProperty("user.home")+
 System.getProperty("file.separator")+"IOR";
 FileOutputStream fos = new FileOutputStream(filename);
 System.out.println(filename);
 PrintStream ps = new PrintStream(fos);
 ps.print(str);
 ps.close();
 }
 }
}

Fig. 1. CORBA server example: Use ServerName or ServerString but not both

As shown in Fig. 1, clients send requests to a server, which responds with a string.
The implementation consists of four modules: ServerCode and the aspects
ServerName, ServerString, and ServerComm. ServerCode implements
the server, while the aspects encapsulate CORBA-related code.

To use a service, a client must obtain an initial reference to the server. This can be
done either by contacting a name server, which provides the reference, or by
accessing a disk file that contains the information, but the designer intended that only
one of these methods would be chosen. The ServerName aspect encapsulates the
solution based on contacting a name server, while the ServerString aspect
realizes the file-based solution. Thus, only one of these two aspects should be
composed with ServerCode to select an approach.

Clearly, it is not always possible for a compositor to identify circumstances like
this one�where seemingly compatible aspects are, in fact, semantically incompatible.
It must, therefore, be possible for a developer to specify this intentional semantic
mismatch (mutual exclusion), and for a compositor to use this information to enforce
the associated semantics.

208 Peri Tarr et al.

Requirement 1 Advanced separation of concerns approaches must permit the static
specification of concern compatibility properties, such as mutual exclusion.
Compositor tools must understand and enforce such specifications. While automatic
detection of all semantic conflicts is undecidable, the use of user-specified
annotations is an example of a simple, tractable approach.

Sample solution: Hyper/J� [22] could easily be extended to express mutual
exclusion by putting the two aspects into the same dimension and specifying that only
one coordinate can be selected from that dimension.

Challenge Problem 2: Recognition, Representation, and Enforcement of
Unintentional Semantic Mismatch Conflicts Among Concerns
Unintentional semantic mismatch conflicts arise when a set of aspects or concerns
interact with one another in a composed program in unanticipated ways to produce
erroneous behaviors. When unintentional semantic mismatches occur, the desired
course of action is to detect the conflict and then resolve it by adjusting the concerns
or their composition. Unintentional semantic mismatch conflicts are common
problems in software integration in general, and they are a large part of what makes
integration a difficult problem. We believe that unintentional semantic mismatches
will occur more commonly, and will become more problematic, as aspects and
concerns are reused in different contexts, and as aspects or concerns written by
different people (who may make different assumptions) are integrated.

To demonstrate unintentional semantic mismatch conflicts, we present a challenge
problem involving a simplified banking application (the full version is presented in
[8]). The core part of the application contains a bank Account class. Two aspects
are also defined: Event and Transaction, add event handling and transactions on
Accounts, respectively. The Event aspect transmits events on certain channels
whenever a significant state transition occurs on an Account. Other objects may
then listen on those channels to be notified about such transitions. The
Transaction aspect supports standard transaction semantics via the operations
begin, commit, and rollback.

When the Event and Transaction aspects are used together, they interact in
such a way that a semantic conflict can arise if events are propagated out of
uncommitted transactions (e.g., [26]). For example, consider what if a client performs
a deposit operation on an Account object, and this operation is later terminated
by a rollback (i.e., the enclosing transaction aborts). The Event aspect may
already have broadcast the deposit event to unknown listeners. Thus, while the
rollback will leave the Account object itself in a correct state, the event listeners
will not be in a correct state�they have already seen, and possibly acted upon, the
deposit event.

This unintentional semantic mismatch conflict can produce incorrect behavior in
the composed program, but it can be corrected using a standard technique: delaying
the actual broadcasting of events until the transaction commits (or suppressing the
broadcast of events if the transaction aborts). Clearly, however, detecting and
correcting semantic conflict problems would, in the general case, require intervention
by a developer.

 Workshop on Aspects and Dimensions of Concern 209

Requirement 2 Advanced separation of concerns approaches must provide a means
for identifying and resolving unintentional semantic mismatch conflicts. In contrast
with intentional semantic mismatches, which can be identified statically,
identification and resolution of unintentional semantic mismatches may occur
statically, at composition-time, and/or at run-time, and they may occur manually (by a
developer), semi-automatically, and/or automatically.

Sample solutions: One possible solution to this challenge problem would be to use
an approach like composition filters [1][3], which could intercept all event
transmissions and store the events until the commit of a transaction. Even with
composition filters, however, it would not be straightforward to make the aspects
work together seamlessly. Another possible solution, using an extended Hyper/J,
would be to require the Event aspect to provide certain transaction-related
services�or, conversely, to write such services separately and compose them into the
Event aspect�thus enabling the Transaction aspect to integrate the Event
aspect into the transactional environment.

Detection of Spurious Conflicts Among Concerns: The previous two challenge
problems addressed the detection and resolution of actual conflicts among composed
aspects. The opposite situation may also arise�namely, where a composition
mechanism reports a conflict, even when one does not exist.

To illustrate this situation, we consider composition mechanisms that are based on
textual transformations from aspect languages to other languages (like Java�), and
that then rely on compilers for the target language to compile the translated,
composed code. In such cases, the generated code may appear to the target language
compiler to be unsafe, even though it is type safe, because the static type analyzer in
the target language is not sufficiently powerful to capture concepts expressed in the
aspect languages.

An example of this is given in Section 4 of [13]; we describe a simpler case of the
problem here. Consider the definition of a simple node/edge-based graph class:

class Node { void attach(Edge e); }
class Edge { boolean incident(Node); }

Thus, Nodes and Edges are used together as a unit. We may also define a
general method that operates on graphs:

method m(Node n, Edge e) {... e.attach(n); ...}

Next, assume that we define two different enhancements of this kind of graph: one
that adds colors to nodes to permit cycle detection, and another that adds printing. A
given system may wish to use both colorable and printable graph instances, but it
might not want to equip all graphs with both facilities, due to the extra performance
and memory overhead.

Since the method m depends only on the basic graph abstraction, not on coloring or
printing, it should be reusable on all kinds of graphs�printable, colorable, both, or
neither. Thus, we would like to include multiple aspects in different instances of a
graph, and we would like to access all kinds of graphs polymorphically (m is
applicable to all kinds of graphs, with or without the aspects). In standard object-
oriented type systems, like those in C++ and Java�, it is not possible to achieve all of

210 Peri Tarr et al.

these goals in a type-safe manner, because there are only two implementation
approaches:

1. Define separate, unrelated Node, Edge, ColoredNode, ColoredEdge,
PrintableNode, and PrintableEdge classes. In this case, the Node class�
attach method explicitly takes Edge parameters, while the attach methods in
ColoredNode and PrintableNode take ColoredEdge and
PrintableEdge parameters, respectively. In this case, the solution is
completely type-safe, but it has lost the reusability property of object-oriented
systems: the attach methods, which were independent of the printable and
colored aspects, are copied into all the node classes, as is the implementation of
method m�it is impossible to write a single method that works on all kinds of
graphs.

2. Define ColoredNode and PrintableNode as subclasses of Node, and
ColoredEdge and PrintableEdge as subclasses of Edge. In this case,
reusability is maintained, but at the cost of type safety: the attach methods of all
Node classes expect an argument of type Edge, not ColoredEdge or
PrintableEdge. Thus, it is possible to attach a PrintableEdge to a
ColoredNode, etc.

In short, a spurious conflict arises if a composed program contains more than one
aspect or concern composed with a �base� class, and if the program tries to visit
different instances of the class�which may have different combinations of aspects or
concerns attached to them�polymorphically. The problem is that the different
families of classes will either be unrelated in the type hierarchy (the first case), or
they will be indistinguishable (the second case). This means that the polymorphic
code will be rejected by the compiler (a spurious conflict), or it will not be type safe.

A solution to this problem is to use more expressive type analysis, such as that
described in [13]. Static analysis is performed at the highest possible level of
abstraction�the �base code� and the aspects themselves�not on composed, tangled
code (or other artifact, like design) in an underlying lower-level representation, as
might be produced by a compositor tool.

Requirement 3 Implementations of advanced separation of concerns approaches
should not lead to spurious errors, such as type errors in generated code when there
are none in reality. Depending on the goals of particular implementations, type
checking may be done statically (at compile- or translation-time), at composition
time, and/or at run-time.

3 Generic, Reusable, and �Jumping� Aspects and Concerns

Group members: Lodewijk Bergmans, Krzysztof Czarnecki, Lutz Dominick, Erlend
Stav, Bart Vanhaute, and Kris de Volder

Issues: The need for highly generic, reusable aspects and concerns as first-class
reusable components, aspect and concern configuration and instantiation, syntactic

 Workshop on Aspects and Dimensions of Concern 211

and semantic join point specification, and context-sensitive join point selection
(�jumping aspects�).

Categories: Challenge problems, requirements statements

3.1 Problem Overview

A key goal of advanced separation of concerns is to achieve better modularity and
better reuse by increasing the kinds of concerns and aspects that can be separated and
encapsulated. While better modularity has certainly been a result of much work in
this field, the ability to reuse aspects and other kinds of concerns in different contexts
still falls short of the goal. Achieving these goals requires:

− The ability to model aspects and concerns as first-class, reusable components. A
key issue in achieving reusability is ensuring that concerns are not coupled�that
is, they do not encode knowledge of, or direct dependencies on, each other (or on
any �base� code).

− Support for both syntactic and semantic join points. �The method C.setFoo()�
is an example of a syntactic join point that is specific to a particular class and
method. �All methods that modify object state� is an example of a semantic join
point that can be applied to any class. The use of semantic join points may improve
the set of contexts in which various kinds of concerns can be reused without
modification. It also reduces coupling among concerns.

− The ability to use both context-insensitive join points and context-sensitive join
points. Context-sensitive join points are ones that determine at run-time, rather
than solely at composition time, whether or not to dispatch to particular aspects or
concerns that are composed at that join point, based on the value of some run-time
state information1. When this happens, the set of aspects or concerns that are
composed before, after, or around a given join point may change from execution to
execution�i.e., the concerns or aspects appear to �jump� from one join point to
another. Note that context sensitivity can be either static or dynamic; when they
are purely static, approaches like code duplication may be sufficient to address
them, but when they are dynamic, they require dynamic checks to be performed.
Context-sensitive join points may increase the circumstances under which a given
aspect or concern can be reused.

− The ability to model multiple decompositions of software systems, to reflect the
perspectives of different users. Of particular importance is the ability to represent
decompositions based on user-oriented features vs. reuse-oriented components,
aspects, and other concerns.

� A mechanism that addresses the inheritance anomaly problem [19][20]. This
problem arises in languages that support advanced separation of concerns in much
the same way as it does in concurrent object-oriented languages, and it has the
corresponding adverse effect on reusability and encapsulation of aspects and other
concerns as components. In particular, if a set of aspects or concerns is composed

1 The conditions for executing a given concern may actually be specified declaratively, based

(for example) on dynamic structures such as call graphs and data flow, which can be also
described statically.

212 Peri Tarr et al.

with a class, C, then all of C�s subclasses should, at minimum, be composed with
the same aspects or concerns. Furthermore, the introduction of new methods in C,
or the overriding of C�s methods by a subclass, may require new aspect- or
concern-level definitions. These new definitions may end up being invasive�that
is, they may affect the existing ones, which is undesirable and which may cause
unexpected errors.

Motivating papers: See [12] for a discussion of issues in defining generic, reusable
aspects, [7] for a full description of the jumping aspects problem, and [19] [20] for an
analysis of the inheritance anomaly in concurrent object-oriented languages.

3.2 Challenge Problems and Requirements

Challenge Problem 3: Highly Reusable, Configurable Aspect and Concern
Components
To demonstrate some of the key issues in, and requirements on, making aspects and
concerns first-class, reusable, configurable components, we use running example that
starts with a simple stack in C++ (taken from [11]):

Template<class Element_, int S_SIZE>
class Stack {
 public:
 // export element type and empty and maximum top
 // value
 typedef Element_ Element;
 enum { EMPTY = -1,
 MAX_TOP = S_SIZE-1};

 Stack() : top(EMPTY) {}
 void push(Element *element) {
 elements [++top] = element;
 }
 Element *pop() {
 return elements [top--];
 }
 protected:
 int top;
 private:
 Element *elements [S_SIZE];
};

To use this stack in a multithreaded environment, concurrent access to stacks must be
synchronized. In particular, three synchronization locks are needed: one to provide
mutually and self-exclusive access to the push() and pop() methods, and the other two
to implement synchronization guards for threads that are trying to push an element
onto a full stack, or to pop an element from an empty stack. The push() and pop()
methods must be made to use these locks appropriately.

A key idea of aspect-oriented programming [18], composition filters [1], subject-
oriented programming [16], and other work in the advanced separation of concerns
area is that manually mixing concerns, like synchronization code, into the source
implementation of pop() and push() of the original stack is a bad idea�it results in
tangled code, which is hard to understand and to maintain, as shown in [11] (page
280). In addition, the invasive modification produces just a synchronized stack,

 Workshop on Aspects and Dimensions of Concern 213

although having both a synchronized and unsynchronized stack might have been
useful.

Requirement 4 Advanced separation of concerns mechanisms must permit
developers to implement synchronization code (as well as any other �cross-cutting� or
other kind of concerns) separately from any code to which it may apply.

Sample solutions: A simple solution to this problem in a standard object-oriented
language might be to use inheritance to separate the synchronization aspect. In this
case, we could derive a subclass of class Stack, which defines the necessary locks
and refines the push() and pop() methods from the superclass by wrapping them into
the necessary synchronization code (also from [11]):

template<class Element_, int S_SIZE>
class Sync_Stack : public Stack<Element_,S_SIZE> {
 public:
 typedef Stack<Element_,S_SIZE> UnsyncStack;
 // get the element type and empty and maximum top value
 typedef typename UnsyncStack::Element Element;
 enum { EMPTY = UnsyncStack::EMPTY,
 MAX_TOP = UnsyncStack::MAX_TOP };
 ...
 Sync_Stack() : UnsyncStack(),
 push_wait(lock),
 pop_wait(lock) { }
 void push(Element *element) {
 ACE_Guard<ACE_Thread_Mutex> monitor(lock);
 while (top == MAX_TOP) push_wait.wait();
 UnsyncStack::push(element);
 ...
 }
 Element *pop() {
 Element *return_val;
 ACE_Guard<ACE_Thread_Mutex> monitor(lock);
 while (top == EMPTY) pop_wait.wait();
 return_val = UnsyncStack::pop();
 ...
 return return_val;
 }
 ...
}

This kind of solution effectively separates synchronization from the core stack. The
major limitation of this solution is that existing clients, which use the Stack class,
must be modified to instantiate the new class, Sync_Stack, instead of Stack. The
standard object-oriented solution to this problem is to use factories in the client code,
but this implies that the client code anticipated such a change and used factories to
start with. This kind of �anticipatory generality� is responsible for much of the
complexity in object-oriented code and frameworks. Unfortunately, the predictions
are often wrong and much of the complexity turns out to be unnecessary. A solution
to this problem is the use of a composition mechanism, which, unlike inheritance,
facilitates the extension of classes without invalidating client code. This permits non-
invasive changes without pre-planning [16][22][25].

214 Peri Tarr et al.

Requirement 5 Approaches to advanced separation of concerns should provide
composition mechanisms that permit the addition of new aspects or concerns to
existing code non-invasively, without invalidating existing clients, and without pre-
planning, to whatever extent possible.

At some later date, a developer discovers the need for a FIFO (first-in, first-out)
queue to implement a communication buffer in a multi-threaded application. Clearly,
the synchronization aspect developed for the stack is exactly the same as the one
needed for the new FIFO queue. This suggests the need for a generic, reusable
synchronization aspect.

Sample solution: One way to convert Sync_Stack into a reusable aspect is to
model it as a parameterized type:

template<class Queue>
class Synchronizer : public Queue
 {...}

This synchronization aspect can be instantiated for either a stack or a queue:
Synchronizer<Stack>
Synchronizer<FIFO_Queue>

This solution, like Sync_Stack, suffers from the problem that it requires an
invasive modification to client code to use it. A solution to Requirement 5 would also
address this problem.

Requirement 6 Advanced separation of concerns mechanisms must provide a means
of representing generic concerns, which can be specialized for use in different
contexts. Parametric types are one example of a means of specifying and specializing
concerns.

A significant limitation of the Synchronizer aspect above is that is relies on a
consistent set of method names�for example, it assumes the presence of methods
push() and pop(), which is wraps to achieve synchronization. In practice, however, a
developer might prefer to call the corresponding methods �enqueue()� and
�dequeue()�. Further, the Synchronizer aspect should also be applicable to other
methods that a synchronized class might define. For example, a queue class might
define a method size(), which should be mutually exclusive with operations that
modify the queue. This suggests that to produce truly generic, reusable aspects and
concerns, developers must be able to define semantic categories for join points, such
as �read-only methods,� �adding methods,� and �removing methods,� rather than
simply syntactic join points, such as �the push() method� and �the pop() method.� In
the synchronization example, we might choose to define the following semantic
categories:

ADD category: ADD is self exclusive, and the buffer is not FULL
READ category: no ADD or REMOVE is busy
REMOVE category: REMOVE is self exclusive, and the buffer is not EMPTY
�

 Workshop on Aspects and Dimensions of Concern 215

Requirement 7 Advanced separation of concerns mechanisms must provide a means
of defining semantic join points, as well as syntactic join points.

Challenge Problem 4: The Inheritance Anomaly
The concept of general, reusable aspects, as presented in the previous challenge
problem, suffers from the same �inheritance anomaly� problem that was identified in
the domain of concurrent object-oriented programming languages [20]. The
inheritance anomaly in that domain occurs when developers attempt to write
subclasses of classes that contain synchronization code. When these subclasses
override individual methods defined in their superclasses, they generally must
redefine (or just copy the implementation of) all of the synchronization code
contained within the superclass� method.

In the context of advanced separation of concerns, the inheritance anomaly
problem manifests itself in much the same way as in concurrent languages: subclasses
should inherit any aspects or concerns that are composed with their superclasses.2

Moreover, the introduction of new methods, or the overriding of superclass methods,
may require additional aspect or concern definitions. These new definitions should be
non-invasive�that is, they should not affect existing aspect or concern definitions.

The general solution to the inheritance anomaly in concurrent languages requires
developers to define semantic categories on which the synchronization requirements
can be expressed. Mappings between object states and the semantic categories are
then defined. The object states, the semantic categories, and the mapping between
them are kept separate. A similar approach is one way to address the inheritance
anomaly in advanced separation of concerns mechanisms.

To illustrate the inheritance anomaly and one solution approach in the context of
advanced separation of concerns, we return to the stack/queue example from the
previous challenge problem, in which a generic producer/consumer synchronization
aspect was defined. As described earlier, the synchronization constraints are specified
with respect to categories of method calls, and thus, they pertain to many possible
concrete representations (stacks, queues, lists, etc.). The set of semantic categories
described were:

ADD category: no READ or REMOVE is busy, and the buffer is not FULL
READ category: no ADD or REMOVE is busy
REMOVE category: no ADD or READ is busy, and the buffer is not EMPTY
�

For each concrete representation, like a stack or queue, a mapping must be defined
between these categories and the concrete methods of the representation, and between
the categories and concrete object state. For example, for the stack, we might define:

push(Element) → ADD
peek() → READ
pop() → REMOVE
FULL == (top == size+1)

For a queue, the mapping might be:
enqueue(Element) → ADD

2 In fact, synchronization is simply one example of an aspect that might be composed with a

class whose subclasses should have the same synchronization aspect composed with them.

216 Peri Tarr et al.

dequeue() → REMOVE
FULL == (head == tail)
EMPTY == (tail+1 % size == head)

These mappings could then be used as join point specifications for a compositor,
which would compose the synchronization code appropriately with the stack and
queue.

Other proposals for addressing the inheritance anomaly in concurrent languages
also exist and could likely be adapted for use in the context of advanced separation of
concerns.

Requirement 8 All advanced separation of concerns approaches for object-oriented
languages (and other languages that include behavioral polymorphism mechanisms)
must address the inheritance anomaly in some way. Further, any concerns that are
composed with a class should also be composed with its subclasses. It should be
possible to adapt �inherited� concerns for any subclass without affecting the
superclass, just as it is possible to adapt superclass methods in a subclass without
affecting the superclass.

Challenge Problem 5: �Jumping Aspects� in Model-View-Controller Change
Notification
The previous two challenge problems addressed some significant issues in providing
support for highly generic, reusable, configurable aspects and other concerns,
including the need to specify semantic join points. This problem highlights another
major issue: the need to specify dynamic join points.

To illustrate this issue, we use the Smalltalk Model-View-Controller pattern. In
Smalltalk applications, it is common practice to separate the representation of an
object from its presentation using MVC. In MVC, a View must be notified of any
change in its Model. To accomplish this, the model must invoke the method
changed (i.e., self changed) from every method that changes its state. This
results in the propagation of an update event to all views of the model. Change
notification, in the form of self changed calls, represents an aspect that can be
composed into ListModel methods that change the model state.

Two methods from a Model for a List class are shown below: add, which adds
a single element to a list, and addAll, which adds multiple elements at the same
time:

ListModel>>add: anElement
 myElements at: currentIndex put: anElement.
 currentIndex := currentIndex + 1.
 self changed. “***aspect code for change
 notification”

 ListModel>>addAll: aCollection
 aCollection do: [:each| self add: each].

This naïve implementation results in poor performance, however, because change
updates occur each time addAll uses add to insert a new element into the list. The
best solution is for addAll to invoke self changed itself, and for add to call

 Workshop on Aspects and Dimensions of Concern 217

self changed only if it is invoked by an external ListModel client, and not if
it is invoked by addAll or other ListModel methods. Thus, add performs
different actions�it includes or excludes the change notification aspect�depending
on from where it is called:

For calls that occur directly to add from outside ListModel:
ListModel>>add: anElement
 myElements at: currentIndex put: anElement.
 currentIndex := currentIndex + 1.
 self changed. “***aspect code is included”

For calls to add that occur from addAll, the aspect code �jumps� to the
calling context
ListModel>>addAll: aCollection
 aCollection do: [:each| self add: each].
 self changed. “***aspect code is included”

 ListModel>>add: anElement
 myElements at: currentIndex put: anElement.
 currentIndex := currentIndex + 1.
 “***no self changed when called through addAll”

 Synchronization code that obtains and releases locks upon entering and exiting
methods, as in Challenge Problem 3, is also an example of jumping aspect code,
because once a lock has been obtained, nested calls made from within the method that
obtains the lock need not execute the code to obtain the lock, because they obtain it
from the method that calls it.

These examples suggests the following requirement on advanced separation of
concerns mechanisms:

Requirement 9 Static join points, such as method names, cannot themselves always
specify the location at which aspects or concerns are to be composed. For context-
sensitive compositions (�jumping aspects�), it is necessary to specify join points and
the (possibly dynamic) context in which the composition should occur, and to provide
any associated declarative, compositor, and run-time support needed to enable
compositions to be affected by context-sensitive conditions. Such mechanisms must
handle aspects that jump either within a class or across multiple classes.

4 Modularization and Evolution Using Advanced Separation of
Concerns

Group members: Jean Paul Arcangeli, Isabel Brito, Robert Filman, Eric Hilsdale,
Donal Lafferty, Bert Robben

Issues: Non-invasive addition of new concerns or aspects to an existing software
system; ease of evolution in the presence of advanced separation of concerns; the
need for dynamic join points; the need for context-sensitive join points (the �jumping
aspects� problem�see also Section 3)

Categories: Challenge problems, requirements statements

218 Peri Tarr et al.

4.1 Problem Overview

A fundamental principle of software engineering is that systems that can be separated
into (relatively) independent parts are simpler to develop, and easier to maintain and
evolve. Traditionally, this separation has been about the primary functionality of
systems�related functionality would be grouped into objects or components, with
well-defined interfaces between elements. The key hypothesis of this work is that
other separations are possible; that technologies can be created that allow separate
expression and development of non-functional concerns while still yielding efficient,
working systems. Several characteristics of any particular approach to advanced
separation of concerns affect that approach�s ability to provide these additional
modularization and evolution benefits:

� How well the approach separates the expression of different facilities.
� Whether or not specifying a new concern can be done non-invasively�i.e., the

new concern does not require any existing code to be changed (�core� functionality
or other concerns or aspects).

� The kinds of join points the approach supports for composition, including context-
sensitive join points (as described in Section 3), dynamic join points, and class- vs.
instance-based join points.

� How well the approach can limit the impact of an evolutionary change to a given
concern or aspect on the rest of the system, and how the change is effected (e.g.,
stop the system, recompile it, and rerun it vs. on-line evolution).

� How readily the approach facilitates the representation of some key kinds of
aspects, such as synchronization.

Motivating papers: The challenge problems reported in this section were motivated
by [14] and [24].

4.2 Challenge Problems and Requirements

This set of challenge problems is based on variations of an example involving mobile
agents that visit servers. These agents wander the web, attempting to accomplish
some task. In pursuit of their goals, they need to execute programs on servers.
Sometimes these agents must share information with one another. They do so using
�coordination loci,� through which they can communicate results and task
assignments.

Fig. 2 presents a high-level architecture for such a mobile agent system. In this
architecture, servers respond to two kinds of messages:

3. enter(program)→boolean: This method used is by an agent to dock at a
new remote server. It returns true or false, depending on whether the remote server
accepts the agent.

4. query(string)→string: This method is used to obtain information from the
server with which an agent is docked. Servers only accept queries from agents that
are docked with them. Note that some of the strings that are passed to, or returned
from, a query method may encode object references, as is the case with IORs in
CORBA. (In the absence of this facility, one could define a �name server� that
converts strings to object references.)

 Workshop on Aspects and Dimensions of Concern 219

enterenter

Coordination
Locus

Coordination
Locus

Server

Agent

Agent

Server

Agent

Agent

notenote

Server

Agent

Agent

queryquery

Fig. 2. High-level architecture for the mobile agent system.

Agents are subclasses of coordination loci. Both support the note method, which
is used to communicate arbitrary information. Agents can enter servers, query
servers, and send messages to, and receive messages from, coordination loci via the
note method.

The following series of challenge problems work from the assumption that there is
already an existing implementation of this mobile agent system. Since we are
interested in software systems evolution, each challenge problem requires either the
addition of some new capability to, or the modification of an existing capability in,
the system.

Challenge Problem 6: Security in Mobile Agent Systems
To introduce security into the mobile agent system, it is necessary to incorporate the
concept of agent identity into the system, and to use it as needed to ensure that agents
only have access to the servers and information to which they are permitted. Agent
identity means that each agent must have an identifier (its �identity�), which allows it
to be distinguished from all other agents in the system. (Think of this as the identity
of the user that spawned the original request.) The agent identifier is used to enforce
several security policies:
� �Spawned agent� equivalence: When a given agent executes the enter method

on another server, it spawns a new agent that runs on that server. The spawned
agent should be treated the same way as the original�that is, it should have the
same identity as the spawning agent. Servers may then choose to accept or reject
an enter request based on the identity of the calling agent, as well as on any
other factors they deem appropriate.

� Restricted queries: Servers should only process query requests from entered
agents. Further, the set of queries that any given agent can run may be restricted.
Based on the identity of a given agent, a server should be able to reject the query
(e.g., by raising an exception or returning an error code that indicates the
requesting agent does not have permission to issue that query), filter either the

220 Peri Tarr et al.

contents of the query to make it acceptable or the results of the query before
returning them, or simply service the query request as-is.
The addition of the new identity concern should be done non-invasively�that is,

its definition should not require any modifications to the existing system
(Requirement 5).

The ability to restrict queries illustrates the �jumping aspects� problem (Section 3).
Therefore, it also illustrates the need for context-sensitive join points, where the
agent�s identity is the required context information (Requirement 9). It also, however,
implies the following additional requirements:

Requirement 10 Compositors must be able to examine method parameter values and
return values as part of the information they use to determine whether or not to
execute particular concerns or aspects at a given context-sensitive, dynamic join
point.

Requirement 11 Advanced separation of concerns mechanisms must provide the
ability for one concern to guard the execution of code at any given join point (e.g., a
method) that belongs to other concerns, including �base� code.

Challenge Problem 7: Concern Dynamics
Security policies may change over time. Consider what must be done to change the
behavior of a concern. There is a wide spectrum of approaches to replacing concerns
or aspects, ranging from completely static mechanisms to completely dynamic ones,
and each point on the spectrum has its own advantages and disadvantages. For
example:

� Completely static: An example of a completely static approach is one that entails
terminating the execution of the composed mobile agent system or some
components of it, recompiling and/or recomposing the affected parts, and restarting
the program or subcomponents. A key advantage to this approach is that it is
statically type checkable and it imposes little run-time overhead�the cost of
composition is primarily a compile-time one, which may be particularly
advantageous to performance-critical applications. A major disadvantage, in some
contexts, is that it necessitates the termination and restarting of the running
software.

� Completely dynamic: A completely dynamic mechanism might include a means of
replacing a concern in-place, while the composed program is running, as in the
case of composition filters [1] and reflective and interpretive approaches. This
type of approach is considerably more flexible and also provides the richest set of
context-sensitive and dynamic join points, but it may result in deferring the
identification of some kinds of errors to run-time, where they cost more to detect,
and it may impose more run-time overhead (for the additional error-checking and
to enable dynamic changes to a running executable).

 Workshop on Aspects and Dimensions of Concern 221

Requirement 12 Many points on the static↔dynamic spectrum of approaches to
concern replacement exist, each representing different tradeoffs. Ideally, any given
approach to advanced separation of concerns should address multiple points on the
spectrum, if possible, or it should clearly be specialized for a target domain in which a
single point is clearly the best one.

Challenge Problem 8: Synchronization in Mobile Agent Systems
So far, the mobile agent system has assumed that only single messages are sent to
coordination loci at any given time. Clearly, a given agent may have to send a series
of �notes� to a coordination locus, and to do so without interference from any other
agents. This challenge problem includes two variants of this problem:

� Locking: If an agent needs to send a series of messages to a single coordination
locus without interference, standard locking of a coordination locus permits agents
to have exclusive access to the locus while they send a series of �notes.� Locking
represents a new concern in the system.

� Transactions: While locks permit exclusive access, they generally do not provide
properties such as atomicity or serializability�properties associated with standard
transactions. Further, locks do not provide a good means of permitting agents to
send a series of messages to multiple coordination loci. Thus, standard
transactions over coordination loci should be supported as an additional concern.
Note that, unlike locks, transactions affect the existing mobile agent system in
some fairly deep ways. For example, the mobile agent system will have to be
enabled for transaction abort, rollback, and logging, which affects most of the
methods in the �base� system. Further, transactions may interact with other
aspects or concerns as well, necessitating changes to them to permit the
transactions to preserve the ACID (atomicity, consistency, isolation
[serializability], and durability [persistence]) properties.

Requirement 13 Some kinds of concerns, like transactions, interact with others. An
advanced separation of concerns mechanism must permit the composition of concerns
with other concerns, and must provide a non-invasive means for concern-to-concern
interactions, as well as concern-to-�base� interactions.

Challenge Problem 9: Dynamic Join Points in Mobile Agent Systems
To this point, all of the aspects or concerns that have been added to the mobile agent
system were intended to be composed at the class level. This challenge problem
highlights the need for composition at the method and instance level as well. In
particular, it illustrates the need for dynamic join points.

The first part of this challenge problem operates at the method level. It involves
the introduction of a debugging mechanism to the mobile agent system, which sends a
note to a specific coordination locus upon every query.

222 Peri Tarr et al.

Requirement 14 Advanced separation of concerns approaches must provide a means
of composing new behaviors into some set of functions in an existing code base.
Ideally, it should be possible to select the set of functions using a fairly rich
specification notation (e.g., regular expressions).

The second part of this challenge problem involves the introduction of the same
debugging code on a specific agent, and on all of its descendants (its spawned agents).
In this case, the intent is to compose the debugging behavior into a set of instances.
We specifically exclude approaches in which the debugging concern performs a
lookup on each agent that runs a query to see if it is supposed to run the debugging
code, because doing so imposes a number of localization/failure problems on the
distributed mobile agent application.

Note that the selection of instances with which to compose behaviors is an example
of the need for dynamic join point selection (as distinguished from context-sensitive
join points).

Requirement 15 Advanced separation of concerns approaches must provide dynamic
join points as well as static. Dynamic join points must also provide the ability to
compose new behaviors into some set of instances. This mechanism should not
require an aspect or concern to keep track of all instances, or of all instances that
should have the behavior.

5 Exception Handling and Timing Constraints

Group members: Andrew Black, Maja D'Hondt, Wolfgang De Meuter, Mik Kersten,
Oscar Nierstrasz, J. Andrés Díaz Pace

Issues: The need for context-sensitive join points in exception handling and systems
with timing constraints.

Categories: Challenge problems, requirements statements

5.1 Problem Overview

The need for context-sensitive join points (described in Section 3) arises in many
areas in software engineering, including some non-obvious ones like exception
handling and systems with various kinds of timing constraints (including real-time).
These issues are critical. The reusability of a given component depends, in part, on the
encapsulation of exception and failure processing as coherent concerns, because how
a component handles exceptional conditions and failures often varies from one usage
context to another (e.g., in one context, it may be appropriate to throw exceptions
upon detecting an erroneous condition, while in another, it may be necessary to take
corrective actions, and the corrective actions may also be usage- and/or context-
specific). The ability of components to satisfy timing constraints is also affected by
the ability to separate the usage context from time-critical concerns.

Motivating papers: The �jumping aspects� problem is identified in [7]. The
particular need for advanced separation of concerns to address issues in satisfying

 Workshop on Aspects and Dimensions of Concern 223

timing constraints was originally described in [6], but its classification as a �jumping
aspect� problem was established during the workshop.

5.2 Challenge Problems and Requirements

Challenge Problem 10: Context-sensitive exception and failure handling
The need for context-sensitive exception handling is described in [7] as a
manifestation of the �jumping aspects� problem. Consider a component that can be
used either as a stand-alone application or by a larger application. Thus, this
component may be used in different contexts with different requirements. Among
these differences are:

� Error condition definition: Different applications may define what constitutes an
�error� differently. For example, one application may consider it an erroneous
condition if a lookup on a hash table fails to find an element with the given key;
another application may be coded to assume that not all queries will find a
matching element, and that if no matching element is found, a �null� reference will
be returned. The ability to specify error conditions separately from any component
that may recognize those conditions as erroneous is critical to being able to reuse
components in multiple contexts.

� Error handling: Once an erroneous condition is detected, different applications
(or, more generally, different usage contexts) must be able to specify how to
respond to that condition.

Requirement 16 Any approach to advanced separation of concerns must permit the
encapsulation of exception detection and handling as separate concerns. At
minimum, such mechanisms must provide the ability to encapsulate as separate
concerns both the condition that denotes the exceptional event, and the response to
such a condition. Since both the definition of �exceptional event� and the response to
it can vary between different usage contexts, it is necessary for a solution to this
requirement to address Requirement 9 (i.e., solutions must provide dynamic and
context-sensitive join points) and Requirement 11 (solutions must permit �guards�
around join points).

Sample solution: We can hypothesize an aspect-oriented exception handling
mechanism where one can declaratively state that �if method x fails in concern A, then
execute method y in concern B.� The advantage of such an approach is the separation
of the failure concern, consisting of what could go wrong and how to address it, from
other functionality. A language that realizes this failure concern should be able to
express what might fail and where (e.g., corresponding to throws statements in
Java�), as well as where and how to resolve the conflict (e.g., corresponding to try-
catch statements). Notice that the context-sensitivity here arises from the requirement
that the component be able to run both on its own and as part of other applications. If
it runs on its own, it should handle exceptional conditions itself, whereas if it runs as
part of another application, the exceptions should propagate to the application to be
handled there. This results in the need for context-sensitive, dynamic join points.

224 Peri Tarr et al.

Challenge Problem 11: Time in Information Flow
The domain of this challenge problem and the next is real-rate systems (described in
[6]), where data is moved from one location to another at defined rates. Example
systems in this domain are audio conferencing and streaming video. A general
characteristic of real-rate systems is that they usually deliver data (such as audio or
video frames) from a source (usually a server or file system) to a sink (e.g., a display
or a sound generator). A key requirement on such systems is that the data must arrive
periodically, with constrained latency and jitter. Such systems are difficult to design
and construct, which suggests the need for generalization of these issues into an
information flow framework. InfoPipes [6] is such a framework, which enables the
building of real-rate systems from pre-defined components such as buffers, pipes,
filters and meters. Properties such as latency, jitter and data-rate of the resulting
pipeline are calculated from the corresponding properties of the components. In the
development of the InfoPipes framework, the components naturally mapped onto
objects: there are objects representing bounded and unbounded buffers, straight pipes,
sources, and sinks, where each of them has zero or more inputs and outputs. A
properly connected pipeline consists of a set of connected components; each
component�s inputs are connected to an output of another component.

An important concern in information flow is time: the flow of data through the
pipeline is subject to hard timing constraints. Consider, for example, the simple
pipeline illustrated in Fig. 3: the server can provide audio frames at a certain rate, via
a network with variable rate, either directly to a sound generator or via a
decompressor. Both the decompressor and the sound generator must be supplied with
audio frames at a determined rate. Suppose that the network�s rate decreases
considerably, causing a violation of the decompressor�s and the sound generator�s
required rates. If the audio frames must flow via the decompressor, then the
decompressor must handle this violation (e.g., by resending the last audio frames). If,
on the other hand, the frames go directly to the sound generator, the sound generator
must handle the violation. Therefore, the timing failure concern �jumps� in and out of
the sound generator�s code that handles the receipt of audio frames, depending on
whether the caller of this code is the network or the decompressor�i.e., it is context-
sensitive.

server network decompressor sound
generator

Fig. 3. An InfoPipe pipeline for a sound-streaming application.

This challenge problem clearly demonstrates Requirement 9. It also imposes the
following requirement:

 Workshop on Aspects and Dimensions of Concern 225

Requirement 17 Advanced separation of concerns approaches must separate the
specification of concerns from the specification of when, and to what, those concerns
apply. That is, it must be possible to separate the specification of a concern from the
specification of the contexts in which it is applicable. It should be possible, for
example, to write a generic mechanism that handles violations of timing constraints,
and to specify separately the join points at which that mechanism should be
composed, or the circumstances under which it should be composed. For the same
reason that object-oriented languages incorporate dispatch mechanisms based on an
object�s run-time type instead of forcing developers to implement �typecase�
structures (i.e., extensibility via polymorphism), it is critical that developers not be
required to implement �concern case� structures.

6 Multiple Views

Group members: Thomas Kühne, Cristina Lopes, Mira Menzini, Renaud Pawlak,
Eddy Truyen

Issues: The need for multiple levels of abstraction and stepwise refinement [29] in
advanced separation of concerns; the need for dynamic, context-sensitive join points;
the need for fine-grained access control.

Categories: Challenge problems, requirements statements, problem generalization

6.1 Problem Overview

Many changes to a software system can be made without knowledge of the full details
of the system�s implementation. It is desirable to permit developers to work at the
highest level of abstraction possible and to facilitate navigation between different
levels of abstraction as needed, since doing so reduces the complexity of development
tasks and promotes comprehension [29].

The interactions among different components also appear different at different
levels of abstraction, just as the components themselves do. Thus, the ability to
model and navigate among different levels of abstraction effectively depends on the
ability to describe both components and their interactions at different levels of
abstraction.

Access control provides yet another view of a system. A given object, A, sees a
view of another object, B, depending on the class of B and on the access privileges of
A�s owner (e.g., the user who created A). It must be possible to protect parts of
objects against unauthorized access.

Motivating papers: The need for multiple levels of abstractions is taken from [4].
The dynamic wrappers solution is adapted from [28]. The access control issue is
raised in [24], and also illustrates the need for context-sensitive join points (the
�jumping aspects� problem, described Section 3).

226 Peri Tarr et al.

6.2 Challenge Problems and Requirements

Challenge Problem 12: Multiple Levels of Abstraction in Software Systems
The need for multiple levels of abstraction in software is illustrated by a simple piece
of software that writes data to a file. At the highest level of abstraction, at which all
implementation details are omitted, the system has three abstractions: a Writer,
which needs to write Data to a File, as illustrated in Fig. 4.

w : Writer f : File

write(d)

Fig. 4. Highest-level abstraction of file writer software

Notice that the write method takes a single parameter�the data to be written.
Moving down one level of abstraction, however, it becomes clear that a
File_Manager actually controls access to files, as shown in Fig. 5.

w : Writer

fm : File_Manager

write(f,d)

Fig. 5. Design-level abstraction: Access through a file manager

Although the basic interaction between components is the same as that shown in Fig.
4, two significant changes are apparent:

� The server has a different identity. It is now a file manager, rather than a file
object.

� The write function now takes two parameters instead of just one: a file identifier,
and the data.

Proceeding down still another level of abstraction to add implementation details
reveals that file managers are actually distributed components�that is, clients must
access them remotely, as depicted in Fig. 6.

Notice that the direct interaction between clients and file managers has been
replaced by an interaction between object request brokers (ORBs) and the necessary
client/ORB and server/ORB interactions. Further, the name of the function called by
the Writer changed from write to request and now includes three parameters instead
of two�the first parameter indicates which service is required.

Many additional details might appear in lower levels of abstraction�for example,
the communication between ORBs might require encryption.

Note that the interactions among components may potentially be scattered across
different subsystems. This characteristic clearly identifies this problem as one that
requires advanced separation of concerns.

 Workshop on Aspects and Dimensions of Concern 227

w2 : Writer

f : File

make_call(�write�, f, d)
 oc : ORB

os: ORB

request(�write�, f, d)
 write(f, d)

Fig. 6. Implementation-level abstraction: Distributed file management in CORBA

This challenge problem demonstrates an important requirement on advanced
separation of concerns approaches:

Requirement 18 Advanced separation of concerns mechanisms must provide a means
of providing multiple related views of a system. Multiple views permit the
representation of different levels of detail for both the components that are modeled
and their interactions. Such a mechanism must also provide a means of relating the
views to one another, to permit navigation among them. Approaches must provide
both modularity and flexibility. Modularity is required to permit the representation of
the incremental changes that comprise a stepwise refinement. These incremental
changes must be represented as a coherent module (either logical or physical).
Flexibility is needed to permit selection�possibly dynamically�among a set of
possible implementations, and thus, it also illustrates the need for a range of static to
dynamic composition (see Requirement 12).

Sample solutions: The �stratified architecture� approach, described in [4], directly
addresses the problem of how to support multiple levels of abstraction. As depicted
in Fig. 7, different levels of abstraction are defined, where Fig. 4 through Fig. 6 show
the contents that might appear at particular levels. The relationships among different
levels of abstraction are also defined using refinement patterns.

A different possible solution, called dynamic wrappers, is presented in [28]. This
approach particularly attempts to address the need for flexibility by permitting the
building of systems as dynamic compositions of different interaction refinements (a
means of modifying component interactions by intercepting and modifying messages
flowing between the components). It permits the design of a system using a
component-oriented methodology that decouples the type of a component (its
specification or interface) from its implementation, so that the two can vary
independently [17]. Interaction refinements are defined by wrapping the component
type, using the Decorator pattern [15]. A �variation point� (a context-sensitive,
dynamic join point�see Section 3) manages the wrappers and decides, based on an
externally specified composition policy, which wrappers (and thus, which interaction
refinements) to invoke, and in which order to invoke them. Interactions between
component types are reified into a basic interaction flow and a context flow. The

228 Peri Tarr et al.

�

Fig. 7. A stratified architecture.

context flow carries the composition policy that was specified for that interaction.
Dynamic wrappers are illustrated in Fig. 8.

Wrapper

ComponentType

Component
Implementation

Wrapper

wrapee

Variation Point

Fig. 8. The dynamic wrappers approach.

The dynamic wrappers approach permits dynamic selection among
implementations for a given data type. For example, it allows clients to choose
implementations that either do or do not encrypt their data as it is sent to the file
manager. Here, encryption and decryption of data can be seen yet another interaction
refinement that is integrated selectively�and dynamically�whenever necessary.

The main disadvantage to the dynamic wrappers approach is that it does not satisfy
the requirement for modularity well. The implementation of an interaction refinement
involving several wrappers simultaneously could not be modularized well using this
approach.

 Workshop on Aspects and Dimensions of Concern 229

Challenge Problem 13: Access Control
This challenge problem demonstrates the need for access control in advanced
separation of concerns. The problem involves the introduction of authorization
features into an existing television broadcast planning system [24]. Both short- and
long-term planning of broadcast programming are business-critical information; thus,
access to this information should be restricted to a limited subset of employees. Each
product (e.g., a movie, series, or program) is assigned a status, and each employee is
assigned a role in the broadcast planning process. Users are either granted or denied
access to particular product information (which they access through various tools,
such as a GUI or a report generator) based on their particular role, on the product�s
status, and on the tool that is used to access the information.

USER DATA

GUI

REPORT

C B

A�

A

Fig. 9. Accessing authorized data in the television broadcast planning system.

Fig. 9 summarizes this scenario. As it suggests, access privileges to the data (B)
are determined based on both the tool that attempts to access the data (A) and on the
role of the user who is running the tool (C). Note that some portions of the tool may
be inaccessible to certain kinds of renderings�for example, a particular user may, in
principle, be able to view a piece of data with a GUI, but, for security reasons, that
data may not be accessible using the report generator, which might send it to a printer
where it would be vulnerable to unauthorized access.

Note that this problem also illustrates the need for context-sensitive join points
(Section 210), where the context, in this case, include the access rights of the user and
of the tool that are attempting to access the data, as well as the data itself and its
particular status; it therefore also imposes Requirement 9. In addition, it suggests the
following requirement:

Requirement 19 Advanced separation of concerns mechanisms must provide a means
for a single component (object, etc.) to provide different interfaces for different
clients or categories of clients, and it must enforce correct usage of such interfaces.
Correct usage might be determined statically, dynamically, or both.

A suitable solution to Requirement 9 should also address Requirement 19.

230 Peri Tarr et al.

Sample solutions3: The stratified architecture approach could be used to address this
problem. With this approach, developers first implement the broadcast planning
system without authorization, and then annotate those relationships that involve
authorization. Next, developers must define the refinement patterns that govern the
transformation of these annotated relationships and their components into a different
set of relationships and possibly additional and/or altered components.

An AspectJ [18] solution might entail the use of the �cflow� construct, which
indicates the identity of the initiating caller (the user, in this case). Given this
information, it would be possible to check the access rights of the user. Note that this
approach actually uses context-sensitive join points to address this challenge problem.

The dynamic wrappers approach, as depicted in Fig. 10, might define a component
type for each of the entities depicted in Fig. 9. A component type specifies the
service interfaces and dependencies that components of this type have. None of the
implementations of these component types contains any authorization code. Instead,
authorization is implemented using a set of wrappers. Wrappers for the GUI type and
the Report type each implement a customized authorization strategy. Note that
propagation of user identification and access rights does not occur automatically;
instead, it must be implemented by a third wrapper, for the User type, which adds user
identification and privileges to the context flow of the reified interaction.

<<typemanager>>
USER

VARVAR

USER CONTEXT
PROPAGATION

<<typemanager>>
GUI
VARVAR

CONTEXT
PROPAGATION GUI AUTH-

CHECK

reified msg

Fig. 10. Using dynamic wrappers to solve the authorzation challenge problem.

7 Context-Dependent Specialization of Existing Behavior

Group members: Johan Brichau, Pascal Costanza, Gregor Kiczales, Elke
Pulvermueller, Patrick Steyaert, and Tom Tourwe

Issues: The need for context-sensitive and dynamic concerns and join points; the
object identity problem.

Categories: Challenge problems, requirements statements

3 A word of caution is in order here. The original problem, as defined in [24], is considerably

more complex than the simplified version given here. Thus, some of the sample solutions
may not scale up to the original problem.

 Workshop on Aspects and Dimensions of Concern 231

7.1 Problem Overview

In some cases, a given component�s behavior may have to be specialized based on
run-time context information. In particular, at some join point, a component may
need to incorporate (i.e., be composed with) one or more aspects or concerns; those
aspects or concerns may need to be executed, executed differently, or not executed at
all, depending on the dynamic context in which the component is used. This is a
manifestation of the �jumping aspects� problem (see also Section 3).

A common manifestation of this problem occurs in the presence of delegation (the
Decorator pattern [15]). Depending on the usage context of a wrapped object, it may
be desirable to treat it either as having a wrapper or not. This problem has been
referred to as the �object identity� problem.

Motivating papers: The need for context-sensitive and dynamic concerns and join
points is taken from the �jumping aspects� problem [7]; the object identity problem
was identified in [10].

7.2 Challenge Problems and Requirements

This set of challenge problems is based on variations of a running example involving
a simple figure editor application (taken from [7]). The editor permits the drawing of
lines and points, where a line is defined by two points. The application supports
multiple simultaneous depictions of a figure; each figure element (lines and points)
can have a different color in each depiction. A sample UML diagram for such a
figure editor is shown in .

FigureEditor

doCommand(Command)
changed()

Display

update(Graphics)

Figure FigureElement

Point

getX()
getY()
setX(int)
setY(int)
moveBy(int,int)

draw(Graphics)

Line

getP1()
getP2()
setP1(int)
setP2(int)
moveBy(int,int)

draw(Graphics)

*

*

calls changed()

Fig. 11. UML diagram for figure editor application.

232 Peri Tarr et al.

Challenge Problem 14: Context Sensitivity to Change Notification
The figure editor�s user interface is decoupled from the core functionality of the
application using the Model-View-Controller (MVC) pattern [15]. Thus, changes in
the state of figure elements (position, color, etc.) should trigger an update in the user
interface. To achieve this update, each method that modifies the state of a figure
element must send a changed() message to the FigureEditor, which
ultimately invokes the user interface�s update mechanism.

The invocation of the update mechanism is clearly a cross-cutting feature�many
methods modify figure elements and must send the same changed() messages�
and, therefore, it should be encapsulated as a separate concern. Notice, however, that
the movement of a line is handled differently from the movement of a point: the
line�s moveBy() method will call the moveBy() method of its points, which then
result in change notification upon the movement of each point in the line. This is
undesirable, as described in detail in Challenge Problem 5�the change notification
should occur only once, after the line has been moved in its entirety.

This requirement to defer change notification represents the context dependence of
this aspect: all moveBy() methods represent potential join points for this aspect, but
the changed() method should not be called (i.e., the notification aspect should not
be executed) if the moveBy() method was called from another moveBy() method
(another join point of the same aspect). Thus, this problem illustrates Requirement 9.

aspect DeferMoves {

 pointcut deferTo():
 !withinall(FigureElement) & movecalls();

 pointcut movecalls():
 calls(Line, void moveBy(int, int)) |
 calls(Line, void setP1(Point)) |
 calls(Line, void setP2(Point)) |
 calls(Point, void moveBy(int, int)) |
 calls(Point, void setX(int)) |
 calls(Point, void setY(int));

 static after(): deferTo() {
 System.out.println("update!");
 fe.changed();
 }
}

Fig. 13. AspectJ solution to Challenge Problem 14.

Sample solution: A solution using AspectJ [18] is given in . This figure defines an
aspect, DeferMoves, which invokes the change notification mechanism by weaving
an advice after all calls to �movement� methods, but only when the calls to such
methods are not made from within the FigureElement class.

Although this solution is almost sufficient to address Challenge Problem 14. it is
not entirely correct, because it excludes calls to �movement� methods that are made
from within the FigureElement class itself. A correct solution would weave an
advice after all �movement� methods when the call to the method is not made from
within any other �movement� method; for example:

 Workshop on Aspects and Dimensions of Concern 233

pointcut deferTo():
 !withinall(movements()) & movecalls();

In the current version of AspectJ, however, the withinall construct cannot take entire
pointcuts as arguments.

Challenge Problem 15: Context Sensitivity in Changing Colors
The actual drawing of figure elements on the screen is done by calling a draw()
method on each figure element. The draw() method takes as a parameter a
Graphics context object, which represents the display on which to draw the figure
element.

The context sensitivity issue arises in this problem because each figure element can
be depicted in a different color on each display. The algorithm for determining the
color is the same for every draw() method, and it depends on the calling context
(i.e., on the display from which the draw() method was invoked, directly or
indirectly). Thus, setting the drawing color is clearly a cross-cutting concern, as the
draw() methods that this capability affects are scattered across the class definitions
for all of the figure elements. Again, this is a context-dependent concern, since the
actual setting of the color depends on the calling context of the join point method.

Sample solution:
Fig. 15 shows an AspectJ solution to the changing colors problem. The
DrawingCanvas aspect encapsulates the canvas (the display on which the drawing
is depicted) and makes it available to the entire flow of control, starting at the
invocation of the update() method on the canvas itself. Because the invocations of
the draw() methods occur in that flow of control, the canvas is made available to
the execution code of the draw() method (i.e., it can access the relevant context
information). The PerCanvasColor aspect actually introduces the coloring code
into the draw() method. This aspect wraps code around the draw() methods that
retrieves the canvas (which is supplied through the getDrawingCanvas()
method of the DrawingCanvas aspect) and sets the appropriate color.

Note that while Challenge Problems 14 and 15 both illustrate the need for context-
sensitive join points, they use the context information differently. In Challenge
Problem 14, context information is needed to determine whether or not the change-
notification aspect should be executed at a given join point. In this case, the
compositor tool uses the context information. In Challenge Problem 15, the aspect
itself needs the context information instead, to determine the painting color.

Requirement 20 Context sensitivity may affect a compositor tool or the definition of
an aspect or a concern. Advanced separation of concerns approaches must provide a
means of permitting context information to be used by any entity that requires it. This
includes the ability to identify new context information as the need arises and to
ensure that it is made available where needed, all encapsulated within a concern that
can be added to existing code non-invasively.

234 Peri Tarr et al.

aspect DrawingCanvas of eachcflow(callToUpdate(Canvas)) {
 Canvas canvas;

 pointcut callToUpdate(Canvas c):
 instanceof(c) & receptions(void update(Graphics));

 before(Canvas c): callToUpdate(c)
 { canvas = c; }

 static Canvas getDrawingCanvas()
 { return (DrawingCanvas.aspectOf()).canvas; }
}

aspect PerCanvasColor of eachobject(instanceof(FigureElement)) {
 static Hashtable table = new Hashtable();
 Color getColor(Canvas canvas)
 { return (Color)table.get(canvas); }
 static void setColor(FigureElement fe, Canvas canvas,
 Color color)
 { (PerCanvasColor.aspectOf(fe)).table.put(canvas, color); }

 pointcut drawOperations(Graphics g):
 instanceof(FigureElement) & receptions(void draw(g));

 around (Graphics g) returns void: drawOperations(g) {
 Canvas canvas = DrawingCanvas.getDrawingCanvas();
 Color color = getColor(canvas);
 if (color == null) {
 thisJoinPoint.runNext(g);
 }
 else {
 Color oldColor = g.getColor();
 g.setColor(color);
 thisJoinPoint.runNext(g);
 g.setColor(oldColor);
 }
 }
}

Fig. 15. AspectJ solution to the color-changing problem.

8 Distributed Systems and Middleware

Group members: Mehmet Aksit, Federico Bergenti, Constantinos Constantinides,
Pertti Kellomaki, Blay Mireille, Tommi Mikkonen, Klaus Ostermann, John Zinky

Issues: Quality of service concerns in distributed middleware; collection of data
about components in distributed middleware (e.g., for monitoring and control of a
distributed system)

Categories: Requirements statements

 Workshop on Aspects and Dimensions of Concern 235

8.1 Problem Overview

Distributed systems pose many challenges for advanced separation of concerns. They
generally consist of software components and middleware, where the middleware
provides services for connecting and integrating components in distributed systems.
Quality of service (QoS) is a key concern in such systems; it includes such critical
issues as performance and reliability, which impact many (if not all) of the
components and middleware in a distributed system.

Motivating papers: Some issues in achieving advanced separation of concerns for
distributed systems appear in [2][5][9].

8.2 Challenge Problems and Requirements

Installation of QoS-Aware Middleware
Installing a distributed system in any given environment may require considerable
effort to specialize the system for the new context, since different customers of such
software typically have different QoS requirements that necessitate different
configurations to achieve. This is particularly true for QoS-aware middleware, where
multiple general-purpose and QoS-specific components must be deployed and
instantiated to obtain the desired QoS support. This means that, given a distributed
application and middleware context, the application, middleware, and QoS
components must be installed, instantiated, and tuned�a tedious and error-prone task.

The requirements on QoS-aware middleware suggest a number of research
challenges for the area of advanced separation of concerns. For example:

� How should QoS concerns be expressed?
� How should configurations be expressed? What kinds of concern specification and

specialization formalisms should be used to keep specialization information
�untangled� from the rest of a distributed system?

� What kinds of protocols must be defined between a configuration site and the
distributed system so that the desired components can be created, installed, and
tuned? How can this protocol express the required changes to the actual
configuration after the system is installed?

Requirement 21 It must be possible to express QoS concerns non-invasively, and to
specialize them for use in particular (distributed) contexts.

Requirement 22 It must be possible to express software configurations in terms of
specializations on existing software, non-invasively.

Monitoring of QoS-Aware Components
To ensure that QoS requirements are being satisfied, it is necessary to collect various
kinds of information from the components�e.g., timing statistics. The kinds of
information that are needed are context-specific and depend on the particular QoS
attribute being enforced. For example, in a transaction system, a QoS control system

236 Peri Tarr et al.

may have to enforce requirements on the number of transactions per second that must
be able to run. It must, therefore, gather information about the amount of data being
operated on by transactions, the number of concurrent transactions executing on the
transaction server, the network contention, and the priorities of transaction requests.
On the other hand, a QoS control system that is enforcing a different QoS attribute,
like availability, may require different kinds of information, such as up-time, last read
and write times, number of users, etc.

Requirement 23 It must be possible to attach (non-invasively) QoS monitors on
middleware components. Further, these monitors may be context-specific, which
suggests that any solution to this requirement must also address Requirement 9.

Requirement 24 The process to collect data for QoS monitors from across the
network must satisfy several requirements:

� The collection process must not create significant overhead.
� The collection process must operate within stated time constraints.
� Suitable time-stamp generation techniques must be adopted to overcome the lack

of a global time.
� The effect of distance between the information sources (components) and the

monitoring points must be taken into account in processing the data.

An example of this requirement is an on-line banking application, where the bank
must offer mortgages within a given period of time. This process is realized through
the interactions among multiple services that may reside in different locations. A
QoS monitor must, therefore, gather information from different locations to permit the
monitoring and control of mortgage offers.

Adaptation of Middleware
In a dynamically changing application context, and in case of multiple, distributed
and sometimes conflicting executions, it may not be possible to fix the
implementation of a service for a given QoS specification. In this case, the service
may try to provide best effort to achieve the specified QoS specification.

For example, a transaction system may provide a fixed set of services such as
begin, end and abort transaction. There are, however, many possible implementations
of a transaction service, and each implementation may perform differently from
others in different contexts. Similarly, it may be desired to select the implementation
of a transport protocol among various alternatives based on the characteristics of the
data to be transferred.

This observation implies Requirement 9, and it also imposes the following new
requirement:

Requirement 25 It must be possible to dynamically adapt (non-invasively) the
implementation of a middleware system so that the system provides the best effort
within the context of agreed-upon QoS constraints.

 Workshop on Aspects and Dimensions of Concern 237

9 Conclusions and Future Work

This workshop identified fifteen challenge problems and twenty-five requirements on
advanced separation of concerns approaches. These problems and requirements are in
need of further exploration and validation, and they are only a small subset of those
that must ultimately be produced. Nonetheless, they represent a significant first step
in defining boundaries of the emerging area of advanced separation of concerns, and
in defining constraints on solution approaches.

It is our hope that researchers and technology providers will take these challenge
problems and requirements in several directions:
� Improvement of, and new directions for, existing approaches: These challenge

problems and requirements should be used to identify limitations in, and growth
areas for, existing approaches to advanced separation of concerns. They may also
help solution-providers to identify tradeoffs that they had to make in defining their
approaches and to consider the overall impact of those tradeoffs.

� Generation of new approaches: While a number of advanced separation of
concerns approaches already exist (e.g., compositors, logic meta-programming,
etc.), these problems and requirements may help to suggest new approaches and
technologies that help developers to use advanced separation of concerns more
effectively throughout the software lifecycle.

� Comparative analysis of approaches: To date, there has been no consistent,
comprehensive means of comparing different approaches and technologies. We
hope that these problems and requirements provide a way for researchers and
developers to classify their own approaches, and to compare and contrast them
with other approaches. Towards this goal, we strongly urge technology providers
to produce solutions to the challenge problems using their technologies, and to
make those solutions available to the community.

� Evolution of these problems and issues, and identification of new ones: As noted
earlier, a single, two-day workshop is not sufficient time to produce a complete set
of requirements, issues, or challenge problems, or even to produce a representative
set. The results reported in this document are preliminary. Further work will be
required to identify incompleteness, inconsistencies, and other errors.

Above all else, it is our hope that these results will be discussed, revised and
expanded by the advanced separation of concerns community, and that the
community will identify new problems and issues in the future. We look forward to
the individual research efforts, and to the successors of this inspiring workshop, that
will so.

Acknowledgments

First and foremost, we would like to thank all of the workshop participants for their
hard work before, during, and after the workshop. They are responsible for the
stunning success of this workshop, and it is their efforts that made this report possible.

A few people merit special mention. We are grateful to the following participants
for serving as scribes, contact persons, and coordinators for their groups after the

238 Peri Tarr et al.

workshop: Johan Brichau, Lee Carver, Constantinos Constantinides, Maja D�Hondt,
Kris de Volder, Erik Ernst, Robert Filman, and Thomas Kühne. Several of these
people also took primary responsibility for summarizing their groups� results, which
greatly facilitated the writing of this report.

We would like to give special thanks to Mehmet Aksit and Oscar Nierstrasz for
sharing their notes and recollections from the workshop, and to Harold Ossher for his
very helpful comments on drafts of this paper.

Finally, we would like to thank Xerox PARC and IBM Research for their generous
financial support for this workshop.

References

[1] Mehmet Aksit, Lodewijk Bergmans, and S. Vural. �An Object-Oriented Language-
Database Integration Model: The Composition Filters Approach.� Proceedings of
ECOOP�92, Lecture Notes in Computer Science #615, 1992.

[2] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans and Akinori Yonezawa,
"Abstracting Object Interactions Using Composition Filters", In Object Based Distributed
Programming, R. Guerraoui, M. Riveill and O. Nierstasz (Eds.), Lecture Notes in
Computer Science #791, 1993.

[3] Mehmet Aksit and Bedir Tekinerdogan. �Aspect-Oriented Programming using
Composition Filters.� In S. Demeyer and J. Bosch (Eds), Object-Oriented Technology,
ECOOP�98 Workshop Reader. Springer-Verlag, 1998.

[4] Colin Atkinson and Thomas Kühne. �Separation of Concerns through Stratified
Architectures.� Workshop on Aspects and Dimensions of Concern at ECOOP�2000
(position paper), Cannes, France, June 2000.

[5] Lodewijk Bergmans, Aart van Halteren, Luis Ferreira Pires, Marten J. van Sinderen and
Mehmet Aksit, "A QoS-Control Architecture for Object Middleware", Proceedings of
IDMS'2000, Enschede, The Netherlands, in Lecture Notes in Computer Science #1905,
Springer Verlag, 2000.

[6] Andrew P. Black and Jonathan Walpole. �Aspects of Information Flow� Workshop on
Aspects and Dimensions of Concern at ECOOP�2000 (position paper), Cannes, France,
June 2000.

[7] Johan Brichau, Wolfgang De Meuter, and Kris de Volder. �Jumping Aspects.� Workshop
on Aspects and Dimensions of Concern at ECOOP�2000 (position paper), Cannes, France,
June 2000.

[8] Laurent Bussard. �Towards a Pragmatic Composition Model of CORBA Services Based
on AspectJ.� Workshop on Aspects and Dimensions of Concern at ECOOP�2000 (position
paper), Cannes, France, June 2000.

[9] Constantinos Constantinides, Atef Bader, and Tzilla Elrad. �Separation of Concerns in the
Design of Concurrent Systems.� Workshop on Aspects and Dimensions of Concern at
ECOOP�2000 (position paper), Cannes, France, June 2000.

[10] Pascal Costanza. �Object Identity.� Workshop on Aspects and Dimensions of Concern at
ECOOP�2000 (position paper), Cannes, France, June 2000.

 Workshop on Aspects and Dimensions of Concern 239

[11] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, MA, June 2000.

[12] Krzysztof Czarnecki and Ulrich W. Eisenecker. �Separating the Configuration Aspect to
Support Architecture Evolution.� Workshop on Aspects and Dimensions of Concern at
ECOOP�2000 (position paper), Cannes, France, June 2000.

[13] Erik Ernst. �Separation of Concerns and Then What?� Workshop on Aspects and
Dimensions of Concern at ECOOP�2000 (position paper), Cannes, France, June 2000.

[14] Robert Filman. �Applying Aspect-Oriented Programming to Intelligent Synthesis.�
Workshop on Aspects and Dimensions of Concern at ECOOP�2000 (position paper),
Cannes, France, June 2000.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. �Design Patterns:
Elements of Reusable Object-Oriented Software.� Addison-Wesley, 1994.

[16] William Harrison and Harold Ossher. �Subject-Oriented Programming (A Critique of
Pure Objects).� In Proceedings of OOPSLA�93, September, 1993, pages 411-428.

[17] Barbara Liskov, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. �Abstraction
Mechanisms in CLU.� Communications of the ACM, vol. 20, no. 8, August 1977.

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, John Irwin. �Aspect-Oriented Programming.� In Lecture
Notes in Computer Science (LNCS 1241). Springer-Verlag, June 1997.

[19] Satoshi Matsuoka, Ken Wakita, and Akinori Yonezawa. �Synchronization Constraints
with Inheritance: What is Not Possible�So What Is?� Internal Report, Tokyo University,
1990.

[20] Satoshi Matsuoka and Akinori Yonezawa. �Analysis of Inheritance Anomaly in
Concurrent Object-Oriented Languages.� In Research Directions in Concurrent Object-
Oriented Programming, G. Agha, P. Wegener, and A. Yonezawa (Editors), MIT Press,
April 1993, pages 107-150.

[21] Harold Ossher and Peri Tarr. �Multi-Dimensional Separation of Concerns in Hyperspace.�
Workshop on Aspect-Oriented Programming at ECOOP�99 (position paper), Lisbon,
Portugal, June 1999. (In Lecture Notes in Computer Science (LNCS 1743). Springer-
Verlag, 1999.)

[22] Harold Ossher and Peri Tarr. �Multi-Dimensional Separation of Concerns and the
Hyperspace Approach.� In Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development. Kluwer, 2000. (To
appear.)

[23] E. Pulvermüller, H. Klaeren, and A. Speck. �Aspects in Distributed Environments.� In
Proceedings of the International Symposium on Generative and Component-Based
Software Engineering (GCSE�99), Erfurt, Germany, September 1999.

[24] Bert Robben and Patrick Steyaert. �Aspects on TV.� Workshop on Aspects and
Dimensions of Concern at ECOOP�2000 (position paper), Cannes, France, June 2000.

[25] Subject-oriented programming and design patterns. Draft, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, see http://www.research.ibm.com/sop/
sopcpats.htm.

240 Peri Tarr et al.

[26] Stanley M. Sutton, Jr. �APPL/A: A Prototype Language for Software-Process
Programming.� PhD thesis, University of Colorado at Boulder, Boulder, Colorado, August
1990.

[27] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. �N Degrees of
Separation: Multi-Dimensional Separation of Concerns.� In Proceedings of the
International Conference on Software Engineering (ICSE�99), May 1999.

[28] Eddy Truyen, Bo N. Jørgensen, Wouter Joosen, Pierre Verbaeten, �Aspects for Run-Time
Component Integration.� Workshop on Aspects and Dimensions of Concern at
ECOOP�2000 (position paper), Cannes, France, June 2000.

[29] Nicholas Wirth. �Program Development by Stepwise Refinement.� Communications of
the ACM, vol. 14, no. 4, April 1971, pp. 221-227.

	Introduction
	Contributors
	Safe Composition
	Problem Overview
	Challenge Problems and Requirements
	Generic, Reusable, and “Jumping” Aspects and Concerns
	Problem Overview
	Challenge Problems and Requirements
	Modularization and Evolution Using Advanced Separation of Concerns
	Problem Overview
	Problem Overview
	Challenge Problems and Requirements
	Exception Handling and Timing Constraints
	Problem Overview
	Challenge Problems and Requirements
	Multiple Views
	Problem Overview
	Challenge Problems and Requirements
	Context-Dependent Specialization of Existing Behavior
	Problem Overview
	Challenge Problems and Requirements
	Distributed Systems and Middleware
	Problem Overview
	Challenge Problems and Requirements
	Conclusions and Future Work
	Conclusions and Future Work
	Acknowledgments
	References

