WOI’00: New Issues in Object Interoperability

Antonio Vallecillo', Juan Herndndez?, and José M. Troya'

! Universidad de Mélaga, Spain
{av,troya}@lcc.uma.es
2 Universidad de Extremadura, Spain
juanher@unex.es

Abstract. This report summarizes the presentations, discussions, and
outcomes of the ECOOP’2000 Workshop on Object Interoperability, held
in Sophia Antipolis, France, on Monday, June 12, 2000. Divided into four
main sessions, the workshop covered some of the most important issues
related to object interoperability at different levels (such as protocols or
semantics). This report has two main goals. First, it tries to provide a
snapshot of some of the current research being carried out within the
object-oriented community in these areas. And second, it summarizes
some of the open questions and issues related to object interoperability,
in order to set the basis for further research activities.

1 Introduction

In the Open Systems arena there is now a race under way between middleware
architects and vendors to establish interoperational standards (e.g. CORBA,
EJB or DCOM), as well as bridges among them. Those component platforms
undoubtedly provide the infrastructural support for components to interoperate
at certain (basic) levels. However, much work remains to be done by the object-
orientation community in order to deal with all the complex aspects that object
interoperability embraces in open systems. In this context, interoperability can
be defined as the ability of two or more entities to communicate and cooperate
despite differences in the implementation language, the execution environment
or the model abstraction [9].

In order to discuss some of the issues related to object interoperability, the
first ECOOP Workshop on Object Interoperability (WOI'99) was organized in
association with the 13th European Conference on Object-Oriented Program-
ming (ECOOP’99), and held in Lisbon (Portugal) in June 1999. WOI'99 suc-
cessfully contributed to gather a number of researchers interested in object inter-
operability, and allowed them to start building a common understanding of the
different problems and yet unexplored areas to be investigated. Basically, three
main levels of interoperability between objects were distinguished at WOI’99: the
signature level (names and signatures of operations), the protocol level (relative
order between exchanged messages and blocking conditions), and the semantic
level (“meaning” of operations).

Although interoperability is currently well defined and understood at the
signature level, this sort of interoperability is not sufficient for ensuring the

2 A . Vallecillo, J. Hernédndez, and J.M. Troya

correct development of applications in open systems. Typical interface definition
languages (IDLs) provide just the syntactic descriptions of the objects’ public
methods, i.e. their signatures. However, nothing is said about the order in which
the objects expect their methods to be called, their blocking conditions, or their
functionality. Basically, current IDLs do not describe the usage, requirements,
capabilities, and behavior of objects.

The variety of topics covered during WOI'99 revealed the wide range of
challenges that the study of object interoperability at both protocol and semantic
levels brings out when objects have to interoperate in open systems. The list of
questions and open issues was so long that we decided to organize a new edition
of the object interoperability workshop, with the aim of promoting research
concerned with all aspects of interoperability between objects, in particular at
the protocol and semantic levels.

2 The WOI’00 Workshop

The second Workshop on Object Interoperability (WOI'00) was held in Sophia
Antipolis, France, in conjunction with ECOOP’2000. The main aim of WOI’00
was to provide a venue where researchers and practitioners concerned with all
aspects of interoperability could meet, disseminate and exchange ideas and pro-
blems, identify some of the key issues related to object interoperability, and
explore possible solutions. As a WOI’00 new feature, special attention was drawn
into some of the existing commercial object models, proposing extensions of their
IDLs in order to cope with some of those interoperability issues, and discussing
how to check them during compilation and run time in commercial applications.
In particular, the topics of interest pointed out in the call for papers included,
among others:

— Extensions to object interfaces and IDLs to deal with protocol or semantic
interoperability (especially commercial IDLs).

— Enabling models, technologies and architectures for object interoperability.

Protocol and semantic checking techniques.

— Industrial and experience reports.

All submitted papers were formally reviewed by at least two referees, and
10 papers were finally accepted for presentation at the workshop. Contributions
were divided into four distinct groups:

1. In the first group we have the contributions describing ezperiences with com-
mercial object models, encouraging the need of formalizing CORBA service
IDLs and specifications.

2. In the second group we find those focusing on protocol interoperability, in-
cluding IDL extensions, protocol checking techniques, and some formal as-
pects of interoperability at this level.

3. Interesting experience reports about syntactic interoperability are found in
the third group of contributions.

WOTI’00: New Issues in Object Interoperability 3

4. Finally, two contributions propose interaction frameworks for object inter-
operability.

In addition, this year we had a brilliant keynote speech by Prof. Mehmet
Aksit, from the University of Twente, that opened the workshop. His talk served
not only for introducing the topics related to object interoperability and the
key concepts behind them, but also for setting up a common vocabulary and
understanding among participants. There were many references to the concepts
and the notations introduced by Prof. Aksit during the debates, which proves the
invaluable help that having a keynote speaker represents. In particular, his talk
significantly helped bringing all participants into a shared conceptual framework
on which to base all discussions.

The workshop gathered 13 people from 7 different countries, who actively
participated in very lively discussions. Their names and affiliations are listed
in Annex 1. This report has been put together with the help of all those par-
ticipants, and summarizes the workshop presentations, discussions, and results
obtained. It is structured in 5 sections. After this introduction, section 3 de-
scribes the first three sessions, starting with a summary of the keynote speech,
and the outcomes of the paper presentations and debates. Section 4 is dedi-
cated to the last session, and contains some of the issues that were finally raised
for discussion, the actions identified as post-workshop homework, and the final
conclusions. This section also includes the discussions that took place after the
workshop, during the production of this chapter, and the conclusions agreed.

In addition to this report, a book with the Proceedings of the workshop has
been produced [4], which contains the full-length version of all selected papers.
More information about the workshop and its participants is also available at
the workshop Web page: //webepcc.unex.es/juan/woi00/.

3 Presentations

The workshop was divided into 4 sessions (two in the morning, two in the after-
noon). This section describes the first three, which were devoted to discussing
the presented papers. A brief outline of the ideas of the keynote speech and
each presented paper is given, as well as some of the conclusions reached after
each one. Those conclusions were written down in the blackboard, and finally
summarized during the last session.

3.1 Keynote Speech: Quality-aware Interoperability (Mehmet
Aksit)

Nature evolution provides a good analogy for studying how (successful) products
and systems should be built: every successful design of a complex system requires
a proper decomposition, usually based on a solution domain knowledge. Similarly,
every successful product displays a proper miz of quality factors, and is composed
of well-balanced cooperating structures. Besides, every product must survive in

4 A . Vallecillo, J. Hernédndez, and J.M. Troya

a competitive environment, and hence it should adapt to seamlessly cooperate
with other products, and with its environment.

Proper decomposition should be driven by balancing quality factors, spe-
cially those imposed by the users’ requirements such as functionality, reusabil-
ity, adaptability, or performance. So, software systems should be decomposed in
such a way that the right mix of those factors is achieved.

One effective way of reasoning about composition is by using the formula
S3 = S9 @ S, in which S; is what we currently have, S5 is what we need, S5
represents what we need to add, and operator & models how we should add it.
This expression allows to represent the different ways in which software systems
are built. For instance, in an extension S exists but S; is yet to be implemented.
In composition both S; and S5 exist, and S3 has to be defined by composing S,
and Sy. In run-time adaptation the operator & can be provided by the system
and applied at run-time, while in compile-time adaptation the operator @ can be
expressed within the adopted programming language and corresponds to writing
“glue-code” (let it be inheritance or coordination, for instance). In addition,
this formula also allows to measure the various quality factors, evaluating the
different costs of reusability, adaptability, etc.

On the other hand, cooperation requires compatibility and synchronization.
In order to accomplish software compatibility, two main levels can be distin-
guished —procedural and functional—, which deal respectively with syntactic
and semantic agreements. Three are the main requirements for functional com-
patibility: relevance, semantic compatibility, and realizability. Relevance is the
most basic requirement, and means that both S5 and S; must be relevant for
defining S3. Semantic compatibility refers to the semantic consistency of the defi-
nitions of both S5 and S; for defining S3. Finally, realizability requirements cover
the compatibility restrictions for the realization of the services and composition
mechanisms (e.g., lack of expression power, extensibility or adaptability).

Relevancy must be determined within the context of a certain business sce-
nario, and can be assured by a successful requirement analysis process. In its
turn, semantic compatibility needs synthesis and verification. The synthesis pro-
cess aims at searching solutions from the solution domain and extracting the
abstractions from the selected solution domain, while verification cares about
having the sub-concerns of S; and S5 compared and verified for semantic com-
patibility.

Summarizing, interoperability becomes a necessity due to decomposition of
systems into sub-systems (say S, Sa, .., Sn). Decomposition is by itself a compro-
mise because of the necessity to provide a right balance between quality factors,
such as functionality, reusability, adaptability, or performance. Interoperability
requires proper decomposition based on a solution domain knowledge, and bal-
ancing quality factors needs to be the driving force for decomposition.

3.2 Experiences with commercial object models

Two papers were presented in this group, which outline some of the limitations
of current CORBA specifications, and propose some ideas to overcome them.

WOTI’00: New Issues in Object Interoperability 5

3.2.1 Towards Components that Plug AND Play (R. Bastide, O. Sy)

Just specifying the syntactic level of cooperation with IDLs, and informally des-
cribing the behavior of objects does not necessarily lead to fruitful cooperation
in an object-oriented system. In this paper the authors advocate that behavioral
specifications of objects should be formal if they have to be non-ambiguous.
They make their point by providing the conclusions of some interoperability
tests conducted on five commercial implementations of the Object Management
Group’s CORBA Event Service. These tests expose the non-interoperability of
some implementations which trace back, on one hand, to the original specifica-
tion’s incompleteness and, on the other hand, to mistakes in the implementation.
The authors propose that the first cause be corrected by the use of a formalism
suited to the needs of CORBA systems (like the Petri nets based Cooperative
Objects formalism [2]), and the second by the provision of test cases with the
original specification.

Two main conclusions were drawn from the discussions. Firstly, specifications
in natural language are not enough because precision is needed. Specifications
should be formal, and test cases should be provided to the user. However, al-
though formal behavioral specifications are needed, they are not enough to ensure
object interoperability. It is necessary to make requirements for interoperability
explicit (see section 4.2) in order to make a conscious rational choice based on
analysis of available design (and later technological) options. Secondly, since dif-
ferent formal specification languages are available and provide different views of
interoperability (levels of abstraction, performance, real-time, size, scalability,
system modeling, system composition, etc.), there is an issue of selecting and
combining these views (see section 4.3). However, in order to obtain this global
view, one must consider the trade-offs: “all qualities cannot be obtained in one
product” (cf. Prof. Aksit’s presentation).

3.2.2 Adding Protocol Information to CORBA IDLs (C. Canal, L.
Fuentes, J.M. Troya, A.Vallecillo)

Traditional IDLs were defined for describing the services that objects offer, but
not those services they require from other objects, nor the relative order in
which they expect their methods to be used. In this paper the authors propose
an extension of the CORBA IDL that uses a sugared subset of the polyadic -
calculus for describing object service protocols, aimed at the automated checking
of protocol interoperability between CORBA objects in open component-based
environments.

Once it is shown how CORBA objects’ interface descriptions can be enriched
with protocol information, the authors discuss the sort of checks that can be
carried out with their proposal (including some safety and liveness properties
of applications, and component compatibility and substitutability checks), as
well as some of its advantages and disadvantages. Furthermore, the authors
also discuss the practical utility of their proposal, and present the limitations

6 A . Vallecillo, J. Hernédndez, and J.M. Troya

encountered when trying to implement and use this sort of IDL extensions in
open systems.

Two main conclusions were reached after the discussions that followed this
presentation. First, that interoperability tests can be costly due to their (intrin-
sic) complexity. Nevertheless, including knowledge about the solution domain
may significantly reduce the complexity of the tests. Secondly, it was also agreed
that formal description techniques (FDTs) may not be enough for specifying
systems: not all aspects and requirements can be covered by FDTs.

3.3 Protocols

The second session was dedicated to the discussion of interoperability issues at
the protocol level. In our context, a protocol is a restriction on the ordering of
incoming and/or outgoing messages, including possible blocking conditions and
guards on the objects’ methods. Four papers were selected in this group, covering
different proposals that address those issues from very different perspectives.

3.3.1 An Enhanced Model for Component Interfaces to Support
Automatic and Dynamic Adaption (Ralf H. Reussner)

Current commercial component systems, modeling component interfaces as a list
of method signatures, have several practical relevant shortcomings. For instance,
they do not detect component compositional errors before the actual use of the
composed system; besides, all adaptations of a component must be explicitly
foreseen and programmed by the developer. The author addresses these problems
by a new component model for Java: CoCoNut/J. A CoCoNut enhances a Java
Bean with a clear COmponent interface COntract. This new interface model is
regarded as a contract to deploy a component: the services that the component
offers (call-interface) and the external services it requires from other components
(use-interface). The call-interface models not only the available services, but
also all valid call sequences to these services. Alike, the use-interface models all
possible call sequences to used services of an external component.

The linkage between both interfaces is explicitly modeled. When not offering
a service in the call-interface we may also not require certain external services.
Conversely, if some external services are not available, some of the component’s
services may not be offered either. The author shows how this connection of the
interfaces can be actually used to automatically (re-)compute the component’s
call-interface with dependency from the existing external services. In the paper
the author describes an extension of finite state machines with counters which
are used to model the interfaces. With the two interfaces it can be checked during
composition time (i.e., when the user awaits errors, and before run-time) whether
two components A and B can work together, i.e., whether the protocol of the
use-interface of A fits to the B’s protocol of the call-interface.

Generalizing this check, component A can be adapted in the case the proto-
cols do not fit, or component B is missing. The main idea is to exploit the linkage

WOTI’00: New Issues in Object Interoperability 7

between the call-interface and the use-interface of component A. In case the use-
interface of A does not match the call-interface of B, another use-interface of A
can be built which matches the call-interface of B. This is done by constructing
the intersection of these interfaces (the cross product of the automata). Af-
ter having a new use-interface of A which matches the call-interface of B, the
new call-interface of A can be generated out of A’s automata and its new use-
interface. This restriction of functionality is a certain kind of adaptation does not
have to be explicitly programmed by the component developer, and is available
as a service provided by the component infrastructural system.

3.3.2 On Practical Verification of Processes (Rick van Rein)

When proving properties such as ‘compatibility’ on processes, the two customary
techniques to use are model checking and theorem proving. Model checking is
known for its speed and its ability to provide good feedback (to guide repairing
faults), but it is limited to systems with a bounded number of process instances.
This problem is an important drawback to computer scientific process verifica-
tion, and for that reason we decided to look into theorem provers.

Theorem provers are powerful proof tools that usually conduct their reason-
ing at a fair speed. However, one problem of theorem provers lies in the low level
of internal reasoning (logic, while a process designer tends to think in terms of
process steps) and the resulting feedback (if any); another problem of theorem
provers is the danger of infinite loops in the reasoning process.

The problem of the low level of feedback can be solved by clearly distinguish-
ing the interesting properties (proof attempts and axioms) from the cumbersome
ones. A wrapper around a theorem prover formulates desired proofs of interesting
properties and offers them to a theorem prover as subgoals. Internally, the the-
orem prover exploits both interesting and cumbersome knowledge (axioms and
previously proven properties) to attempt to achieve such subgoals. The collected
successes and failures of these subgoals do not reveal the internal cumbersome
proof steps, just their end result, which is in terms of interesting properties.
These successes and failures provide the same information as collected by a
model checker, hence the same useful feedback can be provided.

The problem of infinite looping during the reasoning about proofs can be
avoided by constraints that define a reasonable class of acceptable problems. This
class of acceptable problems cannot be defined for logic in general, but the use
of knowledge from the problem domain (processes) can help out. Consider that
processes are associated (they refer to each other) and one way to avoid infinite
proofs would be to avoid infinitely cycling through the process associations.
This can be avoided by constraining the number of introductions of the quantor
rules that describe these associations, and/or the number of introductions of
the quantor rules that describe the processes themselves. Such an upper limit
to quantor-rule introductions is a well-known solution to the danger of infinite
looping.

8 A . Vallecillo, J. Hernédndez, and J.M. Troya

In conclusion, this paper presents an approach to prove process-related prop-
erties with theorem provers, in such a way that good feedback can be given and
proofs always consume a finite time.

3.3.3 Temporal Logic Based Specifications of Component Interaction
Protocols (Jun Han)

The interaction protocols of software components are critical to their proper
understanding and use. Based on real-world experience in designing a telecom-
munications system, the author presents a temporal logic based approach to
the specification of component interaction protocols. The protocol specifications
take the form of interaction constraints on a component’s required and provided
signature elements (i.e., attributes, operations and events).

After giving an overview of a framework for comprehensive and yet flexible
component interface specification, the paper introduces a number of temporal
constructs for specifying interaction constraints. Then, the types and placement
of interaction constraints in the interface specification are analyzed. The pa-
per also provides a comparative discussion with other protocol specification ap-
proaches, including those based on description logics, Petri nets, state machines
and process algebras. The author finds that the temporal logic based approach
in the form of constraints is particularly practical as it is easy for practitioners
to learn and use, and it allows incremental specification of interaction protocols.

3.3.4 A Framework for the Specification and Testing the
Interoperation Aspects of Components (I. Cho)

This work proposes a component specification model that adds a protocol and
behavioral aspects of a component to enhance the interoperability between com-
ponents interacting to each other. The notation used for the specification is an
extension of the OCL (object constraint language), which is a part of UML. One
notable aspect of the work is the testing framework that integrates the spec-
ification model, the syntax/protocol checker, the automatic test sequence and
test code generator. The component specification model is an extension of the
current industrial standards —CORBA, COM/DCOM, JavaBeans—, and aims
at providing their components with more powerful interoperability tests.

3.4 Syntactic Interoperability

In this session two papers describe interesting experience reports about inter-
operability at the signature level.

3.4.1 A Multi-Level Approach to Verifiable Correct Design and
Construction of Multi-language Software (A. Kaplan and J.C.
Wileden)

The work by Alan Kaplan and Jack C. Wileden propose an approach for ma-
king heterogeneous white-box components interoperate, defending the “interface

WOTI’00: New Issues in Object Interoperability 9

bridging” approach instead of the “interface standardization” approach that uses
IDLs [5]. In particular, the work presented allows programs written in CLOS and
C++ to transparently interoperate by means of a tool called PolySPINner.

An interesting discussion about the real use of formal description techniques
followed this presentation. It is clear to all that formal description techniques
are far from being widely accepted and utilized in real industrial environments.
In fact, type checking is the only practical, useful and accepted way of formal
analysis nowadays. Furthermore, type definition is the practical limit which real
users are willing to specify (and have reasonable chance of getting right). Several
reasons can be argued for that:

1. Semantic specifications are very difficult to write, and the computational
complexity of their tests makes them impractical in most situations. Besides,
we cannot forget the necessities and abilities of users to whom formal descrip-
tion techniques may be useless. In practice, the more specialized/powerful
the formal model, the worse the ratio pay-off/pain.

2. Formal models (even types) always miss the aspects that turn out to matter
in the real world, since they do not allow to capture many of the non-
functional requirements involved in any real application.

3. And finally, protocol specifications are seldom really useful or sufficiently
precise, as previously pointed out.

3.4.2 Interoperability Oviedo3/COM Objects through Automation
(F. Dominguez and J.M. Cueva)

In this paper the authors present an experiment of integrating a proprietary
object-oriented system (Oviedo3) with COM objects by means of wrapping the
IDispatch interface. This technique allows COM objects to be perceived and
used as native objects by the user, allowing an easy integration between both
systems.

3.5 Interaction Frameworks for Object Interoperability

The two last papers dealt with interaction frameworks for object interoperability.

3.5.1 Addressing Interoperability in Multi-Organizational Web-Based
Systems (A. Ruiz et al.)

Current techniques for checking interoperability present a number of drawbacks
that make it difficult to apply them in nowadays software industry. In this paper
the authors identify some of these drawbacks, and present a proposal to tackle
object interoperability from a new point of view: interoperability certificates a
component must have been granted in order to participate in a collaboration with
other components. Certificates are granted when a component passes a number
of tests, and they are stored in a repository so that checking interoperability is
a simple, quick process.

10 A . Vallecillo, J. Hernédndez, and J.M. Troya

The authors also rise some questions in order to address the interoperability
problem in the context of MOWS (Multi-Organizational Web-Based Systems)
that are specially attractive in electronic commerce. MOWS have a number of
features that transform them into special open distributed systems where the
approach proposed by the authors may be realistic and attractive to software
engineers.

Finally, two open issues were risen: the need of a new interoperability level
(the quality level), and the future of the certification techniques for checking
interoperability.

3.5.2 Interaction Framework for Interoperability and Behavioral
Analysis (J. Putman and D. Hybertson)

An interaction framework based on a software architecture perspective was pre-
sented in terms of a set of views that address issues of interoperability and seman-
tic behavior. The framework uses concepts from the Reference Model for Open
Distributed Processing (RM-ODP, an ISO standard). The views represent levels
of abstraction, as a means of supporting distributed system interoperability. The
architectural concept of connector provides the locus of relations, interactions,
and protocols among components. The following views were defined:

— The relationship view specifies that a relation exists between objects or com-
ponents, and defines the interaction.

— The interface view specifies the interfaces of each component, using a com-
ponent model that allows multiple interfaces per component, within a tax-
onomy of interface types. This view still hides distribution of components.

— The binding view enables communication and interaction by focusing on
connectors. It is a more concrete view in that it reveals distribution of com-
ponents.

— The interceptor view supports interoperating components in different tech-
nical or administrative domains by addressing issues of cross-domain policy
management and mediation.

— The behavioral semantics view specifies the semantics of the interaction and
the information/data involved in the interaction. It supports all the other
views.

4 Final Session

The final session was dedicated to discuss some of the issues not covered during
the previous sessions, to summarize the conclusions drawn during the presenta-
tions into a final list of conclusions, and to select some actions for participants as
homework. In addition, a number of discussions happened among the workshop
participants by e-mail after the event.

This section is dedicated to present the outcomes of those discussions, as well
as the list of the workshop’s final conclusions.

WOTI’00: New Issues in Object Interoperability 11

4.1 Requirements for Interoperability

In the first place, Duane Hybertson wanted to clarify which were the precise
requirements for interoperability. The following definition (as prepared by Du-
ane himself) was produced. It groups interoperability requirements according to
where the resulting constraints (client side or server side) are located:

Definition 1 (Requirements for Interoperability). Given two components,
‘Client’ and ‘Server’, four general interoperability requirements, or classes of
requirements, are proposed:

R1 Data Constraints. Data received by the Client from the Server must satisfy
all client-side data constraints, including constraints on types, content, units,
and quality.

R2 Services Constraints. Services received by the Client from the Server must
satisfy all client-side service constraints, including functionality (or other
relation between input and output such as precondition and postcondition),
sequence, timing, and quality of service (QoS).

R3 Request Constraints. Services requested by the Client from the Server must
satisfy a set of server-side preconditions before they are permitted access to
those services. In turn, the Server must satisfy its postcondition (including
both functionality and QoS postconditions) in providing the service.

R4 Control Constraints. All components (clients and servers) involved in an
interaction must have a consistent expectation regarding transfer of control,
including blocking conditions.

4.2 Levels of Interoperability

During the discussions the group did not agree with the original taxonomy of hav-
ing three levels of object interoperability. Are protocols part of semantics? Are
semantics just about behavioral specifications? The following two paragraphs ex-
tracted from the e-mail discussions summarize the debate that took place about
this taxonomy:

Antonio: ...Yes, we could start arguing about the taxonomy “signatures/pro-
tocols/semantics”. In this point it could be worth having a look at last year’s
WOI report [8]. Of course you can stick to the “traditional” signature/semantics
taxonomy (also called static/dynamic in [5], or plug/play by Sy and Bastide in
the workshop). Even in this case the “semantic” level may include too many
things. If we take a look at the literature, most of the authors that say “se-
mantics” mean “operational semantics” or “behavioral specifications”. So far
people have concentrated in signature interoperability (just method names) and
operational semantics (using various formalisms: pre-post, temporal logic, pro-
cess algebras, etc. —the new book edited by Leavens and Sitaraman compiles
many of the approaches that deal with the semantic aspects of components [6]).
However, the “semantic” level is too broad. It should cover not only operational
semantics and behavioral specifications of components, but also agreements on

12 A . Vallecillo, J. Hernédndez, and J.M. Troya

names, context-sensitive information, agreements on concepts (ontologies) —
which moves names agreements one level up in the meta-data chain—, etc. (All
this is very well described in the papers by Sandra Heiler, eg. [3]). The problem
is that this is a too broad and general problem to be tackled in full.

On the other hand, dealing with behavioral specifications needs very heavy
machinery, which makes unpractical most approaches for real applications. One
possibility that was originally proposed by Yellin and Storm in 1994 (inspired
by the works by Nierstraz [7], and Allen and Garlan [1]) was to deal just with
the “protocol” aspects of the behavior of components. In this way more practi-
cal tests could be defined for proving interoperability among components, and
actually this has traditionally been the interoperability “level” used in most
Architectural Description Languages....

Duane: ...As Antonio has indicated, the concept of “semantics” covers a very
broad set of issues, and there is no universal consensus on the full scope of what
those issues are. This is not surprising, given the difficulty of the topic. I would
simply add that we should be realistic and view “semantics” as a topic that
is likely to develop and mature over a lengthy period, perhaps even decades.
That is, rather than a sudden revolution in understanding semantics, what may
happen is a kind of extended factoring process. Relatively small aspects of the
problem will be defined more precisely, solved, and removed from the big, fuzzy
bin of what we now call “semantics”. The process would be somewhat analogous
to the way issues and methods once grouped under “artificial intelligence” are
now simply considered useful tools of everyday software engineering. Such a fac-
toring process for semantics could for example explain why we tend to separate
semantics from issues such as signatures (which we understand well) and proto-
cols (for which we are gaining a good understanding), even though both of these
topics have semantic aspects. As topics are factored out, they may be positioned
at different levels, perhaps in something like a lattice structure. Over time the
gradual clarification and removal of well-understood topics from the semantics
bin will both reduce the size of the semantics problem and help provide a new set
of tools for resolving the remaining issues. At the same time, though, I think it is
important to preserve an overall understanding of how a thread of semantics is
woven throughout all of these areas. That thread begins with topics as “simple”
as signatures and extends through issues so abstract that at present we do not
even know how to name them. Recognizing this thread of semantics should help
us in time to arrive at a deeper and more profound understanding of semantics.
Our achievement of this understanding will certainly come in increments, and is
not fully articulated by the three-level taxonomy at this time....

4.3 Workshop Conclusions

Finally, Jack Wileden did an excellent job summarizing the workshop conclu-
sions into the following list. Those conclusions represent the ideas agreed by all
participants. In addition, this list also points out some of the existing problems
that object interoperability currently faces, and provides some hints to their
solutions that may be worth investigating.

WOTI’00: New Issues in Object Interoperability 13

I. Interoperability is an (increasingly) important concern.
II. Support for interoperability should/must include:
e Careful specification of the components and their properties.
e Precise notations of compatibility (composition).
e Automated tools for constructing, analysing, composing components.
ITI. Candidate (potentially viable) specification methods include:
e Signature/types (sine qua non, i.e. fundamental).
e Protocols (partial orders of signature invocations).
e Behavior (results of sequences of signature invocations).
IV. Underlying formal models are potentially powerful. Valuable specific strengths
and weaknesses should continue to be investigated.
V. Underlying formal models should be hidden as thoroughly as possible (both
on inputs and output states) from most users.
e Automatic derivation/inference is a promising possibility.
VI. Other important considerations:
e Multiple levels of abstractions should be considered.
e Solution domain (in addition or alternative to implementation domain)
driven decomposition.
o Connections to software architectures (and other related research areas).
e Possibility of defining patterns for interoperability.

5 Concluding Remarks

If a main goal of a workshop is to gather researchers and practitioners of a
discipline, and let them exchange ideas, identify problems, and reach (violent:)
agreements, we are pretty sure we succeeded with WOI’00. The present report
has collected (most of) the discussions that took place during and after the
workshop, and the conclusions that were finally agreed.

Much work remains to be done in this area of object interoperability, but we
hope that WOTI’00, as its predecessor WOI'99, has provided the basis for concrete
research activities in this field, and that following WOTI’s serve as a stable forum
for discussion on these topics.

Before we finish, we would like to thank the ECOOP’2000 organization for
giving us the opportunity to organize the workshop, especially to the Workshop
Chairs, Sabine Moisan and Jacques Malenfant. Thanks also to all the contribut-
ing authors and to the referees who helped in choosing and improving the selected
papers. Finally, we want to especially thank all WOI’00 attendees for their ac-
tive and enthusiastic participation in the workshop, and for their contributions
to this report. Many thanks to all for making WOI'00 a very enjoyable and
productive experience.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans.
on Software Engineering and Methodology, July 1997.

14 A . Vallecillo, J. Hernédndez, and J.M. Troya

[2] R. Bastide, O. Sy, and P. Palanque. A formal notation and tool for the engineering
of CORBA systems. Concurrency/TAPOS (Wiley). Special Issue “Selected papers
from ECOOP’99”, 2000. (to appear).

[3] S. Heiler. Semantic interoperability. ACM Comp. Surveys, 27(2):265-267, June
1995.

[4] J. Hernéndez, A. Vallecillo, and J. M. Troya, editors. New Issues in Object Inter-
operability. Universidad de Extremadura, Dept. Informética, 2000.

[6] D. Konstantas. Interoperation of object oriented applications. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software Composition. Prentice-Hall, 1995.

[6] G. T. Leavens and M. Sitaraman, editors. Foundations of Component-Based Sys-
tems. Cambridge University Press, 2000.

[7] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition, pages 99-121. Prentice-Hall, 1995.

[8] A. Vallecillo, J. Hernéndez, and J. M. Troya. Object interoperability. In Object-
Oriented Technology: ECOOP’99 Workshop Reader, number 1743 in LNCS, pages
1-21. Springer-Verlag, 1999.

[9] P. Wegner. Interoperability. ACM Comp. Surveys, 28(1):285-287, March 1996.

Annex 1: List of Participants

Mehmet Aksit. University of Twente, The Netherlands (aksit@cs.utwente.nl)
Francisco Dominguez. Univ. Rey Juan Carlos, Spain (f.dominguez@escet.urjc.es)
Jun Han. Monash University, Australia (jhan@monash.edu.au)

Juan Herndndez. Universidad de Extremadura, Spain (juanher@unex.es)

Duane Hybertson. The MITRE Coprporation, USA (dhyberts@mitre.org)
Anténio Ravara. Technical University of Lisbon, Portugal (amar@math.ist.utl.pt)
Rick van Rein. University of Twente, The Netherlands (vanrein@cs.utwente.nl)
Ralf H. Reussner. University of Karlsruhe, Germany (reussner@ira.uka.de)
Antonio Ruiz. Universidad de Sevilla, Spain (aruiz@lsi.us.es)

Ousmane Sy. University Toulouse 1, France (sy@univ-tlsel.fr)

Bedir Tekinerdogan. University of Twente, The Netherlands (bedir@cs.utwente.nl)
Antonio Vallecillo. Universidad de Milaga, Spain. (av@lcc.uma.es)

Jack C. Wileden. University of Massachusetts, USA (wileden@cs.umass.edu)

